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Abstract—Many practical tasks in robotic systems, such
as cleaning windows, writing or grasping, are inherently
constrained. Learning policies subject to constraints is a challeng-
ing problem. We propose a locally weighted constrained projection
learning method (LWCPL) that first estimates the constraint
and then exploits this estimate across multiple observations of
the constrained motion to learn an unconstrained policy. The
generalization is achieved by projecting the unconstrained policy
onto a new, previously unseen, constraint. We do not require
any prior knowledge about the task or the policy, so we can use
generic regressors to model the task and the policy. However, any
prior beliefs about the structure of the motion can be expressed
by choosing task-specific regressors. In particular, we can use
robot kinematics and motion priors to improve the accuracy.
Our evaluation results show that LWCPL outperform the state
of the art method in accuracy of learning the constraints as well
as the unconstrained policy, even in noisy conditions. We have
validated our method by learning a wiping task from human
demonstration on flat surfaces and reproducing it on an unknown
curved surface using a force/torque based controller to achieve
tool alignment. We show that, despite of the differences between
the training and validation scenarios, we learn a policy that still
provides the desired wiping motion.

I. INTRODUCTION
When performing a given task in an unfamiliar environment,

humans easily adapt the skills or previously learned motions to
novel situations and environments. For instance, the operator
in Fig. 1 wipes the front panels of the train by employing
a small set of motions and skills that generalize to different
train geometries and positioning. However, current robotic
systems often require computationally expensive replanning
and precise scans of the new environment to reproduce a
learnt task. In addition to this, movement in complex, high
degree of freedom manipulation systems often contains a high
level of redundancy. The degrees of freedom available to
perform a task are usually higher than what is necessary to
execute that task. This allows certain flexibility in finding an
appropriate solution, so that this redundancy may be resolved
according to some strategy that achieves a secondary objective,
while the primary task is not affected. Such approaches to
redundancy resolution are employed by humans [4] as well as
other redundant systems such as (humanoid) robots [6].

The redundancy resolution may be also interpreted as a
form of hierarchical task decomposition, in which the complete
space of available movement is split up into a task space
component and a null space component. For instance, one
might consider a primary task, such as reaching or trajectory
tracking, and a lower-priority task to be a secondary goal such

Fig. 1. Manual cleaning of an electric train. Willesden depot, London (2016)

as avoiding joint limits [8], self-collisions [19], or kinematic
singularities [21]. This notion is particularly evident when
considering motions modulated by external or environmental
constraints. For instance, in the wiping task of Fig. 1, the tool
is constrained by the window surface; the primary task is to
keep the tool aligned and in contact and the secondary task
is to provide surface coverage while maintaining comfortable
arm position. Several variants of this hierarchical approach to
redundancy have been used in robotics [13]. This core concept
has been applied to task sequencing [15], task prioritisation [3]
and hierarchical quadratic programming [7][9]. These methods
attempt to minimize a cost function subject to explicitly
formulated constraints. However, they suffer from the curse
of dimensionality and are typically unsuitable for real time
applications in high dimensions.

To circumvent this problem, one might attempt to learn
a movement policy, a mapping from states to actions, that
encodes behaviour consistent with the set of constraints,
instead of continuously calculating constraint-consistent ac-
tions. This mapping can be learned from data captured during
demonstrations, consisting of human or robot motions. This
approach falls under the category of imitation learning [1],
and one straightforward way to learn behaviours from this
is through direct policy learning (DPL) [17]. However, DPL
suffers from poor generalisation [1] under varying constraints.

A recently developed method for learning both the null
space policy [20] and the constraints [14] significantly out-

sethu
Text Box
In: Proceedings Robotics: Science and Systems, July 12-16, Cambridge, Mass, USA (2017)



performs direct policy learning methods, but it imposes strict
assumptions on the nature of the data used for learning. So
far, its effectiveness has been demonstrated mostly in low-
dimensional scenarios with relatively simple (linear) move-
ment policies.

A. Contribution

One of the main difficulties of learning from demonstration
arises because raw observations contain policies acting on
multiple levels of unknown task hierarchy. To decompose this
hierarchy into subtasks, we present a closed-form solution to
[14], which outperforms the state of the art techniques in
both computation speed and accuracy. In addition to this, we
split the raw observation into task and null-space components
in a more efficient way than the method proposed in [20].
This improvement allows us to estimate null-space projection
matrices from data of different tasks which can be used
for learning an unconstrained policy by observing multiple
projections of such policy at the same configuration [10].

In our experiments, we provide demonstrations of a wiping
motion on flat surfaces and test the learnt policy on curved
surfaces, achieving generalization to previously unseen envi-
ronments. Additionally, we define a surface alignment task
using a force sensor which allows us to perform wiping on
curved surfaces. This resulting constraint is different from the
alignment constraint used for training on the flat surfaces,
showing generalization to an entirely different task with a
different null-space.

II. CONSTRAINT MATRIX AND TASK LEARNING

Let’s assume that there’s an unconstrained ideal controller
u∗(x) := π(x) and that a dynamic system must be operated
under some task that imposes a set of constraints:

A(x)u(x) = b(x), (1)

where A(x) ∈ Rs×q (s < q) is a Pfaffian constraint matrix and
b(x) ∈ Rs is known as the task policy. Unfortunately, u(x) 6=
u∗(x) because, by assumption, the system is constrained.

This implies that the actions can be decomposed into a task-
space component, tsu(x) ∈ Rq which satisfies the constraint,
and a null-space component, nsu(x) ∈ Rq:

u(x) = A(x)†b(x) + N(x)π(x) (2)
tsu(x) := A(x)†b(x) (3)
nsu(x) := N(x)π(x). (4)

where N(x) ∈ Rq×q is a null-space projection matrix com-
puted as:

N(x) := I−A(x)†A(x), (5)

where † denotes Moore-Penrose pseudo-inverse. Note that by
definition tsu(x) ⊥ nsu(x).

A. Problem Statement

We assume that A(x) and b(x) are unknown, but they can
be expressed as linearly dependent on some regressors. We
obtained the motion data through a set of demonstrations. In
this case, the direct policy learning (DPL) approach would be
to learn a static policy (mapping) from states x to actions u.
However, since the actions of the system are subject to some
constrained motion, the DPL is not valid.

Learning the policy π(x) from (2) can be a difficult task
when the constraint defined by A(x) and b(x) is unknown.
However, if A(x) and b(x) are first estimated, it is a relatively
straight-forward problem, particularly if the policy can be
described as linearly dependent of some parameter vector. In
that case the problem could be solved using least-squares.
Thus, it is reasonable to divide the overall problem into two
sequential steps: 1) estimate Ã(x) and b̃(x) for each task;
2) estimate π̃(x), combining all data and estimated constrains
and tasks. Note that symbol˜denotes estimation.

A given dataset contains a set of ν sub-datasets
{X1,X2, . . . ,Xν}. Each sub-set contains a different
task/constraint with samples of pairs of raw observations
Xi = {(x1,i,u1,i), . . . , (xN,i,uN,i)}, where N is the
number of observations for each task/constraint. However,
the unconstrained policy π(x) is the same for all provided
demonstrations by assumption, so that we will be able to
observe enough projections of such policy to reconstruct it
[10, Theorem 3.1].

In [14], the authors presented a method for estimating
the null-space projection matrix. The main drawback of that
approach is that the estimation is performed by solving a non-
convex optimization problem using a spherical representation.
This often leads to long computation times and decreased
performance. In this paper we present a closed-form solution
of this problem.

B. Closed-form constraint estimation

In this section, we define a new method for estimating
the constraint matrix, allowing us to estimate the null-space
projection matrix, which will be used to split the action
observations into the task-space and null-space components.

If A(x) and b(x) can be expressed as a linear combination
of regressors, they could be defined as:

A(x) := WAΦA(x) (6)
b(x) := WbΦb(x), (7)

where WA ∈ Rs×wA and Wb ∈ Rs×wb are the constant
matrices related to a set of parameters to be learned and
ΦA(x) ∈ RwA×p and Φb(x) ∈ Rwb are some regressors
assumed to be known. 1

From (6) and (7), we can express (1) in compact form:

WH(x,u) = 0, (8)

1s is the number of constraints (rank(A)), wA and wb are the dimension-
ality of each regressor function respectively, and p is the dimensionality of
the control space u ∈ Rp.



with,

W :=
[
WA Wb

]
∈ Rs×w (9)

H(x,u) :=

[
ΦA(x)u
−Φb(x)

]
∈ Rw, (10)

being w = wA + wb.
Expression (10) can be evaluated for any data-point in the

sub-dataset. Thus, by substituting x and u with the values
from the dataset into (10) we can construct a matrix specific
for each task. The columns of this matrix will then correspond
to each data-point as follows:

H :=
[
H(x1,u1) H(x2,u2) . . . H(xN ,uN )

]
, (11)

where u1,u2, . . . ,uN are the raw observations of the action
(all belonging to the same sub-dataset).

The singular value decomposition [5] of H ∈ Rw×N will
provide the estimation W̃. The estimated parameters can be
derived from the SVD decomposition:

H = USV>, (12)

where S ∈ Rw×N is a diagonal matrix with non-negative
elements corresponding to the singular values of H in de-
creasing order. U ∈ Rw×w and V ∈ RN×N are unitary
matrices containing the left and right singular vectors of H.
The rank of H can be inferred from the analysis of the
singular values by setting a threshold. If rank(H) > w − s,
then it might be related with an under-parametrization of
A(x) and/or b(x), or incorrect selection of regressors. On the
other hand, if rank(H) < w − s, then it might be caused
by over-parametrization or data which is not rich enough.
The ideal scenario is when there are s singular values close
to zero while the reminder of singular values are large. In
that case, the last s rows of U>, denoted as rows

ws
U> with

ws = {w − s+ 1, . . . , w}, correspond to the singular vectors
associated with smallest singular values and are, therefore, the
closed-form estimate of (8):

W̃ =
[
W̃A W̃b

]
:= rows

ws
U>. (13)

When we evaluate equation (13) using each sub-dataset, it
is straight forward to obtain estimated values for the constraint
matrix Ã(x), the task b̃(x) and null-space projection matrix
Ñ(x), by using equations (5), (6), and (7).

One of the key differences between our approach and the
one presented in [14] is that in this paper we propose the
minimization of the error in the task-space, while in [14]
the error was defined in the null-space. Secondly, in [14] the
assumption of having access to the null-space was imposed,
while here we can deal with data containing both task and null-
space components. We do not present the complete comparison
between these two approaches here due to the lack of space,
but our preliminary results have shown an improvement over
≈ 105 in computational time and ≈ 1014 in accuracy when
using the closed-form method.

C. Component split

In [20], a method for learning from raw observations
containing task and null-space components was proposed. The
authors proposed the estimation of a null-space policy (i.e.:
the policy projected over the null-space of a task, nsu(x)),
however this leads to an inaccurate non-convex optimization
procedure. In this paper, we use the estimation of Ñ(x) to
compute nsu(x).

Corollary 2.1: For any arbitrary action we can split its
task-space and null-space components by using the null-space
projection matrix.

For any observed action u projected over the null-space of
the task, the null-space component of such observation is:

N(x)u = N(x)(tsu + nsu) = N(x)nsu = nsu, (14)

since N(x)tsu = 0 by definition and N(x) is a projector over
the null-space.

Therefore, each data-point in the dataset, can be split into
its null-space and task-space components as:

nsũn = Ñ(xn)un (15)
tsũn = un − nsũn. (16)

III. LEARNING THE UNCONSTRAINED POLICY

In this section, we propose a constrained policy learning
(CPL) method that combines the projection matrix learning
method proposed in the previous section with unconstrained
policy learning method. We first individually estimate a pro-
jection matrix Ñi(x) for each constraint separately using just
the sub-dataset Xi as proposed in section II-A. Secondly, we
estimate the unconstrained policy, using all estimated null-
space projection matrices and the whole dataset:

Ecpl[π̃] =

ν∑
i=1

N∑
n=1

∥∥∥nsũn,i − Ñi(xn,i)π̃(xn,i)
∥∥∥2
2
, (17)

The main difference with respect to the constraint consistent
learning (CCL) [11]) is that this minimization produces poli-
cies that are consistent with the full set of constraints, instead
of with a subspace of the constraints defined by projections of
the action observations where Ñ(x) ≈ Ñ(u) := uu>

‖u‖22
. This

leads to increased accuracy because the 1D projection error
is only a lower bound of the error computed using the full
constraint set.

In order to model the policy, we use weighted linear models,
each of which is locally approximating the policy:

π̃m(x) := Ψ(x)bm, (18)

where bm is a vector of parameters to learn and Ψ(x) is a
vector of appropriate regressors. The global policy is then a
weighted combination of M partial models:

π̃(x) :=

∑M
m=1 wm(x)π̃m(x)∑M

m=1 wm(x)
(19)

where wm(x) = e−
1
2 (x−cm)>D−1

m (x−cm) is the importance
weight of each observation according to the distance to the



local model’s Gaussian receptive field, with centre cm and
variance Dm (a diagonal matrix). Centres of receptive fields
can be obtained from data by running the K-means algorithm
[12] or they can be computed using any other method.

Each model can be learned independently [16] and therefore
minimization of (17) can be rewritten as:

Ecpl[b̂m] =

K∑
k=1

wm(xk)
∥∥∥nsũk − Ñk(xk)Ψ(xk)b̂m

∥∥∥2
2
,

(20)
where we slightly abuse of notation by denoting nsũk ≡
nsũn,i, xk ≡ xn,i and Ñk(xk) ≡ Ñi(xn,i) the combined
dataset and K the total number of points.

Equation (20) can be solved via Weighted Least Squares
(WLS):

b̂m =
(
R>WmR

)−1R>WmY, (21)

with:

Y =
[
nsũ>1 . . . nsũ>K

]>
, (22)

R =

 Ñ1(x1)Ψ(x1)
...

ÑK(xK)Ψ(xK)

 , (23)

Wm = diag (wm(x1)⊗ Iq×q, . . . , wm(xK)⊗ Iq×q) , (24)

where ⊗ denotes the Kronecker product operator.

IV. LEARNING SURFACE-CONSTRAINED POLICIES

In [14, 11, 20], among others, the learnt policies were quasi-
linear potential-based policies such as joint limit avoidance,
limit cycle, etc. As a consequence, the regressors used for
the unconstrained policy were also simplistic, such as linear
regressors of the state. No previous knowledge of the policy
structure was exploited. However, in this paper we cover
more complex scenarios, by performing arbitrary motions over
flat surfaces. We take the advantage of defining task-specific
regressors. Similarly to the previously cited papers, we have
access to the robot Jacobian.

Our approach can be used in applications such as wiping,
dusting, sweeping, scratching, writing, etc. where the robot is
constrained by a surface on which the task is being performed.
In all these examples, a task could be defined in terms of
minimizing the distance to the surface and the misalignment
between the surface and a plane relative to the robot’s tool
(see Figure 4). The null-space of this task would be any joint
motion resulting in the robot’s tool moving on top of the
surface, i.e. movements tangential to the surface. We assume
that this motion is a result of projecting an unconstrained
policy into the null-space of the task. By doing this, we will
be able to generalize such policy to different surfaces (tasks).

A. Learning the task and the constraint

In flat-surface scenarios as shown in Figure 2, the task error
can be defined using the distance of the tool to the surface and

zT

xT

n

tT

ρ

flat surface

xT

yT

zT

ρ

q

w

Fig. 2. A two dimensional illustration of a robot performing the demonstrated
motion on a flat surface. ρ is a point on the xT -yT plane used as a centre of
the wiping motion performed in the null-space of the surface alignment task.

its misalignment:

e(x) :=

n · (tT (x)− p)
n · xT (x)
n · yT (x)

 , (25)

where n is the surface normal vector and p is a point on the
surface. In differential kinematics [18] the state of a robot can
be described by the joint velocities, ẋ, and its relation with
respect to the velocity vector (error) of a task, ė(x):

ė(x) = J(x)ẋ, (26)

where J(x) = ∂e(x)
∂x is the analytical Jacobian of the task. We

substitute A(x) ≡ J(x) and u = ẋ in (1) while b(x) becomes
the policy ensuring that the error converges to zero.

From (26) and (25) we can select the following regressors:

ΦA(x) := JT (x) ≡


∂tT (x)
∂x

∂xT (x)
∂x

∂yT (x)
∂x

 , (27)

Φb(x) :=
[
tT (x)

> xT (x)
> yT (x)

> 1
]
, (28)

where the task could be defined as a linear policy minimizing
the error. Estimation in real-data scenarios coming from human
demonstrations can be challenging since, as discussed in
Section II-B, all assumptions about linearity on the parameters
might not hold for the proposed regressors and therefore
we might need to increase the number of parameters to
accommodate the complexity of data. In theory, the regressors
for ΦA(x) should be correct as long as the demonstrations are
always constrained to the surfaces and the task is to minimize
misalignment error. However, the regressors Φb(x) might be
insufficient due to an unknown task policy introduced by the
human operator. From the analysis of the singular values, we
can clearly identify situations where extra parametrization is
needed.

B. Learning the unconstrained policy
The primary task is to align the tool with the surface (2DoF)

and maintain the contact (1DoF). This implies a task with 3
DoF. We can reasonably assume that any motion along the
surface will be part of the null-space of the primary task.
Therefore, a secondary task, with 2 additional DoF could be
a motion along the tool’s plane ρ(x):

ρ(x, q, w) := tT (x) + qxT (x) + wyT (x). (29)



This policy is independent of the surface orientation and
it can be application-specific, i.e.: circles for wiping, lines
for sweeping, letters for writing, etc. The secondary task
is projected over the null-space of the primary task, which
implies that in order to generate an appropriate motion on a
surface, the tool must be aligned and in contact with it.

Motion along ρ(x) imposes an additional virtual constraint
with it’s own null-space and therefore there might exist a third
task which is projected over that null-space, if the robot has
additional DoF. This third task is typically a task trying to
reach a comfortable configuration or a configuration that tries
to avoid joint limits, obstacles, etc.

The second and third tasks can be treated as one single
unconstrained policy as defined in our problem statement.
Thus, each local model in (18) could be expressed as:

π̃m(x) := Jρ
T (x)

†κ̃m(x) + Nρ
T (x)γ̃m(x), (30)

where κm(x) ∈ R2 is the secondary task policy and γm(x) ∈
Rq is the tertiary task and Jρ

T (x) ∈ R2×q is the Jacobian of
the X and Y coordinates of the tool expressed in the tool frame
(and Nρ

T (x) its null-space projection matrix):

Jρ
T (x) =

[
xT (x)

> 0> 0>

yT (x)
> 0> 0>

]
JT (x). (31)

If the policies κm(x) and γm(x) can be expressed as a
linear combination of regressors:

κm(x) := Ψκ(x)bm,κ (32)
γm(x) := Ψγ(x)bm,γ , (33)

the regressors and weights to learn in (18) would be:

Ψ(x) :=
[
Jρ
T (x)

†Ψκ(x) Nρ
T (x)Ψγ(x)

]
(34)

bm :=
[
b>m,κ b>m,γ

]>
. (35)

For example, in a circular wiping motion, the regressors
could be defined as:

Ψκ(x) =
[
c⊥ρ (x) cρ(x)

(
1− r

‖cρ(x)‖2

)]
, (36)

where cρ(x) ∈ R2 are the coordinates of the circle centre
(expressed in ρ(x), that is relative to the end-effector frame),
c⊥ρ (x) is perpendicular to cρ(x) and r is the radius. When
training a policy from a real robot (from a demonstration),
these parameters can be easily extracted from the data.

On the other hand, if no prior knowledge about the lower
priority policy is give, this could be described with some linear
regressors:

Ψγ(x) =
[
x> 1

]
⊗ Iq×q. (37)

V. PERFORMANCE ANALYSIS

We are now interested in evaluating the policy learning
performance of the method described in Section III (constraint
projection learning or CPL) and comparing the results with
the method proposed in [11] (constraint consistent learning or
CCL). We generated a dataset where a total of 100 trials were
carried out for the wiping policy using simulated data, where

Method Nc Regressors nUPE nCPE nCCE

LWCCL

8 linear 9893.40 2024.00 0.25
non-linear 853.83 788.54 1.16

12 linear 12122.30 5420.80 0.17
non-linear 880.16 849.10 1.09

20 linear 12947.40 9086.40 0.20
non-linear 466.45 441.38 0.92

LWCPL

8 linear 30.93 2.71 0.84
non-linear 15.19 2.39 1.35

12 linear 30.69 1.37 0.64
non-linear 14.28 2.55 1.27

20 linear 30.09 0.85 0.49
non-linear 11.31 2.15 1.11

TABLE I
WIPING POLICY LEARNING ERRORS (UNITS ARE 10−2).

Fig. 3. Policy learning errors of a data set containing 25 different random
configurations with 12 different constraint orientations. Noise varies from 0%
to 20% with 100 trials for each experiment.

each trial contains trajectories of 150 points corresponding to
25 random initial configurations.

We want to analyse the effect of having different numbers
of constraints, Nc coming from different surface orientations,
with Nc = {8, 12, 20}. Considering that only 90% of data is
used for training. The case with 8 different orientations uses 7
orientations for training and 1 for testing. This is the minimum
number of observations required in order to resolve the policy
ambiguity [11] if data were collected from exactly the same
configuration with a 7 DoF robot.

The policy uses a set of receptive fields based on RBFs that
were randomly initialized using the k-means algorithm [12],
requiring at least 25 local models per trial. This value may
change for different trials. We keep increasing the number of
models incrementally until the whole space is covered with a
minimum guaranteed weight of 0.72. We use the same field
placement for either locally weighted constraint projection
learning (LWCPL) or locally weighted constraint consistent
learning (LWCCL) when evaluating their performance.

2The minimum weight of 0.7 has been empirically validated across different
trials for a 7Dof KUKA LWR3 and IIWA robots.



The results are shown in Table I, where metrics3 are defined
in Table II. LWCCL is directly optimizing the nCCE at the
increased cost in the nUPE and nCPE metrics, because nCCE
is only a lower bound of the error. On the contrary, LWCPL is
able to obtain low errors in the null space projection (nCPE)
and the learnt policy is generally much closer to the ground
truth policy (nUPE column contains low values). We compare
the proposed problem-specific non-linear regressors (36) and
(37) for the wiping application, instead of using only linear
regressors Ψ(x) =

[
x> c>ρ 1

]
⊗ Iq×q . Therefore, as long as

we can provide task-specific regressors, the accuracy will be
significantly improved.

We have also analyse the influence of a noisy policy on
LWCPL, we have conducted an additional experiment with 25
configurations, 12 constraint orientations and 11 noise levels
(form 0% to 20%). Each experiment has been repeated for
100 trials. Noises were added to the task and the null-space
components. Our, results, shown in Figure 3, indicate that there
is no explicit influence over the estimation accuracy for such
noise levels. This could be explained because the noise in the
task component is filtered out by the SVD method, while the
noise in the null-space component is filtered-out by the WLS
method.

VI. TASK GENERALIZATION USING FORCE SENSOR

We show the utility of learning surface-constrained policies
through generalization to a novel task. In many scenarios
such as in the train cleaning application (Figure 1), it might
be hard to obtain a precise model of the surface due to
outdoors lighting conditions, different surface materials, and
its dimensions. Thus, in practical applications, the constraint
surface may not be known. Therefore, we aim to redefine the
surface alignment task using a force torque sensor.

A. Contact force alignment task for wiping experiments

Let’s consider a soft wiping tool (such as a sponge) which
deforms on contact with the surface and exerts a wrench
(force and torque) on the solid tool it’s mounted on. If we
mount a force/torque sensor on this tool, we can measure this
contact wrench. Figure 4 shows a 2 dimensional schematic
representation of the wiping tool interacting with a surface
and the resulting forces.

When the tool aligns with the surface, the contact force is
perfectly aligned with the surface normal and we measure no
torque around the contact point. Otherwise, the task error is
given by

eF (x) :=

fc − fz−mx

−my

 , (38)

where fz is the z component of the contact force and fc is
the desired contact force; and mx, and mz are the x and y

3nUPE provides a metric to measure the performance of a method for
estimating the unconstrained policy with respect to the ground-truth uncon-
strained policy. nCPE measures the performance of its projection using the
null-space projection matrix, while nCCE uses a 1D projection matrix using
the observation data itself. It is well known that nUPE>nCPE>nCCE [11]

fn

ff

mc

dS

non-flat
surface

motion

force Sensor
sponge

Fig. 4. A two dimensional illustration of a robot performing a constrained
task on a curved surface. The robot uses as a tool a force sensor and a soft
material (sponge) mounted at the end-effector. The interaction of the wiping
tool and the surface causes a friction force ff , a normal force fn, and a contact
torque mc, where the arrows indicate the direction in which the values fx
and fz are measured. The task is to align the tool with the surface normal,
by minimizing the contact torque mc.

components of the contact torque relative to the tool axis. In
this scenario, the Jacobian of this error with respect to the
tool’s frame is defined as JF (x) ∈ R3×7:

JF (x) =

z>T 0>

0> x>T
0> y>T

 J̄T (x), (39)

where J̄T (x) ∈ R6×7 represents a standard geometric robot
jacobian.

The alignment of the tool with the surface is then achieved
by substituting JF (x) into equation 26. The minimization of
this task error ensures the contact and alignment between the
wiping tool and the surface. Our task is derived from a PD
controller b(x) = KpeF (x) +KdėF (x), where Kp and Kd

are the PD gains tuned to achieve a stable behaviour.
It is important to remark that the error vector (38) used in

wiping a non-flat surface with force feedback is different from
the error used during the demonstration on the flat surfaces
(25). Actually, they do not have the same dimensions, and
the null-space projection matrix derived from the force sensor
jacobian is different from the planar surface constraint. Despite
of that, the learnt unconstrained policy π̃(x) can be projected
using the new projection matrix, without affecting the primary
sensor-based task.

B. Experimental results

The experimental apparatus includes the 7 DoF Kuka LWR3
robot with an ATI industrial automation Gamma F/T sensor
attached at the end effector, as shown in Figure 7. The sensor
has a sponge attached to it to provide a soft interface between
the robot and the surface. The force sensor retrieves a 6
dimensional wrench vector expressed in the sensor frame.
Therefore, we compute the torque at the contact point by
transforming the wrench by distance dS towards the contact
area. We have estimated this distance empirically by pressing
the tool against surfaces at different angles. The transformation



Fig. 5. Demonstration of a circular wiping trajectory on a flat surface. The
demonstration was repeated on surfaces of multiple orientations.

uses a constant distance, regardless of its small variations due
to using a sponge at the tool tip.

With this setup, we have recorded a dataset of wiping
trajectories demonstrated by a human, as shown in Figure 5.
We have recorded 12 sets of trajectories, each on a surface
of a different orientation (two of them shown in Figure 6(a)).
Each demonstration involved several circles with the tool of
the robot, containing approximately 2000 data points4 (using
a sampling rate of 100Hz). The demonstrated data was only
minimally cropped to ensure the data contained only poses
where the tool was in contact with the surface and moving
along the demonstrated trajectory. We have preprocessed the
data to extract the centre and radius of wiping by taking
estimating a 3D circle, details omitted for brevity.

We have used this dataset to learn the constraints (ori-
entations of the surfaces) using the technique presented in
Section II. Since, the tool contains a flexible sponge, the task
alignment was prone to contain errors introduced by the human
demonstrator. The media attachment shows that alignment
correction were required to accommodate for these errors.
The alignment speed varies, occasionally causing more abrupt
corrections of the tool orientation. This introduces complexity
on the task to learn and thus the regressors in Φb(x) were
extended by additionally including second-order binomials of
x to improve the estimation of the surface orientation. We have
subsequently learnt the surface-constrained wiping policy as
described in Section IV using the constraint matrices estimated
in the previous step. We have used the regressors defined in
equation 36. The resulting policy was then stored and used, in
closed-loop, together with the force-based surface alignment
task described in Section VI-A. In real-data scenarios, metrics
nUPE and nCPE defined in Table II can not be computed due

4The data included the joint state x and the joint commands u, obtained
by differentiating the joint states.
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(b) Closed-loop policy trajectory

Fig. 6. Learning by demonstration: a) generated wiping trajectories from
human demonstration (twelve in total, but only two shown); b) Closed-
loop policy validation using a flat surface of previously unseen orientation
(orientation not included in the training set).

to the absence of a ground-truth policy or null-space observa-
tions. Thus, in this section we show how a policy, trained
from human demonstrations in flat surfaces, generalization
to flat and non-flat surfaces. The results in this section are
qualitative, while all quantitative results have been already
shown in Section V.

The resulting motion on a flat surface matched the demon-
stration, even in the case where the new surface orientation was
not included in the training set, see Figure 6(b). In addition
to this, we have also validated the learnt policy on a non-flat
surface as shown in Figure 7. The results, providing a circular
wiping motion, are depicted in Figure 8. Note that we have
demonstrated the wiping motion exclusively on flat surfaces,
therefore this shows two aspects of generalization: (I) from a
surface alignment task to a force alignment task, and (II) from
flat surfaces to a curved surface. See [2] for video recordings
of the policy generalization to a curved surface.

VII. CONCLUSION

This paper presents a new method for learning, from demon-
stration for motion where the policies lie in the null-space
of a task. As it has been shown, the main advantage of this
approach, compared to classic direct policy learning, is its



Name Acronym Expression Comments

Normalized Unconstrained
Policy Error

nUPE
1

K‖σ2
π‖2

∑K
k=1 ‖π(xk)− π̃(xk)‖

2
2

σ2
π = var(π(xk))

Measures the difference between the
ground-truth unconstrained policy and the
estimated one.

Normalized Constrained Policy
Error

nCPE
1

K‖σ2
π‖
∑K
k=1 ‖nsuk −N(xk)π̃(xk)‖22
σ2
π = var(π(xk))

Measures the difference between the
ground-truth null-space component and the
null-space estimated policy.

Constraint Consistent Policy
Error

nCCE
1

K‖σ2
u‖
∑K
k=1

∥∥∥∥nsuk − nsuk
nsu>k

‖nsuk‖22
π̃(xk)

∥∥∥∥2
2

σ2
π = var(π(xk))

Measures the difference between the
ground-truth null-space component and the
1D projection of the observed actions.

TABLE II
METRICS FOR PERFORMANCE EVALUATION ASSUMING ACCESS TO GROUND-TRUTH DATA.

Fig. 7. Kuka lightweight robotic arm equipped with a force/torque sensor
wiping a curved surface.

ability to generalize to unseen tasks. Actually, the task used
for the training was defined by a human operator, while in the
validation we use a force-based task to adapt and aligned the
tool to an unknown surface.

Following our approach, one could add additional constrains
such as ensuring that the robot end-effector is inside a given
region, while performing a constrained wiping motion or to
relax the imposed constrains, such as surface alignment, i.e.:
in some circumstances one might be interested in performing
a wiping motion without being aligned. Particularly at regions
close to the robot workspace limits.

The amount of generalization has its limits though. We
learn the wiping policy from demonstrations. These have to
cover the space sufficiently to allow the receptive field model
to be trained properly (models are trained locally based on
data). When the coverage is not sufficient, i.e. the curvature
of the target surface is too high (90◦ from the demonstrated
surface) the model won’t be able to capture the desired motion.
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Fig. 8. A wiping policy has been trained from human demonstrations on flat
surfaces (without using the force sensor); the policy generalizes to non-flat
surfaces using a force-sensor based task to align the tool dynamically.

Moderate curvature of up to 45◦ is usually do not degrade the
motion visibly.

The true power of this approach is, however, that it easily
extends to higher dimensions. In our future work we intend
to exploit more challenging application domains as well as
learning constrained tasks for dynamic systems.

APPENDIX

Different metrics have been described in the literature
for measuring performance when learning the unconstrained
policy from constrained motion [11]. We provide an overview
of these metrics in Table II.
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