
Efficient Learning of Constraints and Generic Null Space Policies

Leopoldo Armesto1 and Jorren Bosga2 and Vladimir Ivan2 and Sethu Vijayakumar2

Abstract— A large class of motions can be decomposed into
a movement task and null-space policy subject to a set of
constraints. When learning such motions from demonstrations,
we aim to achieve generalisation across different unseen con-
straints and to increase the robustness to noise while keeping
the computational cost low. There exists a variety of methods
for learning the movement policy and the constraints. The
effectiveness of these techniques has been demonstrated in low-
dimensional scenarios and simple motions. In this paper, we
present a fast and accurate approach to learning constraints
from observations. This novel formulation of the problem allows
the constraint learning method to be coupled with the policy
learning method to improve policy learning accuracy, which
enables us to learn more complex motions. We demonstrate
our approach by learning a complex surface wiping policy in
a 7-DOF robotic arm.

I. INTRODUCTION

Movement in complex, multi joint systems often con-
tains a high level of redundancy. The degrees of freedom
available to perform a task are usually higher than what
is actually necessary to execute for that task. This allows
certain flexibility in finding an appropriate solution. This
redundancy may be resolved according to some strategy
that achieves a secondary objective. Such approaches to
redundancy resolution are employed by humans [5] as well
as other redundant systems such as (humanoid) robots [6].

The redundancy may be also interpreted as a form of
hierarchical task decomposition, in which the complete space
of available movement is split up into a task space component
and a null space component. The task space component
represents the degrees of freedom (DoF) necessary to ac-
complish the primary task, while the null space component
determines how the redundancy gets resolved. This means
that the null space may be used to achieve some secondary
goal of lower priority. For instance, one might consider
the primary task to consist of the desired activity, such
as reaching, and a lower-priority task to be a secondary
goal such as avoiding joint limits [9], self-collisions [23],
or kinematic singularities [25]. This notion becomes more
intuitive when we also consider external or environmental
constraints. These static constraints also restrict the space

This work is supported by the Spanish Goverment (Research Projects
DPI2013-42302-R and DPI2016-81002-R and José Castillejo Research
Grant Ref. JC2015-00304) and Universitat Politècnica de València (PAID-
00-15).

1L. Armesto is with Control Systems and Engineering, Universitat
Politècnica de València, C/Camino de Vera s/n, 46019, Valencia Spain
larmesto@idf.upv.es

2J. Bosga, V. Ivan and S. Vijayakumar are with the Institute of
Action, Perception, and Behaviour, University of Edinburgh, Crichton
Street 10, EH8 9AB, Edinburgh, UK. jorrenbosga@gmail.com,
v.ivan@ed.ac.uk, sethu.vijayakumar@ed.ac.uk

Fig. 1. Task demonstration carried out with the Kuka LWR Robot.

in which the desired task may be performed. For instance,
motion might be constrained by a surface for a wiping
application (see Fig. 1). Several variants of this hierarchical
approach to redundancy have been used in robotics [15]. This
core concept has been applied to task sequencing [19], task
prioritisation [3] and hierarchical quadratic programming
[8][11], but they use explicit constraint formulations to
compute the required motion.

To avoid that, motion can be learned from data captured
from demonstrations. These demonstrations either consist
of human movements or movements made by the robot
itself (or another robot) that is guided by a human. This
approach falls under the category of imitation learning [2],
and one straightforward way to learn behaviours from this is
through direct policy learning (DPL) [22]. This method uses
demonstrations to learn control policies through supervised
learning, however, DPL suffers from poor generalisation [2].

Therefore, in order to generalize to tasks that differ from
the demonstrations, it is helpful to learn the two components:
the unconstrained policy and the constraints. In fact, by learn-
ing both separately, generalisation could be achieved across
constraints (e.g. utilizing the learnt policy under different
constraints) as well as within constraints (e.g. utilizing a new
policy under the learnt constraints). A recently developed
method for learning both the null space policy [12] and
the constraints [16] significantly outperforms direct policy
learning methods, but it imposes strict assumptions on the
nature of the data used for learning and so far its effectiveness
has been demonstrated mostly in low-dimensional scenarios
with relatively simple (linear) movement policies. In [4]
authors propose to use virtual-damper systems, combined
with Gaussian Mixture regression to learn different tasks

sethu
Text Box
In: Proceedings IEEE Intl. Conf. on Robotics and Automation (ICRA), Singapore (2017)

parametrization by taking the advantage of the variability
in the demonstrations to extract task-space invariant features
and achieve generalization to new situations. In [10], their
aim is to select the task for a given set of demonstrations,
which is solved iteratively.

In this paper, we present a new method for learning
the constraints under learning by demonstration scenario.
Compared to [16], we provide a new metric that minimizes
the error in the task-space, rather than in the null-space.
We show that our approach outperforms state of the art
techniques in both computation speed and accuracy. This
improvement allows us to use the estimated constraints for
learning the null space policy, which leads to more accurate
policy estimations, which in turn enables us to efficiently
learn more complex policies.

The paper is organized as follows: in section II, we first
provide some preliminaries to our work. In describe section
III a method for learning constraints is proposed and used in
section IV for estimating the unconstrained policy. Section V
describes the wiping policy used in simulated data, provides
an analysis performance using such data and also provides
some experimental results. In summary, we demonstrate that
our approach is effective in learning policies in complex
scenarios such as learning a wiping policy with a simulated
and a real 7-DOF robotic arm.

II. PRELIMINARIES

In our problem setting, we assume little knowledge about
the system: we have access to constrained motion data
consisting only of state-action tuples (x,u), with x ∈ Rn
and u ∈ Rq . We assume that the observed actions can be
decomposed into a task space and a null space component,
which are orthogonal with respect to each other:

u(x) = A(x)†b(x) + N(x)π(x) (1)

where A(x) ∈ Rs×q (s < q) is a Pfaffian constraint matrix
and A†(x) its Moore-Penrose pseudo-inverse, b(x) ∈ Rs
is the task space policy and the null space projection matrix
N(x) ∈ Rq×q projects the null space policy π(x) ∈ Rq onto
the null space of A(x):

N(x) = (I−A(x)†A(x)) (2)

If the task-space component of the observations, tsu(x) =
A(x)†b(x), is known or could be neglected b(x) ≈ 0, then
(1) simplifies to:

nsu(x) = N(x)π(x) (3)

where nsu(x) is the null space component of u(x), that is
nsu(x) = u(x)−ts u(x). Here, both N(x) and π(x)

Different metrics have been described in the literature
for measuring performance when learning the null space
policy from observed actions [12]. There are also two similar
metrics that are used to evaluate the accuracy of the learnt
projection matrix [18].

Normalised Unconstrained Policy Error (nUPE): error
between the ground-truth and estimated policies:

EnUPE [π̃] =
1

N‖σ2
π‖

N∑
n=1

‖π(xn)− π̃(xn)‖2 , (4)

where symbol ˜ denotes estimation and ‖σ2
π‖ is the variance

of the ground-truth policy.
Normalised Constrained Policy Error (nCPE): error in

the null-space. Here, we assume that N(x) is available as
well as the null-space component of the action:

EnCPE [π̃] =
1

N‖σ2
π‖

N∑
n=1

‖nsun −N(xn)π̃(xn)‖2 . (5)

Normalised Constraint Consistent Policy Error (nCCE):
projects the policy onto a 1D sub-space which is consistent
with the constraint using P =nsûnsûT , with nsû =

nsu
||nsu||

[12]. Minimizing the inconsistency then becomes:

EnCCE [π̃] =
1

N‖σ2
π‖

N∑
n=1

∥∥nsun −nsûnsn ûTn π̃(xn)
∥∥2 . (6)

It is well known, [12], that nCCE is a lower bound,
meaning that nUPE > nCPE > nCCE. Therefore,
having low figures in nCCE might not necessarily imply
that the estimated policy matches the ground-truth one.

Normalised Projected Policy Error (nPPE): measures
the same error as (5), but in this case measures the accuracy
of estimating the projection matrix and thus the ground-truth
policy is assumed to be known:

EnPPE [Ñ] =
1

N‖σ2
u‖

N∑
n=1

∥∥∥nsun − Ñ(xn)π(xn)
∥∥∥2 (7)

where σ2
u is the variance of the observed action.

Normalised Projected Observation Error (nPOE): mea-
sures the error of the projection matrix using the null-space
component of the action:

EnPOE [Ñ] =
1

N‖σ2
u‖

N∑
n=1

∥∥∥nsun − Ñ(xn)
nsun

∥∥∥2 (8)

Again, we can see that nPOE is a lower bound and
therefore nPPE > nPOE and thus we seek for approaches
providing low figures in nPPE rather than nPOE.

III. LEARNING THE CONSTRAINT MATRIX

In this section, we define a new method for estimating
the null space projection matrix. Our method formulates the
problem so that we can minimize a quadratic function with
quadratic constraints, which is a suitable representation for
constrained optimization problems. This implies that we will
be able to find very good solutions in few iterations, even
in high-dimensional spaces. The original method [18] repre-
sents the problem in spherical coordinates, so the function
to minimize becomes highly non-convex, leading to many
local minima in high-dimensional spaces and making it much
harder to find a good solution even with fast optimization
procedures such as the Levenberg-Marquart algorithm [17].

Also the computational time is slow due to the spherical
representation. Our assumption is that A(x) ∈ Rs×q can be
decomposed as:

A(x) = ΛJ(x) (9)

where J(x) ∈ Rt×q is the Jacobian of the task and Λ is
the constraint to be learned. We assume the Jacobian is
known, which is a reasonable assumption since it can be
calculated using the kinematic model of the robot when one
is provided. Let us also assume that Λ consists of a set of s
row-independent unit vectors:

Λ =
[
λ1 . . . λs

]T
=

λ1,1 λ1,2 . . . λ1,t
...

...
...

...
λs,1 λs,2 . . . λs,t

 ∈ Rs×t

(10)
where λTi λj + qi,j = 0 ∀j ≥ i, i = 1, . . . , s, with
qi,j = −1 if i = j (unit vector) and qi,j = 0 otherwise (row-
independent vectors). At this point we have the same problem
statement as in [18], [17]. The differences come in the metric
used to estimate Λ. In [18], [17], authors used a metric
minimizing the error in the null-space, using the property that
nsun = N(xn)

nsun, and thus a good estimation of N(xn)
must verify this. On the contrary, we focus our attention to
the property A(x)nsu(x) = 0. It turns out that the benefit of
using this new approach is that we can represent the problem
in a quadratic setting. As a consequence, we define a new
metric to learn the constraint in the constraint space:

Ec[Ã] =
1

2

N∑
n=1

∥∥∥Ã(xn)
nsun

∥∥∥2 (11)

We can substitute for Ã(x) its representation in (9) so that
we can derive an expression in quadratic form. Note that we
can now directly minimize Λ̃:

Ec[Λ̃] =
1

2

N∑
n=1

nsuTnJ(xn)
T Λ̃T Λ̃J(xn)

nsun =
1

2
λ̃TDλ̃

(12)
where D =

∑N
n=1 DT

nDn and λ̃ = [λ̃T1 , . . . , λ̃
T
s]
T ≡

vec(Λ̃T) ∈ Rst×1 and

Dn=

nsuTnJ(xn)

T 0 . . . 0
0 nsuTnJ(xn)

T . . . 0
...

.
...

0 0 . . . nsuTnJ(xn)
T

∈ Rs×st

(13)
It is interesting to remark that the Hessian of the quadratic

expression in (12) can be computed in advance for a given
data set, which speeds up computations.

The orthonormality constraint between vectors can also
be expressed in a quadratic form. We define the constrained
problem as:

argmin 1
2 λ̃

TDλ̃
λ̃

s.t. 1
2 λ̃

THi,jλ̃+ qi,j = 0

(14)

where Hi,j is a zero matrix filled with block-diagonal
identities on the i-th and j-th positions.

Hi,j =

0 0 ... 0 ... 0
0 0 ... Ii,j ... 0
...

...
...

...
...

...
0 Ij,i ... 0 ... 0
...

...
...

...
...

...
0 0 ... 0 ... 0

 ∈ Rst×st (15)

This problem can be solved using standard quadratic
optimization tools. In particular, we use fmincon function
in Matlab 2015b release using the interior-point algorithm.

IV. CONSTRAINED POLICY LEARNING

In this section, we propose a method that combines the
projection matrix learning method proposed in the previous
section with policy learning as described in the literature.
The result is a constrained policy learning (CPL) technique,
where for a set with data from different constraints, we first
estimate the projection matrix for each data point individ-
ually and then estimate the policy using learnt projection
matrices. This amounts to the minimization of two error
functions:

Ec[Ãi]=
1

2

N∑
n=1

∥∥∥Ãi(xn,i)
nsun,i

∥∥∥2 (16)

Ecpl[π̃]=

Nc∑
i=1

N∑
n=1

∥∥∥nsun,i−(I−Ãi(xn,i)
†Ãi(xn,i))π̃(xn,i)

∥∥∥2,
(17)

where Ai refers to the i-th constraint and Nc is the number
of different constraints provided in the dataset.

The main difference with respect to constraint consistent
learning (CCL), the method used for policy learning in the
literature [12], is that this minimization produces policies
that are consistent with the full set of constraints instead of
with a subspace of the constraints defined by projections of
the observations. This leads to increased accuracy because
the 1D projection error is only the lower bound of the error
computed using the full constraint set.

In order to model the policy, we use weighted linear
models, where each model can be learned independently
[21]. This approach has many partial models that all contain
a linear approximation of the policy in their local space:

πm(x) = Bm

[
xT 1

]T
(18)

where Bm is a matrix containing the weights of locally linear
model m to be learned. The global policy is then a weighted
combination of these partial models:

π(x) =

∑M
m=1 wmπm(x)∑M

m=1 wm
(19)

where wm(x) = e−
1
2 (x−cm)TD−1(x−cm) is the importance

weight of each observation according to the distance to the
local model’s Gaussian receptive field with center cm ∈
Rp×1 and variance D ∈ Rp×p a diagonal matrix. Centers
of receptive fields are obtained by running the K-means

Fig. 2. Simulated experimental setup using an Antropomorphic 7-DOF
KUKA LBR IIWA R800 Robot in V-REP [7] to obtained artifitial data.

algorithm [14] on the provided data. Both CPL and CCL
can be implemented with local learning, resulting in Lo-
cally Weighted CPL (LWCPL) and Locally Weighted CCL
(LWCCL).

V. POLICY LEARNING PERFORMANCE

A. Wiping policy

In this section, we demonstrate the accuracy of constrained
policy learning for a wiping policy (circular motion in
the null space). We show that the proposed method can
handle complex policies in high dimensions by evaluating
its performance using the ground truth wiping policy, where
an example of a wiping motion can be shown in Figure 2
(in general, the end-effector plane is colinear with the wiping
surface). The platform that we use to execute the policy is a
kinematic simulation of the 7-DOF KUKA LBR IIWA R800.

In [12], most of previously learnt policies were restricted
either to low-dimensional examples such as linear, sinu-
soidal, limit cycle, or inverted Gaussian potential policies
[12] or joint limit avoidance (roughly close to linear be-
haviour). In this paper, we aim to extend the car washing and
surface wiping examples provided in [13] to a circular wiping
motion in the null space. Here the task constraint is to stay in
contact with the surface with the end-effector z-axis aligned
to the normal of the surface. Thus, the unconstrained policy
encodes the circular wiping, and it is through the constraints
that this motion is applied to surfaces of different orienta-
tions. Our first goal is to estimate the projection matrix of a
set of experiments with the same surface orientation. Then,
we reconstruct the null space policy from experiments with
different surface orientations using the estimated constraints.

The unconstrained wiping policy performs a circular mo-
tion of a 2D sub-space with respect to the end-effector frame,
on the x and y coordinates. It is important to note that even
though the rotational component of the policy is defined
in two dimensions (end-effector plane), the final policy is
embedded in a 7-dimensional space – much higher than in
other scenarios where a circular motion was learned (e.g.
[13]). The actions are joint velocities u = q̇ and the state
is the joint configuration q together with a wiping center

position pts ∈ R2 with respect to the end-effector frame,
so we have state x ∈ R9. We formulate a candidate target
velocity to perform the wiping movement as follows:

q̇ = J†xy(q)R(θts)
r

δt

(
1−cosωδt−Kr

(
1− ‖pts‖

r

)
sinωδt

)
(20)

where Jxy(q) is the Jacobian of the end-effector frame for
x and y coordinates, δt is the sampling time, Kr is a gain
ensuring that the wiping policy has the center of rotation at
a distance equal to the given wiping radius parameter r. ω is
the angular rate of the circular motion and θts is the angle of
the wiping center position with respect to end-effector frame
and R(θts) is a 2D rotation matrix. The terms to the right of
the inverse of the Jacobian in (20) are basically generating a
velocity with respect to the end-effector frame which ensures
the circular wiping. We have chosen this policy because it
is state dependent (no dependency on time) and it has an
intuitive interpretation as a circular motion on a 2D surface.

In addition to this, the unconstrained policy also includes
a joint limit avoidance policy for the 1st, 3rd and 7th joints,
see [1] for details. We would like to keep the 7th close to
zero, since it has no influence on the wiping and also to keep
1st and 3rd joints as close as possible to each other because
these joints are essentially complementary on the “natural”
wiping configuration. This ensures that the overall angle is
distributed among those joints. In summary, all these aspects
are added to the policy so that the resulting joint velocities
for those joints include the terms:

q̇7 ← q̇7 −K7q7 (21)
q̇1 ← q̇1 −K3(q1 − q3) (22)
q̇3 ← q̇3 −K1(q3 − q1) (23)

where K1, K3 and K7 are gains.
For realistic wiping simulation, the end-effector should

maintain contact with the surface [20], so we want the end-
effector plane and the wiping surface to be colinear, which
imposes a constraint. In our simulation setting, we have
considered a task to avoid long-term divergences, assumed to
be known and corresponding task-component is substracted
from raw observations, thus the constraint to be satisfied is:

A(x)u(x) = b(x) (24)

Let Tee(x) be the end-effector transformation matrix:

Tee(x) =

[
xee yee zee pee
0 0 0 1

]
(25)

where xee, yee, and zee are vectors that encode the orienta-
tion of the end-effector, and pee is a vector that represents the
position of the end-effector. We define ps to be the closest
point on the planar surface to the end-effector, and n the
normal vector to that surface. We can then define the error
of the task as:

te(x) =

nT (pee − ps)
nTxee
nTyee

 ∈ R3×1 (26)

Method Time[s] log10nPPE log10nPOE
literature [18] 470.89±152.34 -12.86±0.83 -13.52±0.54

proposed 0.039±0.009 -27.47±2.84 -28.31±2.58

TABLE I
LEARNING PROJECTION MATRIX N: COMPUTATIONAL TIME AND

ERRORS USING MATLAB R2015B AND A I7-4712MQ CPU @2.3 GHZ.

Therefore, the constraint matrix can be decomposed into
a surface dependent term Λ(n) and a state dependent term
corresponding to the Jacobian of the task J(x):

A(x) = Λ(n)J(x) (27)

with,

Λ(n) =

nT 0 0
0 nT 0
0 0 nT

 ∈ R3×9 (28)

J(x) =∇x

[
pTee xTee yTee

]T ∈ R9×7 (29)

and the task is designed to ensure that task error converges
to zero, that is, b(x) = −Kte(x), being K a gain.

B. Performance Analysis

We analyse the performance of the proposed projection
matrix learning in the constraint-space and the one proposed
in [18]. We have created a dataset in which robot starts at
100 different random configurations and performs a wiping
task under 4 different constraints, each recorded trajectory
contains 150 data points and we assume that we have
access to the null-space component of the action and that
the Jacobian is known. For each experiment the robot is
initialized to start at a configuration aligned with the surface
(so that the task component is negligible throughout the
trajectory) and separated from the wiping position a distance
equivalent to the wiping radius.

Table I shows the results of learning the projection matrix
with the method proposed in Section III in terms of the
normalised projected policy error (nPPE) and the normalised
projected observation error (nPOE). The analysis has been
performed using s = 3 and q = 7 and mean and standard
deviations have been obtained from 20 random initializations
of each method. These results clearly show that our method
outperforms the state of the art in both computational time
and accuracy.

In addition to this, Figure 3 shows the effect of increasing
the number of constraints, i.e.: the number of parameters
to optimize by increasing the number of rows s in the
constraint. In this particular setting, the constraint simply
affects the rows of the robot’s end-effector Jacobian, con-
straining the end-effector to move in specific directions, such
as x, {x, y}, {x, y, z}, etc. This increases the number of
rows of the constraint matrix and consequently the number
of parameters to optimize, which is reflected in a steadily
increasing nPOE and nPPE.

Now, we are interested in evaluating the policy learning
performance of the method described in Section IV (con-
strained policy learning or CPL) and comparing the results

Fig. 3. Error plots of projection matrix accuracy for end-effector constraint:
nPPE and nPOE and constraint-space error. Errors are in logarithmic scale.

with the method proposed in [12] (constraint consistent
learning or CCL). We generated a dataset where a total
of 100 trials were carried out for the wiping policy using
simulated data, where each trial contains trajectories of 150
points corresponding to 25 random initial configurations
and the policy contains different noise levels (an additive
Gaussian noise proportional to a percentage of the noise free
joint value) varying from 2% to 20%. Figure 4 shows two
cases for the same starting configuration with 2% of noise
level and 20% of noise level.

We want to analyse the effect of having different numbers
of constraints, Nc coming from different surface orientations,
with Nc = {8, 12, 20}. Considering that only 90% of data
is used for training, the case with 8 different orientations
uses 7 for training and 1 for testing. This is the minimum
number of observations required in order to resolve the policy
ambiguity [12] if data were collected from exactly the same
configuration. The policy uses a set of receptive fields based
on RBFs that were randomly initialized using the k-means
algorithm [14], roughly requiring 2250 local models per
trial, although this value may change upon trials, until the
whole space is covered with a weight of 0.7. In any case,
we use the same field placement for either locally weighted
constraint projection learning (LWCPL) or locally weighted
constraint consistent learning (LWCCL) when evaluating
their performance. The results are shown in Table II, and

(a) 2% noise (b) 20% noise

Fig. 4. Example of the wiping policy with different noise levels.

Method Nc nUPE nCPE nCCE

LWCCL
8 98934±129330 20240±26286 2.5±3.8

12 121223±120067 54208±79345 1.7±1.9
20 129474±87438 90864±82809 2±1.7

LWCPL
8 309.3±113.2 27.1±22.6 8.4±6.3

12 306.9±151.1 13.7±8.9 6.4±4.6
20 300.9±102.9 8.5±4.2 4.9±3.0

TABLE II
WIPING POLICY LEARNING ERRORS (UNITS ARE 10−3).

(a) Ground-truth nsu =
N(x)π(x)

(b) Estimated nsũ = N(x)π̃(x)

(c) Ground-truth π(x) (d) Estimated π̃(x)

Fig. 5. Projected and unconstrained policy over unseen constraints: (a)
Ground-truth projected policy, (b) Estimated projected policy, (c) Ground-
truth policy (d) Estimated policy.

LWCPL outperforms LWCCL in terms of accuracy, since
LWCCL is directly optimizing the NCCE – which is a lower
bound. On the contrary, LWCPL is able to obtain low errors
in the null space projection (nCPE) and the learnt policy
is generally much closer to the ground truth policy (NUPE
column). However, the NUPE is still relatively high, which
implies that there are cases in which the policy is ambiguous,
in the sense that its projection in the null space is precise,
but the underlying policy is very different from the ground
truth. This aspect is clearly reflected in Figure 5.

In order to analyse the influence of a noisy policy on
LWCPL, we have conducted an additional experiment with
25 different configurations, 12 different constraint orienta-
tions and 11 different noise levels (form 2% to 20%). Each
experiment has been repeated for 100 trials. The results,
shown in Figure 6, suggest that there is no explicit depen-
dence on the policy noise level. This is expected, because
the projected noise is Gaussian and the regression of each
local model cancels it out by converging to its mean.

C. Experimentation

Now, we are interested in learning by demonstration using
the proposed method. The setup consists of a KWR Kuka
Robot with 7-DOF (previous version of the same robot used
in simulation). We operate the robot in gravity compensation

Fig. 6. Policy learning errors of a data set containing 25 different random
configurations with 12 different contraint orientations. Noises are from 0%
to 20% with 100 trials for each experiment.

mode, see Figure 1. During training, the robot is moved
along a surface on which the human demonstrates the wiping
motion. We repeat this 15 times at different locations on the
surface for 12 different orientations of the surface. We show
a subset of this data set in Figure 7. The length of each
experiment may vary and trajectories do not describe perfect
circles. The robot’s end-effector is in contact with the surface
and orthogonal to it during the whole motion segment, so that
the task-space component is virtually zero.

Figure 8 shows the results of the learnt constraint errors
(for training). As expected, the accuracy is less than in
the simulated experiments. This is because the demonstrator
introduced some residual task-space component, which is
affecting the constraint estimation. However, despite the
inconsistencies introduced by the demonstrator, the error
metrics still show good results. Figure 9 validates that
the projection of the policy lies on a surface. The nCPE
and nCCPE errors for LWCPL were 0.2425 and 0.1106
respectively, using the variance of the observed input as
normalization factor. On the other hand, the nCPE and
nCCPE errors for the LWCCL method were 2.02 and 0.115,
respectively. Figure 9 shows the learnt trajectories, in closed-
loop, starting at the same configurations as the testing data.
We would like to point out that the trajectories are not
circular (some of them converge, other diverge, which is
expected as the policy is not designed for infinite-horizon
control), but in general they show a wiping motion pattern.
This behaviour is due to limitations of the potential (state
dependent) policy representation, rather than inaccuracies in
the learning method.

VI. CONCLUSION

In this paper, we have addressed the problem of learning
generalizable null space policies from constrained motion
data. We have proposed a method for learning the constraints,
which allows us to combine null space projection learning
with null space policy learning. The main advantage of the
method is its quadratic formulation, with quadratic con-
straints, which makes it suitable for specialized optimization

Fig. 7. Surface orientations used for training (transparent with border) and
surface orientation used for testing together with testing trajectories.

Fig. 8. Normalized errors of projection matrix estimation of experimental
data using a LWR KUKA robot.

solvers. Since we can compute Hessians in advance from
data, the convergence of the method is very fast and with
low computational cost.

We have showed that this method can be used for learning
null space policies, obtaining more accurate estimations than
previous methods. The paper also addresses the problem of
learning from demonstrations, in which we have been able
to reproduce the basis of a wiping pattern using a real robot
arm experiment.

It should be noted, though, that we assume that task space
component is known or zero, which may introduce some
biases to our method if this is not the case. To address this,
we will investigate, in further research, how to split the null
space component and the task-space component similar to
[24] without using complex learning models.

REFERENCES

[1] KUKA AG.
[2] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Brown-

ing. A survey of robot learning from demonstration. Robotics and
autonomous systems, 57(5):469–483, 2009.

[3] Paolo Baerlocher and Ronan Boulic. An inverse kinematics architec-
ture enforcing an arbitrary number of strict priority levels. The visual
computer, 20(6):402–417, 2004.

[4] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell.
Statistical dynamical systems for skills acquisition in humanoids. In

Fig. 9. Closed-loop trajectories with the learnt policy using LWCPL.

2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012), pages 323–329, Nov 2012.

[5] Holk Cruse and M Brüwer. The human arm as a redundant manip-
ulator: the control of path and joint angles. Biological cybernetics,
57(1-2):137–144, 1987.

[6] Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal. Learning
inverse kinematics. In Intelligent Robots and Systems, 2001. Proceed-
ings. 2001 IEEE/RSJ International Conference on, volume 1, pages
298–303. IEEE, 2001.

[7] M. Freese E. Rohmer, S. P. N. Singh. V-rep: a versatile and scalable
robot simulation framework. In Proc. of The International Conference
on Intelligent Robots and Systems (IROS), 2013.

[8] Adrien Escande, Nicolas Mansard, and Pierre-Brice Wieber. Hier-
archical quadratic programming: Fast online humanoid-robot motion
generation. The International Journal of Robotics Research, page
0278364914521306, 2014.

[9] Michael Gienger, Herbert Janssen, and Christian Goerick. Task-
oriented whole body motion for humanoid robots. In 5th IEEE-RAS
International Conference on Humanoid Robots, 2005., pages 238–244.
IEEE, 2005.

[10] S. Hak, N. Mansard, O. Stasse, and J. P. Laumond. Reverse control
for humanoid robot task recognition. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 42(6):1524–1537, Dec
2012.

[11] Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger,
Stefan Schaal, and Ludovic Righetti. Momentum control with hierar-
chical inverse dynamics on a torque-controlled humanoid. Autonomous
Robots, pages 1–19, 2015.

[12] Matthew Howard. Learning Control Policies from Constrained Motion.
PhD thesis, University of Edinburgh, 2009.

[13] Matthew Howard, Stefan Klanke, Michael Gienger, Christian Goer-
ick, and Sethu Vijayakumar. Methods for learning control policies
from variable-constraint demonstrations. In From Motor Learning to
Interaction Learning in Robots, pages 253–291. Springer, 2010.

[14] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D.
Piatko, Ruth Silverman, and Angela Y. Wu. An efficient k-means
clustering algorithm: Analysis and implementation. IEEE Trans.
Pattern Anal. Mach. Intell., 24(7):881–892, July 2002.

[15] Oussama Khatib, Luis Sentis, and Jae-Heung Park. A unified frame-
work for whole-body humanoid robot control with multiple constraints
and contacts. In European Robotics Symposium 2008, pages 303–312.
Springer, 2008.

[16] Hsiu-Chin Lin. A novel approach for representing, generalising, and
quantifying periodic gaits. PhD thesis, University of Edinburgh, 2015.

[17] Hsiu-Chin Lin and Matthew Howard. Learning null space projections
in operational space formulation. arXiv preprint arXiv:1607.07611,
2016.

[18] Hsiu-Chin Lin, Matthew Howard, and Sethu Vijayakumar. Learning
null space projections. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 2613–2619. IEEE, 2015.

[19] Nicolas Mansard and François Chaumette. Task sequencing for high-
level sensor-based control. Robotics, IEEE Transactions on, 23(1):60–
72, 2007.

[20] Jaeheung Park and Oussama Khatib. Contact consistent control frame-
work for humanoid robots. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pages
1963–1969. IEEE, 2006.

[21] Stefan Schaal and Christopher G Atkeson. Constructive incre-
mental learning from only local information. Neural computation,
10(8):2047–2084, 1998.

[22] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational
approaches to motor learning by imitation. Philosophical Transactions
of the Royal Society of London B: Biological Sciences, 358(1431):537–
547, 2003.

[23] Hisashi Sugiura, Michael Gienger, Herbert Janssen, and Christian
Goerick. Real-time self collision avoidance for humanoids by means
of nullspace criteria and task intervals. In 2006 6th IEEE-RAS
International Conference on Humanoid Robots, pages 575–580. IEEE,
2006.

[24] Chris Towell, Matthew Howard, and Sethu Vijayakumar. Learning
nullspace policies. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 241–248. IEEE, 2010.

[25] Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The
international journal of Robotics Research, 4(2):3–9, 1985.

	INTRODUCTION
	Preliminaries
	Learning the Constraint Matrix
	Constrained Policy Learning
	Policy Learning Performance
	Wiping policy
	Performance Analysis
	Experimentation

	Conclusion
	References

