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Abstract— Real world applications require robots to operate
in unstructured environments. This kind of scenarios may lead
to unexpected environmental contacts or undesired interactions,
which may harm people or impair the robot. Adjusting the
behavior of the system through impedance control techniques
is an effective solution to these problems. However, selecting
an adequate impedance is not a straightforward process.
Normally, robot users manually tune the controller gains with
trial and error methods. This approach is generally slow
and requires practice. Moreover, complex tasks may require
different impedance during different phases of the task. This
paper introduces an optimization algorithm for online planning
of the Cartesian robot impedance to adapt to changes in
the task, robot configuration, expected disturbances, external
environment and desired performance, without employing any
direct force measurements. We provide an analytical solution
leveraging the mass-spring-damper behavior that is conferred
to the robot body by the Cartesian impedance controller. Stabil-
ity during gains variation is also guaranteed. The effectiveness
of the method is experimentally validated on the quadrupedal
robot ANYmal. The variable impedance helps the robot to
tackle challenging scenarios like walking on rough terrain and
colliding with an obstacle.

I. INTRODUCTION

The development of more flexible and adaptable con-
trol architectures and technologies has initiated a shift of
paradigm in robotics. This new trend aspires to move robots
from traditional industrial cages to unstructured environ-
ments. For example, there has been an increasing interest in
the deployment of robots in hazardous environments, such
as mines, disaster area, nuclear sites, space and offshore
platforms. Despite the great improvements in controlling
robots in challenging dynamic condition, they are still not
sufficiently reliable and adaptable to be employed in such
locations. Especially, the intrinsic unpredictability of such
environments makes the exteroceptive information not reli-
able. Thus, moving around in such conditions may severely
affect the robot: there could be unexpected interactions or
disturbances, which may destabilize or damage the robot. An
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Fig. 1. Quadrupedal robot ANYmal walking on rough terrain with
online impedance planning.

adaptive behavior may help to mitigate or even avoid these
dangerous scenarios. Impedance control [1] tackles these
issues by directly setting the robot stiffness and damping.
In other words, this technique allows to specify the force
produced in response to a motion imposed by the environ-
ment, leading to the desired robust and adaptive behavior.

Applying impedance control to legged robots is a common
practice in literature [2], [3], [4], [5], [6]. However, there
is currently no established basis upon which to choose the
impedance gains for a specific system or scenario. Tuning
these parameters is generally tedious and time- consuming.
An experienced robot programmer may be able to find some
fine-tuned fixed gains that achieve the desired behavior, but
different tasks and different robot configurations may require
different parameters. Thus, it is of paramount importance to
replace the typical trial and error impedance modulation with
an automatic one.

Literature proposes several approaches to solve this prob-
lem. Learning techniques [7], [8], [9], [10], [11] are an effec-
tive method to achieve this goal. The price of these strategies
is that they require demonstrations from humans, rich data
sets, or, generally, a learning process that may require several
iterations to converge. Thus, despite their efficacy, these
methods can not be employed in every scenario.

In [12] the authors formulate a robust optimization prob-
lem to compute the optimal control action and compliance
value for a robot-environment interaction scenario under
uncertainties. This techinique is validated on a handover task,
however, it is an offline approach.



(a) Step force disturbance in the low impedance case. (b) Wall interaction in the low impedance case.

(c) Step force disturbance in the high impedance case. (d) Wall interaction in the high impedance case.

Fig. 2. Interactions in low and high impedance cases. (a,c) step force disturbance with module equal to 170N. (b,d) interaction with
a wall (brown box)) due to a roll movement. The impedance of the robot is set as low in (a) and (b), and it is set as high in (c) and
in (d). In the case of low impedance the robot falls in case of an external force disturbance, but it is more robust to contacts with the
environment. In the case of high impedance the robot is able to reject force disturbances, but the contact with the wall destabilizes it.
This is highlighted by the dashed red circle: the robot loses support on two legs.

Other strategies focus on an online adaptation of the
impedance based on sensory feedbacks (mostly force sen-
sors). In [13] the authors employ adaptive dynamic pro-
gramming to find the impedance gains that minimize the
tracking error and interaction forces with an unknown envi-
ronment. The results are validated with simulations. In [5] an
impedance tuning method based on time-varying Lyapunov
stability margins is proposed and experimentally verified.
The goal is to guarantee the balancing of a humanoid robot
during walking. In [14] is presented an impedance controller
that automatically regulates the impedance of the robot
based on expected interaction forces and local sensory data
(vision, tracking error and interaction forces). The authors
experimentally validate it on a manipulation task.

All these works rely on force measurements to modify
the impedance of the robot accordingly, which may not
be available on the robot. In this paper we propose a
method for online Cartesian impedance planning of a robot
without utilizing direct force measurements. The idea is to
leverage the mass-spring-damper model resulting from the
employment of a task-space impedance controller. Instead
of changing the impedance based on force measurements,
we define a constrained optimization problem in which the
cost index aims at highest compliance (corresponding to the
most interaction-tolerant robot behavior), and the constraints
guarantee the desired task performance. Such constraints take
into account: desired maximum tracking error, robot config-
uration, robot stability, expected disturbances and accuracy
with which the environment is perceived. To the best of
authors’ knowledge, this is the first time a legged robot
without external force measurements is able to modulate its
impedance online.

In this work we show that variable gains lead to better per-
formance and robustness to unexpected interactions. We will
rely on the impedance controller proposed in [3], developing
a module that will plan the gains of this controller online.
In particular, we will focus on the impedance modulation of
the torso of the robot. Note that in this case the employment
of any force sensor at the point of contact is particularly

challenging since the interaction force could be applied at
any point of the robot body. The proposed method will be
experimentally validated on the quadrupedal robot ANYmal
[6] (Fig. 1).

II. PROBLEM DEFINITION

Legged robots are developed to solve tasks in unstructured
environment, thus their impedance modulation is a trade-off
between performance in achieving the task and robustness
to unexpected environmental interactions. Low impedance
improves the compliance to undesired contacts, while high
impedance improves tracking performance and disturbance
rejection. Fig. 2 depicts two examples of this trade-off.
The case of study is the response of the robot ANYmal
in presence of a step force disturbance (Fig. 2(a,c)) or an
interaction with the environment (Fig. 2(b,d)). Both cases
are analyzed with low (Fig. 2(a,b)) and high impedance
(Fig. 2(c,d)). Comparing Fig. 2(a) and Fig. 2(c) shows that
high impedance allows to reject force disturbances. On the
other hand, high impedance (Fig. 2(d)) causes large contact
forces that destabilize the robot, while low impedance allows
smaller contact forces (Fig. 2(b)), thus more robustness.

The aim of this paper is thus to plan the impedance
of the robot online, without relying on direct force sensor
measurements. Applying a task-space impedance control
technique to a generic robotic system leads to a resulting
behavior described by the model [15], [3]

Λc(q) ¨̃x+D ˙̃x+Kx̃ =−Fext , (1)

where x̃ ∈ Rn, ˙̃x ∈ Rn and ¨̃x ∈ Rn are the task-space posi-
tioning error vector w.r.t. the desired position vector x̂ ∈ Rn

and its derivatives, n is the dimension of the task (usually
n = 3 or n = 6), q ∈ Rnq are the generalized coordinates,
Λc ∈ Rn×n is the constraint-consistent operational space
inertia matrix [3], and D ∈ Rn×n and K ∈ Rn×n are the
damping and the stiffness matrices (i.e. the gain matrices
of the impedance controller), respectively. Finally, Fext ∈Rn

is the vector of the external force disturbances. Note that
the constraint-consistent operational space inertia matrix Λc



is usually configuration dependent. This is a more general
case compared to studying a fixed inertia matrix M. Such
generality is necessary, because impedance control requires
a force sensor to modulate the inertia matrix.

Fig. 3 shows an overview of the control architecture.
The impedance controller computes the input to have the
desired impedance behavior. This behavior is chosen by the
impedance planner, i.e. an optimization problem that we are
going to formulate. The cost function is designed to reduce
the contact forces resulting from a displacement imposed by
the environment, i.e. to reduce the system impedance. The
constraints are designed to guarantee the desired performance
in terms of tracking error and stability. The performance is
set by boundaries that are chosen online by an other module.
This module merges the information given by the robot
state, the environment and the user inputs. During the robot
motion, the configuration, the surrounding environment and
the user inputs (e.g. task) will change, leading to different
controller gains.

To formulate the optimization problem we leverage the
simplified model (1) resulting from the application of an
impedance control technique. This solution allows to com-
pute and modify online the impedance parameters. The goal
of this paper is to improve the robustness of the robot, thus
we will define a cost function J(D,K) that minimizes the
impedance. Decreasing the impedance will lower accuracy,
thus we will rely on the constraints to guarantee the desired
minimum performance. In particular, we can relate tracking
performance and stability (in the case of a legged robot) to
the position error, bounding it accordingly. We will assume
that the disturbances are due to non-zero initial conditions,
i.e. x̃0 6= 0 and ˙̃x0 6= 0. Furthermore, we will assume that
each element x̃0,i and ˙̃x0,i of the initial condition vectors is
bounded. Each element di, j and ki, j of the matrices D and
K will also have its own bound due to the actuation system
and robot design. Hence, the problem formulation is

arg min
D,K

J(D,K)

s.t. ldi, j ≤ di, j ≤ udi, j ∀ i, j = 1 . . .n

lki, j ≤ ki, j ≤ uki, j ∀ i, j = 1 . . .n

max
(x̃0, ˙̃x0)

|x̃i(t)| ≤ bi ∀ i = 1 . . .n, ∀ t ∈ [0,∞)

s.t. Λc ¨̃x+D ˙̃x+Kx̃ = 0
lx̃0,i ≤ x̃0,i ≤ ux̃0,i ∀ i = 1 . . .n

l ˙̃x0,i
≤ ˙̃x0,i ≤ u ˙̃x0,i

∀ i = 1 . . .n ,

(2)

where a boundary bi is defined (and changed online) for each
of the n axes of the robot. These values define the desired
performance of the robot and are linked to the external envi-
ronment, stability (i.e. support polygon) or desired tracking
performance (i.e. maximum tracking error).

Eq. (2) is a minimization problem with a maximization
constraint. Since the initial conditions are uncertain, this is a
robust optimization problem, similar to [12]. In Sec. III we
will show how to transform this robust optimization problem
in a deterministic optimization problem.

Fig. 3. Scheme of the method. The robot is controlled with
an impedance controller, whose gains are chosen online by the
proposed impedance planner. Robot configuration, environment and
user inputs determine the performance boundaries that need to be
guaranteed.

During the execution of the task, the configuration of the
robot (thus Λc(q)) will change, together with the bounds bi,
leading to different optimal gain matrices D and K.

It is worth noting also that in (2) Fext = 0, i.e. there are
no force disturbance, hence we are assuming that all the
disturbances are due to non-null initial conditions. The initial
velocity error ˙̃x0,i can be interpreted as an external impulsive
disturbance Fext,i = Aδ (t) acting along the axis x̃i, where A
is the amplitude of the impulse and δ (t) is the Dirac Delta.

III. METHOD

In this section we describe the proposed impedance modu-
lation method. Although this method could be applied to any
impedance controller, we will rely on the one proposed in
[3], in particular, we will focus on the impedance modulation
of the center of mass (COM) of the quadrupedal robot
ANYmal. Under this circumstance, (1) refers to the task-
space dynamics of the COM, thus x̃ is the position error
of the COM w.r.t. the desired position given by the motion
planner. Note also that, in this case, n = 6.

In the following we will transform the robust optimization
problem (2) in a deterministic optimization one. Furthermore,
we will report a sufficient condition to guarantee the stability
of the system with time varying gains.

A. System Decoupling and Transient Response

The constraint-consistent operational space inertia matrix
Λc depends on the current configuration q. Modulating
also the inertia matrix would require a torque sensor that,
generally, is not installed on the robot. Here we assume that
Λc can be considered constant between two gain updates, i.e.
that we can replace Λc with a constant matrix M ∈ Rn×n.
Furthermore, since we are focusing on the impedance of the
torso, we have that Λc is diagonally dominant, thus, we can
approximate M as a diagonal matrix. Since D and K are the
gain matrices of the impedance controller, we can set them as
diagonal too, decoupling (1) into n SISO sub-systems and (2)
into n distinct optimization problems. Note that Λc can not
be approximated as diagonal in every system. Later, we will
briefly discuss how to extend the proposed method to full Λc
matrices, leaving a deeper investigation to future works.



The resulting SISO model of the system under analysis is

mi ¨̃xi +di ˙̃xi + kix̃i =−Fext,i , (3)

where mi ∈ R is the i-th diagonal element of the constant
inertia matrix M, di ∈ R is the i-th diagonal element of the
damping matrix D, and ki ∈ R is the i-th diagonal element
of the stiffness matrix K. x̃i ∈ R, ˙̃xi ∈ R and ¨̃xi ∈ R are the
i-th elements of x̃, ˙̃x and ¨̃x, i.e. the positioning error vector
and its derivatives. Fext,i ∈ R is i-th element of the external
force disturbance vector Fext, i.e. the disturbance acting on
the axis x̃i. Hereinafter, if it is not strictly necessary, we will
omit the subscript i for the sake of readability.

The system (3) will present one of the three well-known
behaviors: under damped, critically damped or over damped.
Since the optimizer will iteratively change the optimal value
for d and k, the system could switch between these three
cases. We opt to restrict our analysis to the critically damped
case because it is the fastest to converge without oscillations,
and, in legged robot stance phases, overshoots are usually
avoided [2], [16], [5]. Under this choice, the impedance
controller gains are related, reducing the dimensionality of
the parameter space of (2). We choose to optimize over the
damping term d because it simplifies the resulting expression.
Consequently, the stiffness k is

k =
d2

4m
. (4)

Remark 1: Note that the proposed method could be ap-
plied also to set under-damped or over-damped gains, which
are not reported here for the sake of space. Their formula-
tions differ only due to slight variations in the constraints.

B. Cost Function

Our goal is to achieve a behavior robust to environmental
interactions. This can be obtained by decreasing the robot
impedance, thus the values of the gains d and k. Since we are
focusing on the critically damped case, the gains are related
by (4). Hence, we can adopt the quadratic cost function

J(d) = d2 . (5)

The idea is to have a robot as soft as possible, while relying
on the constraints to guarantee stability and desired minimum
performance.

C. Constraints

To guarantee the desired performance and the robot stabil-
ity, the idea is to compute the worst possible position error
and to tune the impedance gains accordingly. The evolution
of the position error is defined by (3). Given the boundary
conditions x̃0 and ˙̃x0, the analytical solution of (3) is

x̃(t) =
(

x̃0 +

(
˙̃x0 +

x̃0d
2m

)
t
)

e−
d t
2m . (6)

Substituting (6) into (2) allows to remove the dynamics
from the optimization problem. Also considering the simpli-
fications discussed in Sec. III-A and the cost function (5),

the optimization SISO sub-problem is

arg min
d

d2

s.t. ld ≤ d ≤ ud

max
(x̃0, ˙̃x0)

∣∣∣∣(x̃0 +

(
˙̃x0 +

x̃0d
2m

)
t
)

e−
d t
2m

∣∣∣∣≤ b ∀ t ∈ [0,∞)

s.t. lx̃0 ≤ x̃0 ≤ ux̃0

l ˙̃x0
≤ ˙̃x0 ≤ u ˙̃x0

,
(7)

where b is the strictest bound for the axis under analysis.
Our goal is to respect the boundaries b (stability and

performance) at every time step in presence of unknown
initial conditions, hence we have to focus on the worst
case, i.e. the case where the signs of x̃0 and ˙̃x0 are equal.
Thus, without loss of generality, we assume that x̃0 ≥ 0 and
˙̃x0 ≥ 0. This allows us to remove the absolute value from
the maximization constraint. We also add the time t as a
decision variable in the maximization constraint of (7). In
other words, instead of considering every position error x̃(t),
we will consider only its peak value over time. Thus, defining

x̃0,max , max(|lx̃0 |, ux̃0) , ˙̃x0,max , max(|l ˙̃x0
|, u ˙̃x0

) , (8)

the maximization constraint of (7) can be rewritten as

max(x̃0, ˙̃x0,t)

(
x̃0 +

(
˙̃x0 +

x̃0d
2m

)
t
)

e−
d t
2m

s.t. 0≤ x̃0 ≤ x̃0,max

0≤ ˙̃x0 ≤ ˙̃x0,max

t ≥ 0 .

(9)

At this point, we transform the robust optimization prob-
lem (7) into a deterministic optimization problem. Using
KKT conditions [17] we prove that the value

x̃0 = x̃0,max
˙̃x0 = ˙̃x0,max

t =
4m2 ˙̃x0,max

d(2m ˙̃x0,max +dx̃0,max)
,

(10)

is the argument of the maximum of (9).
Proof: The KKT conditions applied to (9) are

(
1+ d t

2m

)
e−

d t
2m +µ1−µ2 = 0

te−
d t
2m +µ3−µ4 = 0((

1− d t
2m

)
˙̃x0− d2 t

4m2 x̃0

)
e−

d t
2m +µ5 = 0

−x̃0 ≤ 0
x̃0− x̃0,max ≤ 0
− ˙̃x0 ≤ 0
˙̃x0− ˙̃x0,max ≤ 0
−t ≤ 0
µi ≥ 0 ∀i = 1 . . .5
µ1 · (−x̃0) = 0
µ2 · (x̃0− x̃0,max) = 0
µ3 · (− ˙̃x0) = 0
µ4 · ( ˙̃x0− ˙̃x0,max) = 0
µ5 · (−t) = 0 .

(11)



Given (11) we have two stationary points, i.e. (x̃0, ˙̃x0, t) =
(x̃0,max, 0, 0) and (10). Recalling that, for the examined
problem, d > 0 and m > 0 and given (6), direct computation
shows that (10) is the maximum of the function under
analysis.

Using (10) allows us to replace the robust optimization
problem with a deterministic one. The maximization con-
straint in (7) is replaced by

max
(x̃0, ˙̃x0,t)

(x̃(t)) =
2m ˙̃x0,max +dx̃0,max

d
e

(
−2m ˙̃x0,max

2m ˙̃x0,max+dx̃0,max

)
≤ b .

(12)
It is worth noting that (12) is a nonlinear constraint.

Applying a conservative approach is possible to find an upper
bound of (12) that is a linear constraint, i.e.

max
(x̃0, ˙̃x0,t)

(x̃(t))≤ x̃0,max +
2m · ˙̃x0,max

e ·d
. (13)

Proof: Given the linearity of x̃0 and ˙̃x0 in (6), we have

x̃(t) = x̃0η1(d, t)+ ˙̃x0η2(d, t) , (14)

where

η1(d, t),
(

1+
d

2m
t
)

e−
d t
2m , η2(d, t), te−

d t
2m . (15)

Maximizing (14), and recalling that the maximum of the
sum of two terms is lesser or equal to the sum of the
maximum of the two terms, we obtain

max
(x̃0, ˙̃x0,t)

(x̃(t)) = max
(x̃0, ˙̃x0,t)

(x̃0 ·η1(d, t)+ ˙̃x0 ·η2(d, t))≤

≤max
(x̃0,t)

(x̃0 ·η1(d, t))+max
( ˙̃x0,t)

( ˙̃x0 ·η2(d, t)) .
(16)

Assuming x̃0, ˙̃x0, η1 and η2 as positive we have

max
(x̃0,t)

(x̃0 ·η1(d, t)) = max
(x̃0)

(x̃0) ·max
(t)

(η1(d, t))

max
( ˙̃x0,t)

( ˙̃x0 ·η2(d, t)) = max
( ˙̃x0)

( ˙̃x0) ·max
(t)

(η2(d, t)) .
(17)

From (8) we have that max(x̃0)(x̃0) = x̃0,max and
max( ˙̃x0,t)(

˙̃x0) = ˙̃x0,max. Then, we can analytically compute the
maximum of η1 and η2 differentiating over t and equating
the derivative to 0, obtaining

max
(t)

(η1(d, t)) = 1 , max
(t)

(η2(d, t)) =
2m
e ·d

. (18)

This leads to the thesis.

D. Closed Form Solution

Eq. (13) can be substituted for (12) in (7), leading to the
deterministic optimization problem

arg min
d

d2

s.t. d ≥
2m · ˙̃x0,max

(b− x̃0,max) · e
ld ≤ d ≤ ud ,

(19)

that has a closed form solution

d = min
(

max
(

ld,
2m · ˙̃x0,max

(b− x̃0,max) · e

)
, ud

)
. (20)

Eq. (20) and (4) allow the robot programmer to directly
map the task requirements in the impedance parameters of
the robot. ld is fixed by the actuators, m is given by the
configuration of the robot, and x̃0,max and ˙̃x0,max are linked
to the expected disturbances, in particular, ˙̃x0,max is linked to
the expected impulsive force disturbance.

Finally, b is related to the stability margin of the robot and
the performance/task requirements. For example, b could be
set as the distance between the edges of the support polygon
and the planned COM position or as the distance between the
hip and the foot of the robot to avoid limb singularities. The
user can also manually set the desired tracking performance
by imposing a b value. This is useful, for example, if the
task changes from walking to manipulation. The boundary b
for each axes x̃ will be set accordingly as the strictest of the
set. During the execution of the task, m and b will change,
leading to different gains values.

Remark 2: The structure of (20) ensures the existence
of a valid solution. However, dynamic model inaccuracies,
hardware limitations and overly stringent task requirements
might make it impossible to satisfy the desired performance
in practice.

E. Stability Analysis

To prove that the gain variation does not lead to instability,
we will rely on Theorem 1 presented in [18]. This theorem
states that a sufficient condition for the asymptotic stability
of the equilibrium at the origin of the system

ẍ(t)+
d(t)
m(t)

ẋ(t)+
k(t)
m(t)

x(t) = 0 , (21)

is that d(t)/m(t) is continuous and bounded over time,
k(t)/m(t) is positive, differentiable and bounded, and that

1
2

d(k(t)/m(t))
dt

(
k(t)
m(t)

)−1

+
d(t)
m(t)

> 0 . (22)

Let us consider system (3). In this case all the conditions
of Theorem 1 in [18] are satisfied except for (22). Given (4),
condition (22) becomes

ḋ(t)>−d2(t)
m(t)

+
d(t)ṁ(t)

m(t)
. (23)

Eq. (23) imposes a maximum changing rate for the damp-
ing coefficient. Fulfilling condition (23) assures the stability
of the equilibrium at the origin (i.e. zero tracking error)
during the gain variation.

Eq. (23) is always fulfilled during a damping increment,
but it may not be during a damping reduction. To fulfill this
condition we approximate ḋ as a difference quotient, thus
(23) becomes

d(t +Ts)> d(t)− d2(t)Ts

m(t)
+

d(t)ṁ(t)Ts

m(t)
, (24)

where Ts is the sampling time. The term d(t + Ts) is the
solution (20) of the optimization problem. If (24) is satisfied,
we can set the next damping value as (20), otherwise, we
will limit it to the maximum variation imposed by (24).



Note that we can not compute exactly ṁ(t) online. We
could approximate it using the planned motion, but since the
term d(t)ṁ(t)Ts/m(t) is very small (the inertia matrix varies
slowly in the system under analysis), we can substitute it
with a constant value tuned on the worst case scenario.

IV. SIMULATION RESULTS

In this section we test this method with two simulations.
In each simulation we used Ts = 0.0025s x̃0,max = [0.0218m,
0.0160m, 0.0057m, 0.0192rad, 0.0097rad, 0.0301rad]T and
˙̃x0,max = [0.1729m/s, 0.1240m/s, 0.0635m/s, 0.4331rad/s,
0.2396rad/s, 0.1633rad/s]T . These values are the maxi-
mum position and velocity error occurred while walk-
ing on an uneven terrain with the simulated robot
using the fixed impedance gains employed in [3].
The impedance limits are set as lk = [300·1T

3 N/m,
200·1T

3 Nm/rad]T , uk = [1800·1T
3 N/m, 400·1T

3 Nm/rad]T , ld =
[230·1T

3 Ns/m, 19Nms/rad, 36Nms/rad, 38Nms/rad]T and
ud = [450·1T

3 Ns/m, 34Nms/rad, 85Nms/rad, 69Nms/rad]T ,
where 1T

3 , [1, 1, 1].
In the first simulation we test the variation of the

impedance gains due to a change in configuration, thus a
change in Λc. We simulate the robot approaching a table
and crawling under it. For this simulation the boundaries
imposed by the user as task requirements are b = [0.04·1T

3 m,
π/6 · 1T

3 rad]T . The results are reported in Fig. 4. Different
background colors define the different task phases: walking,
transition and crawling. For the sake of space and readability
we report only the results for the translational axes, analo-
gous result were obtained for the rotational ones. Fig 4(a)
shows the change in the inertia matrix diagonal elements
due to the change of configuration. This is considered by
the optimization problem that increases the damping in the x
axis (Fig. 4(b)). Thus, the tracking error continues to fulfill
the margin b imposed by the user (Fig. 4(c)). Note that also
the translational stiffness changes as described by (4), but
we do not report its behavior here for the sake of space.

In the second simulation we test the variation of the
impedance gains due to a change in the task requirements.
We simulate that the user increases the required tracking
performance from b = [0.06m, 0.055m, 0.05m, π/6 ·1T

3 rad]T

to b = [0.025m, 0.04m, 0.04m, 0.01·1T
3 rad]T and then de-

creases them again. Fig. 5(a) shows that the imposed tracking
performance continues to be satisfied, while in Fig 5(b) and
5(c) the variation of the impedance gains is reported. This
shows how the user can easily change task without any
tedious tuning of the gains. An increment in the gains does
not cause instability as discussed in Sec. III-E. This means
that the abrupt change in the gains does not compromise the
stability, while the change at t = 37s must be slowed down to
preserve it. The inserts in Fig. 5(b) highlight this difference.
Note that there is an analogous behavior for the rotational
impedance gains.

V. EXPERIMENTAL RESULTS

In this section we test the proposed method on the robot
ANYmal [6]. This is a quadrupedal platform with point feet.

This system weighs ∼ 30kg, is ∼ 0.5m tall, and each link
of its legs is ∼ 0.3m long. The robot presents a total of 12
identical actuators (ANYdrive [6]), three per legs. These joint
units are compact series elastic actuators, i.e. actuators where
a mechanically compliant element is embedded between the
gearbox output and the joint output shaft.

We used Ts = 0.0025s x̃0,max = [0.0337m, 0.0360m,
0.0193m, 0.0231rad, 0.0279rad, 0.0211rad]T and ˙̃x0,max =
[0.2157m/s, 0.1812m/s, 0.1264m/s, 0.2712rad/s, 0.2447rad/s,
0.1409rad/s]T . These values are the maximum position and
velocity error occurred while walking on an uneven ter-
rain with the real robot using the fixed gains employed
in [3]. The impedance limits are set as lk = [300·1T

3 N/m,
200·1T

3 Nm/rad]T , uk = [1800·1T
3 N/m, 400·1T

3 Nm/rad]T , ld =
[230·1T

3 Ns/m, 19Nms/rad, 36Nms/rad, 38Nms/rad]T and
ud = [450·1T

3 Ns/m, 34Nms/rad, 85Nms/rad, 69Nms/rad]T .
Please, for what concern the experiments, refer also to the
video attached to this paper.

A. Identification Procedure

Since the system model used in the impedance controller
is not accurate enough, there is a mismatch between the
simulated dynamics and the real one. In particular, we have
that the damping behavior of the system along the trans-
lational axes is different from the modeled one. In order to
reduce this issue, we used a least square approach to identify
the intrinsic damping and the mass of the system along the
translational axes. We set the damping gain of the impedance
controller to zero, and we applied several displacements to
the robot using different stiffness gains. In particular, we
applied the displacements x̃0 = {10, 20, 35, 50}mm for the
x axis, x̃0 = {10, 20, 35, 50}mm for the y axis and x̃0 =
{50, 100, 150, 170}mm for the z axis. Each displacement
was applied three times for each tested stiffness value. In
total we tested three stiffness values: k = 800N/m, k =
1000N/m and k = 1200N/m.The result of this identification
process is that d̃x = 50.4885Ns/m, d̃y = 64.4859Ns/m and
d̃z = 75.6533Ns/m, while m̃x, m̃y and m̃z are approximately
equal to the diagonal elements of the matrix Λc in the
default configuration. The identified damping values were
then imposed as an offset to the optimal values (20).

B. Obstacle Interaction Experiment

In this experiment the robot touches an unperceived
obstacle (placed at ∼ 0.6m from the ground) while
walking. We repeated the experiment with low1 (K =
diag([500·1T

3 N/m, 200·1T
3 Nm/rad]), D = diag([90·1T

3 Ns/m,
10·1T

3 Nms/rad])), high (K = diag([1500·1T
3 N/m,

300·1T
3 Nm/rad]), D = diag([200·1T

3 Ns/m, 80·1T
3 Nms/rad]))

and variable impedance (b = [0.06m, 0.055m, 0.05m,
π/6 · 1T

3 rad]). Fig. 6 shows a photo-sequence for the high
and variable impedance cases. The low impedance case is
omitted due to similarity to the variable gains scenario. In
the case of high impedance the interaction force is too large
causing a failure on the robot. Conversely, in the case of

1Note that these values are the same employed in [3].



(a) Diagonal term of the inertia matrix. (b) Translational damping gains. (c) Translational tracking error.

Fig. 4. Simulation results of the crawling task. (a) The change of configuration causes a change in the inertia matrix of the robot. This
is considered by the optimization problem that increases the damping gain for the x axis (b). (c) The tracking error does not exceed the
performance margins imposed by the user. Analogous results were obtained for the stiffness gains, not reported here for the sake of space.

(a) Translational tracking error. (b) Translational damping gains. (c) Translational stiffness gains.

Fig. 5. Simulation of a change in the task requirements. The user imposes a new desired maximum tracking error (a) and the method
automatically set the new impedance gains (b,c). The inserts in (b) highlight the difference between increasing and decreasing the gains.
The latter may cause instability so the variation must be slowed down as discussed in Sec. III-E. The fluctuation of the stiffness gains
in (c) are caused by the variation of the inertia matrix, via (4). Analogous results were obtained for the rotational impedance gains, not
reported here for the sake of space.

Fig. 6. Photo-sequence of the robot touching an unperceived
obstacle. In the case of high impedance the robot can not cope with
the motion displacement caused by the environment. In the case of
variable impedance, the robot is able to handle that disturbance.

variable impedance the robot is able to resist to the motion
displacement caused by the environment. This shows the
benefit of minimizing the impedance, which is achieved

thanks to the choice of the cost function (5).

C. Rough Terrain Experiment

In this experiment the robot walks on rough terrain (Fig.
1) using the controller proposed in [3] combined with lo-
comotion planner described in [19]. The terrain is realized
randomly combining 0.4×0.4m wooden tiles with different
slope steepness ({π/36, π/18, π/12}rad) and orientation.
During the motion, the task requirements are changed from
b = [0.06m, 0.055m, 0.05m, π/6 ·1T

3 rad]T to b = [0.02·1T
3 m,

π/6 ·1T
3 rad]T and then reseted to the previous values. Fig. 7

reports the tracking error and the impedance variation during
the experiment. The error stays in between the boundaries
even when these boundaries are tightened by the operator
between t = 38s and t = 53s. The roughness of the terrain
and the changes in the support polygon cause variation on the
impedance gains throughout the motion. This allows to keep
balance and to achieve the desired tracking performance.
Note that the damping coefficient reach smaller values than
ld due to the offset imposed by the intrinsic property of
the system identified in Sec. V-A. Despite the different
conditions between simulation and this experiment the results



(a) Translational tracking error. (b) Translational damping coefficients. (c) Translational stiffness coefficients.

Fig. 7. Walking on a rough terrain experiment. (a) The user imposes a new desired maximum tracking error at t = 38s and resets it at
t = 53s. The tracking error is in between the boundaries. (b,c) The method automatically set the new impedance gains. The roughness
of the terrain and the changes in the support polygon cause variation on the impedance gains throughout the motion.

are qualitatively similar. Therefore, this experiment supports
the soundness of the proposed method.

VI. CONCLUSIONS
In this work we presented a method to plan the impedance

of legged robots online to improve their robustness to un-
expected interactions with the environment. This method
optimizes the impedance based on the desired performance
and expected disturbances, without relying on direct force
measurements. Theoretical analysis provided a closed form
solution to the robust optimization problem and guarantees
of the system stability during the gain variation.

The proposed method was tested on simulation and on
hardware in challenging scenarios involving rough terrain
and unperceived obstacle interaction. Results show that this
technique can vary the controller gains online, adapting them
to different robot configurations or task requirements. Indeed,
the user can change the desired tracking performance with
no need of tedious and time-consuming tuning procedure.

Future works will focus on extending this method to
system with full inertia matrices such as manipulators. In
the case this matrix is not diagonal, the decoupled approach
used in this paper can not be applied. However, the discussed
optimization problem could be tackled evaluating the maxi-
mum error via mixed integer optimization.
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Diethelm, Samuel Bachmann, Michael Blösch, et al. Anymal-
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