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Using Dimensionality Reduction to Exploit Constraints in
Reinforcement Learning
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Abstract— Reinforcement learning in the high-dimensional, more compact, abstract space which benefits learning. The
continuous spaces typical in robotics, remains a challenging simplest abstraction, for example, just selects a subsiteof
problem. To overcome this challenge, a popular approach has giate dimensions, but any transformation of the state space
been to use demonstrations to find an appropriate initialisation . . L . .
of the policy in an attempt to reduce the number of iterations IS.pQSSIble. It an .InS|ght into the control problem ex_'Sts a
needed to find a solution. Here, we present an alternative Priori, an abstraction can be chosen by hand [6], but ideally
way to incorporate prior knowledge from demonstrations of we would like to learn suitable abstractions from expergenc
individual postures into learning, by extracting the inherent In this paper, we investigate the suitability of dimensiena
problem structure to find an efficient state representation. ity reduction (DR) as a method for automatically deterninin

In particular, we use probabilistic, nonlinear dimensionality - . -
reduction to capture latent constraints present in the data. By abstractions for RL from demonstrations and the conditions

learning policies in the learnt latent space, we are able to solve for the success of this approach. While the idea of using
the planning problem in a reduced space that automatically DR to aid RL has recently been explored by Morimoto

satisfies task constraints. As shown in our experiments, this et al. [7], to find a low dimensional state representation

reduces the exploration needed and greatly accelerates the yha¢ pyreserves the reward structure, unfortunately, usiei
learning. We demonstrate our approach for learning a bi- ’ !

manual reaching task on the 19-DOF KHR-1HV humanoid. approach only uses a DR technique (i.e., Kernel DR) which,
in many problems, is not sufficient to represent the state

space faithfully (see Sec. IV). In contrast, our contribati
|. INTRODUCTION shows that the GPLVM, as a non-linear DR method based
The application of reinforcement learning (RL) to contin-on Gaussian Processes (GPs) [8], can produce much more
uous, high-dimensional systems such as anthropomorphi@thful state representations for simplifying the leai
robots (Fig. 8) remains a challenging problem. While groblem. Using such an approach, we show the feasibility
large variety of RL algorithms exist for solving complexof RL for very high-dimensional robotic systems, even when
planning problems [1], typically the scalability of theseno initialisation of the policy is available. We illustrater
is limited to applications involving small, discrete wasld approach for learning a bi-manual reaching task on the 19-
Continuous state spaces necessitate discretisationearsth  DOF KHR-1HV humanoid robot.
of function approximators, but both are affected by the
curse of dimensionality, that states that the resourcedetee
to solve a learning problem scale exponentially with thdhe idea of our approach is to use data acquired from expert
dimensionality of the state space. demonstrations to extract a non-linear manifold capturing
In this context, recent attention in the robotics commuthe inherent structure of the data. The latter is then used
nity has focused on this issue of scaling RL to higheras a reduced representation of the system state that can be
dimensional problems. For example, in a programming bgxploited to improve the efficiency of RL. A schematic of
demonstration framework, demonstrated trajectories @n ke approach is illustrated in Fig. 1.
used to initialise a parametrised policy [2]. Because such aA
initial policy is assumed to be close to the optimal policy,
only a limited number of policy updates may be needed tt our framework,kinesthetic demonstration (in which the
find an acceptable solution. Hierarchical RL [3] is a morgobot's movements are manually guided and recorded) is
general approach in which the RL problem is broken dowksed to generate a set of postures that are deemed useful
into a hierarchy of sub-problems, solutions of which aréor the task by the demonstrator. Using kinesthetic demon-
combined to solve the high-level problem. This divide an@trations in this way has several benefits, for example,
conquer approach is intuitively plausible, but the diffigis (i) it ensures that all demonstrated postures are feasible
then shifted towards selection and learning of the hiesarchfor the robot, (i) the demonstrator can directly see that
Despite recent advances [4], problems remain, in particuléask constraints are satisfied within the demonstratiors an
with large state spaces. Abstractions [5] have been suggestiii) it avoids correspondence issues that may arise due to
as a general term describing a mapping of state space tdlifferences in embodiment between the demonstrator and
imitator (since the demonstrations are already perfornred o
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) [l Fig. 2. In order to move the ball to the targed),(the movement must
X, z, Zy be constrained so that the hands remain a fixed distance &fgrtIf the

constraint is broken, the ball is dropped (right).

Fig. 1. Schematic of our approach. Given a set of demonstratedments, . ; i i
DR is used to find a low-dimensional manifold on which the dentatishs task: one degree of freedom is eliminated by constrainieg th

lie (the latent space). The space defined by this manifold loan be used distance between the two hands, and a second is eliminated
as the state-space representation within reinforcementien if we do not allow rotations of the object. In other words,
(i.e., continuous trajectories) with increasing number ofor this problem, any successful movement (fulfilling these
degrees of freedom of the robotic plant. To counter thiéﬁSk constraints) must lie on a 2-D manifold embedded in
in our framework we usaliscrete demonstrations, where the full 4-D state space. _ .
desired postures are demonstrated individdafsimilar to ~ NOW. if we can find an an appropriate representation of
‘keyframing’ in animation). Specifically, in our framewark this manifold, then we can exploit it by restricting RL to
demonstrations are recorded by first moving all robot joint8Nly explore in the space where the constraints are satisfied
to the desired posture, recording the joint angles, and théfh SOme cases, this could be derived from an expert analysis
repeating the procedure for the next one. In this way, evel the task (here, involving derivation of kinematics of the
a single person can, with ease, provide demonstrations t®?&nt and the constraints) resulting in an analytical model
high-DOF humanoid to generate full-body movements. ~ ©f the manifold. However, for the non-expert user, this
Using the demonstrations, we then apply nonlinear p@reatly Increases the cor_aneX|ty of finding the appropriate
techniques to extract a manifold that captures the lateffPresentation. Instead, in our framework, we propose to
structure of the data. In effect, here DR acts as a nonlinelrn the manifold by demonstration. That is, we rely on the
interpolator that allows us to generate continuous movesnerfl€monstrator to provide appropriate example postures that
from a discrete set of samples. At the same time, it providdd Salisfy the task constraints (here, postures in whigh th
a state representation which makes RL feasible even wh8aNdS are in the right position to grasp the object), (ii)ehav
the dimensionality of the original state space is very high.Sufficient coverage to make a reasonable approximation of
We assume that the demonstrated postures fulfil coffl® underlying manifold, and (iii) define a space in which

straints, when they are necessary for the achievement of tﬂefeaSible solution to the tgsk (here, a path to_thg target)
task (see example below). By introducing this invariande in exists. In other words, by taking appropriate care in silgct

the demonstrations, this latent structure (i.e., the caimgt €X@MPple postures, a non-expert demonstrator can use our

manifold) can be incorporated into the state space modBfMeWork to automatically learn a state representatian th
learnt by the DR. This, in turn, benefits RL by restricting .capt-ur.es structural elements of the_ task (in this exampig, a
exploration to parts of the space in which (in the eyes of thlénphcn model of the constraints) without the need to define

demonstrator) a feasible solution to the task exists. them .forma_llly. by ha!nd. .
While this is a simple example, similar arguments also

B. Example: Constrained Bi-manual Manipulation apply to more complicated situations, in particular forunat
movements with many degrees of freedom such as that

As a simple example of the above, consider a bl-manu%# humans [10] or humanoid robots [11] subject to more

manipulation task in which we want to move an object with : .
. complex environmental or task constraints [12]. For system
two hands from one place to another (see Fig. 2). If th b [12] y

. . he €uch as these using DR is even more appealing since formal
full state of the two arms 1s defined by the positions O.f th efinition of the task structure is much harder as the system
shoulder and elbow joints, then the total dimensionality o

the system is four. However, for the movement to succee imensionality increases. In the next section we turn to the
the condition that the two hands must remain a fixed distance plementation details of the proposed framework.
apart must be fulfilled throughout the movement (see Fig. 2, I1l. METHOD
left), otherwise the object will be dropped. In effect, this-  In this section, we describe the design choices made for im-
strains the possible movements that can be used to solve tHementing our programming by demonstration framework.
As mentioned in the preceding sections, we assume that a
Iplease note that, if demonstrations of continuous movemeetavail- non-expert demonstrator provides a number of kinesthetic

able, our approach can still be applied to find a compact stiesentation - jemgnstrations of key postures for a given task. These come
for RL. In this case, the sample density will simply be highed,an

potentially, the sequential structure of the demonstratamuld be exploited. 1N the form of V?Ctors of jo_int angleg,, from WhiCh we wish
2This has interesting parallels with the idea of looking feneralised ~ to learn a nonlinear manifold that captures salient element
coordinates in analytical dynamics (e.g., see [9]) where, under a holonomigf the task. Having done this, we can then apply RL to find

constraint (i.e., arequality constraint), it is possible to find a coordinate . . L .
system in which the constraint is automatically satisfiedis Tgreatly the optimal policy within the space defined by the learnt

simplifies the problem of solving the equations of motion of system. manifold, in order to find a feasible solution to the task.



A. Dimensionality Reduction where the number of data points (as discrete demonstrations

A number of DR techniques are available for extractingnis is not a significant problem.
the latent structure from our demonstrations. In our sgttin More important in our setting is the speed of prediction
we require a method that (i) is able to represent manifold@nce this is required at every time step during the RL (see
that are potentially non-linear in the robot's joint spaceSeC- II1-C). In the GPLVM this is standard GP prediction
and (ii) gives good generalisation with relatively littlatd Which hasO(N) complexity, becausd& ™" is fixed after
(to minimise the number of demonstrations required fole@rning and can be pre-computed. Prediction for a single
learning). Furthermore, in order to incorporate our DR modélata pointz* returns a Gaussian distribution with mean
into RL, the DR technique must provide both a generativ@Nd variancer? in data dimensiory
mapping and its inverse (i.e., generative mapping fromntate o aTp—1 2 s fTpr—17.%
to joint space, and the inverse mapping back). g =k KX o=k -k KTk “)

By far the simplest and most popular approach to DR is twherek* = k(z*, z*) is the covariance function evaluated at
use principal components analysis (PCA) [13] which definegat point and<* = [k(z*,2z,), ..., k(z*,zn)] . The returned
a linear mapping between low-dimensional latent space andriance (equal in all data dimensions) gives a measure
high-dimensional data space based on eigenanalysis of #fae the confidence in the prediction, usually indicating the
data covariance. It is robust and computationally efficienfuality of generalisation away from the data. In our setting
but, as a linear technique, is not adequate for our purpases this relationship can be exploited in the RL to prevent
we show in Sec. IV). Our method of choice is the Gaussiathe expensive evaluation of states for which the predictive
Process Latent Variable Model (GPLVM) [14], a nonlinearariance indicates that the generated posture is unlilely t
extension to PCA based on Gaussian processes (GPs). In #ufhere to the task structure anyway (see Sec. IV-C).
next section we briefly review the formulation of the GPLVM = The GPLVM only learns the mapping from latent to
employed in our experiments. data space, but does not provide the mapping back. Many
B. The Gaussian Process Latent Variable Model DR methods have the same problem and various ou_t—of—
sample extensions have been suggested. In our experience,

X X 4 fhe most accurate of these for the GPLVM projects a test
data which uses GPs to map latent variatdes R” to ob- it w+ into latent space by maximising its probability

) D . -
served variables € R”. Each data dimensiohe 1,...,D under the predictive distributionV(x*|u, o) by varying

has its own GP, bpt all GPs sharg the same covariangg corresponding* with gradient descent only op (4).
parameters. In particular, the data likelihood of the modglnsortynately this iterative procedure is comparativetys
is defined as D even though only a few iterations are needed, if initialised
P(X|Z,0) x H exp [x] K™ 'x;] (1) with the nearest data point. Consequently, we fit another set
NxD : j=1 . . of GPs for the data-to-latent mapping after the GPLVM has
whereX € R is the data matrix containingV data been learnt. The resulting mapping has good accuracy in

. - . . Nxd: ; _ [ : : C)
points,x; |s§1colu_mn of this matrixz E_R is the matrix high confidence regions of the latent space and is efficient
of latent points,@ is a vector of covariance parameters anqO compute

K is the covariance matrix of the GPs which depend<Zon
and 6. We use the standard squared exponential covarianCe Reinforcement Learning
function with added white noise defined as

The GPLVM defines a generative, probabilistic model of th

A number of RL techniques are available for planning and

Ko — (2 20) = 01 exp (_ | (Zen — Zn)2) 15,0, (2) ©ptimising movements based on exploration of the environ-
T 20, mn ment. For the experiments in this paper, we restrict oueselv

wherez,, andz,, are latent pointsj; controls the amplitude © thg popular class qf methods known as temporal_ difference

of the modelled functiond, controls its smoothness aig ~ 1€aming (TD(0)) [1] since these perform robustly witholu t

is the variance of the Gaussian noise around the data. THged for careful initialisation of parameters. In the faling

formulation of the GPLVM can be derived from the dualWe briefly describe TD(0) learning for approximating the

formulation of probabilistic PCA which integrates out thevalue function, as used in our framework.

parameterg .of the PCA model as shown in [14]. ' D. TD(0) V-Learning

The positions of the latent point%,, and the covariance o ] ]
parameters@, are found simultaneously by minimising the The general goal of learning is to find a poliayu|x) that
negative GP data log-likelihood maximises

{Z,0} = arg r%ig —logP(X|Z, 6) 3) V™ (x) = Ex {§7trt|xo _ x} ®)

using gradient descent. We initiali#&with points found by under dynamicsx;+1 = x; + §tf(x;,u;). Here,x € R
applying PCA as suggested in [14]. Because the inverd€ of denotes the (continuous) state,c R? the action andst
needs to be computed, each gradient step has a complexityiothe time stepV ™ (x) is the expected return accumulated
O(N?) which means that the learning gets expensive witby the agent when following the poliey starting from state
increasing number of data points. In our setting, howevexk,, v is a discount factor and; denotes the instantaneous



high-D Environment example, using a simple PD controller. In general, (due to
tracking errors, noise, etc.) we will not exactly reachbut
instead a slightly different state; which we must estimate
(e.g., by taking a sensor reading). It is at this point that
we receive a reward (i.e., based on the true environmental
state). Finally, we return to latent space via the inverse
mapping (out-of-sample GP) to estimate the new reduced
statez,, which is then used to select the next action. Note
that, due to the non-linearity of the DR mapping, the same
action executed in different locations of latent space may
) ) - correspond to different movements in the environment. ,This
reward collected at time. V™ (x) can also be identified as powever, is not a problem, if a suitably flexible local policy
the value function ofr. is chosen (i.e., one that selects actions based solely on the
TD(0) methods update the estimate of the value function @i rrent state). Also note that, since the RL is restrictethéo
Q-function based on the one-step temporal difference (a.k.@&naller latent space, it may not be possible to find globally
the Bellman error) [1]. In our experiments, we used thptimal (or even feasible sub-optimal) solutions if they do
variant of TD-learning that uses a function approximator ofot Jie on this manifold. In practice, however, this is egsil
the form V(%) = w'b(x) ©) rectified by the demonstrator by, for example, adjusting the
demonstrated poses and re-learning the DR model.

RL in low-D ,

Fig. 3. Exploiting the latent dimensionality of demonstratidor RL.

to learn (5). Herew € RM is a vector of weights, and
b(x) eRM is a vector of fixed basis functions. For the latter _ _ _
we used normalised radial basis functions (RBEgx) = In this section, we report experiments exploring the perfor

% calculated from squared exponential kernelgnance of learning for systems of varying complexity and
Kfz)l around M pre-determined centras, i = 1... M size. First, in order to illustrate the concepts involveds w
During episodes, the value function is learnt online acgpply our method FO a simulated 4-DOF toy sy's.tem with
linear state dynamics. We then test the scalability of the

ding t . . . X
cording to V(x441) = V(x¢) + ady (7) method to a more complex, non-linear system and, finally,

whereq is the learning rate and} is the temporal difference We illustrate the use of our approach for learning on the
8t = 1o+ AV (xew1) = V(xe). ®) 19-DOF KHR-1HV humanoid robot (Fig. 8).
All our experiments are based on the intuitive example
For our parametric model (6), this means we apply the updaté carrying an object to a target using a bi-manual strategy,
Wil = Wi + ad;b(xy). (9) similar to the example described in Sec. 1I-B. The task of
the learner is to find a movement that brings the hands to a

Finally, using the approxima.teﬁ’(x), actions are selected targetx* without dropping the object. For this, the learner
according to a soft-max policy to provide directed explojs rewarded according to

ration during episodes. Specifically, actions are drawmfeo 112

. . . R(x) = —0||x — 12
discrete set ofU/| continuous actions; € R?,i={1,...|U|} () = exp {—0]lx —x"||"} (12)
according to the Boltzmann distribution

IV. EXPERIMENTS

where 0 is a scaling parameter. Under (12), the learner
A receives very little reward over most of the space, but this
pug|x) = w (10) rapidly increases as the hands approathTo increase the

> im0 BQ(x,u ) difficulty of this problem, we also placed an obstacle in the

where 3 controls the rate of exploration arfg(x, u;) is the ~€nvironment obstructing the path to the target. Accorgingl

state-action value for action;, calculated using one-step the learmner was penalised if the hands (i) hit the obstacle
look-ahead on the learnt value function, i.e., or, (ii) hit the boundaries of the state space. In both cases,

2 N7 _ a fixed penaltyR, = —1 was added to the reward and the
Q) = Vx + 0t £(x, ui)). (11) episode terminated. Equal penalisation occurred at ang tim
For further details of the implementation see [15]. the object was dropped. As described in Sec. II-B, one of
the keys to success in this task is, therefore, to maintain
the hands on either side of the object throughout movement.
For inClUding the representation learnt with DR into our RLForma”y’ this can be expressed as a set of constraints on
framework, we replace the high-dimensional stateith its  the hands of the robot. Note, however, that this information
DR representatiom, and modify the state update equationss not explicitly available to the learner and therefore must
accordingly. Fig. 3 illustrates this for a single RL step.  pe |earnt either (i) from experience (i.e., exploratiom)(it)

Starting from a state in latent spaca, RL selects and from the examples given to the learner as demonstrations.
executes actiora according to its current policy, leading

to a new latent space stat. The latter is then used to A Bi-manual Reaching in End-effector Space
generate a target in the environmenitby mapping through Here, we formulate the bi-manual reaching problem in end-
the generative GPLVM model, which can be reached, fagffector space and assume that the full state of the system ca

E. Incorporating the Latent Space State Representation
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W "oy PCA 0.05+0.01 3.25:0.41
= i GPLVM 0.24+0.18 0.80+0.70
k= B PCA  100.0G+ 0.00 4.92+0.81
& x K GPLVM 94.50+5.61 61.03:6.16
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ToP: RECONSTRUCTION ERRORRMSEx102) oN 1000RANDOM
POINTS IN END-EFFECTOR SPACEBOTTOM: PERCENTAGE OF POINTS IN
LATENT SPACE THAT FULFIL CONSTRAINTS(CF. FIG. 5). SHOWN ARE
MEAN=S.D. OVER 20 TRIALS.

RL-DR|
RL

oL
0 1000 2000 3000 4000 5000

\ﬁg E
Episodes

@ (b) (©)

Fig. 4. (a) Cumulative reward over episodes for the two-harablem As can be seen, initially, the average reward accumu-
when learning in the full 4D state space (red) and the red@tedpace

(black). The meatts.d. over 25 trials are shown. (b) Left (green) and rightlated_ by _the two learners increases I’apldl)_/. However{ when

(red) hand trajectories generated at equal intervals grout 5000 episodes learning in the full 4D space, beyond the first 500 episodes

0; }raining in(4)D (top) and 2D _(bottom)-IDc?][ker cg_lf?urs indiéater Dhaf?es the average reward starts to level out and the progress

of learning. (c) 5 test trajectories sampled from differeatting points after : . . .

5000 episodes of training with the two approaches. The greg mdicates OT Iearr_ung is slow. In contrast, Iear_nlng In_ the reduced
dimensional space proceeds much quicker, with convergence

the location of the obstacle and the target is marked with an ’x
already after approximately 3000 episodes. The reason for

be described by the horizontal-planar coordinates of tie tV\fhe performance difference becomes clear when looking at
hands,x € R*. State transitions followed linear dynamics, : . . L )
the trajectories generated during training. In Fig. 4(b) we

Is.e;j;(rtglo;s)i;f;)ng(\)”;h t')miﬁ f;gpgz;%;rizgtvgezlﬁed ‘3 show examples of trajectories generated at regular ifgerva
9 o g %)- during training with the two approaches. Clearly, due to the

* T —
The target was ak” = (0,0,0.1,0)" and we se¥ =0.75 higher dimensionality, learning in the full 4D state space
in the reward function (12). We compared two approaCherséquires far more exploration to cover the same proportfon o
to learning in this setting, namely (i) standard RL, whereb

. . pace. The trajectories generated during training alseapp
we used TD(0) to learn the optimal policy in the full Statetg be shorter than those generated with the DR represen-

spacex and (i the pf"posed approach, wherepy a red.uce[ation, despite both having to avoid the same obstacle and

state .representatlon is learnt from demonstrations, fidor boundaries. The difference is that the trajectories géaera

apglylnta R;_' ¢ RL h th i foll in the reduced spacautomatically satisfy the constraint on

Th olr € direct appr(;?c f’ t'e s€ U%Xvaﬁ as O_tow§he hands. This means that exploration is focused only on the
€ leamer was given a sstof actionsu; €8 - alowing 1t =04, ceq part of the space in which possible solutions lid, an

Eﬁ n;ove tht?] handsl ((ajl_the:.mdepegdgntly or sng;l;anetousllz/, Jaxploration of actions that lead to the object being dropped
€ four-orthogonal directions . aussian NEIWOrK s avoided. As a result, the learner using DR rapidly learns a

(6), with centres placed on2x20x20x20 grid was used to i that allows it to satisfy the constraints and reaoh th

approximate the vglue function. A soft-max policy (10_) Wa%oal from a larger range of the state space (compare example
used to select actions where, to encourage exploration, %jectories in Fig. 4(c))

setf=10.0. As parameters to the RL, we chose learning It should be noted that, in this simple example there in

rate «=0.9 and discount factoty =0.95. : . . .
For the proposed approach, we randomly sampled 268Ct eX|_sts a simple linear transformation between the_ _2D
' constrained space and the 4D space of the hand positions.

EF)sItn;;caecrt())estS ?;ns&ici'avgg';h;ﬁggfd t:r?a Cosr]:;r?:)nttg.]nt:gonsequently, linear PCA also gives good results (and even
! W . w u ! uetperforms the GPLVM as shown in Table I) in this

GPLVM to learn a reduced, 2D state representation, WIthIpreriment. In our next experiment, however, the nonlinear

Wh'Ch. dwe tgp?lt|e(3hTD(O). I;ofr thdg IattteRri_ a".tF:]LthparamEIfr%lationship between the spaces introduced through thee kin
were Identical fo tnose used 1or direct <L, Wi € EXCEPUO 1 atics necessitates the use of nonlinear DR techniques.

that (i) the number of RBFs used in the value function
approximation was scaled down to a 2D (as opposed to 4
grid of 20 x 20 bases in latent space, and (ii) the learner
action set was reduced to that of movement in the foun our second experiment we investigated a similar problem
orthogonal directions in latent space. Please note that, fto that described in the previous section, with the diffeeen
both approaches, if the global optimal policy is found, thehat the task must be achieved by controlling 2 planar, 2-
learner can reach the target in the same number of stefiask arms. The constraints of the problem are identical,(i.e
with the same reward. to keep the end-effectors keep a fixed distance apart) ahd ful
Training was conducted for 5000 episodes, with eachtate space is still 4D, but instead of end-effector passtio

episode lasting 500 step$((s). Start states were drawn the state is described by the joint angles of the robot. Due
from a Gaussian distributiolV'(x,0.1) around the point to the kinematics of the arms, non-linearities are intrediic
xo = (1,1,1.1,1)T. To evaluate learning performance,into the problem which cannot be handled by linear DR. To
the experiment was repeated for 25 trials and the rewaillustrate this point, we first compare the GPLVM with PCA
accumulated in each episode of learning was recorded. Thad evaluate their ability to represent the constraint.

results are shown in Fig. 4.

? Bi-manual Reaching in Joint space



Fig. 5. Evaluating DR for the planar 2-link arms: Do points geted
from latent space keep a distance of 0.1 between the two féecters?
Light blue dots: end-effector position of left arm (rightvanot shown) for
which the distance between end-effectors lies within 0.608.1, red dots: oo o

distance differs by more than 0.005 from 0.1, circles: dentatishs used (a) PCA error  (b) Initial value func- (c) Learnt value func-

for DR. Top: GPLVM, bottom: PCA. In both figures the configuoatiof tion (demonstr. indi- tion with example tra-
the arms is plotted for one example point. cated as dots) jectories.

running average of cumulative reward

. 1 1 1 1 . 1 1 1
[ 500 1000 1500 2000 2500 3000 3500 4000 4500
number of episodes

(€Y

running average of cumulative reward

. . . . .
0 1000 2000 3000 4000 5000 6000
number of episodes

(d) Example traj. in (e) Rewards during learning, thick black line: average
end-effector space. over the plotted trials, blue line: trial for which results
(b)-(d) are plotted.

Fig. 7. (a) KHR-1HV in a demonstrated pose reconstructed 8yaRLVM
(wire frame) and PCA (solid). There is no visual differencéwmen the
GPLVM pose and the original demonstration. (b)-(e): RL restior the
KHR-1HV. Shading in (b) and (c) visualises predictive vada of GPLVM
generative mapping (white means low variance, high configence

© %) 1000 steps each (or the episode was stopped prematurely
_ _ o under the conditions given above). We again introduced an
Fig. 6. RL results for the planar 2-link arms. (a) Rewards myifearning, obstacle which. this time 0n|y allowed successful traja'e's
thick black line: average over the plotted trials, blue litial for which ' ’

results in (b)-(d) are plotted. (b) and (d) Value functiorfde and after tO Pass through a ‘corridor’ in end-effector space (Fig)}6(c

learning. (c) Example trajectories in end-effector spaett fland only), red ~ Start states were drawn uniformly across latent space. The
cross: goal. Shading in (b) and (c) visualises predictiveanae of GPLVM results are presented in Fig 6

ge_nera_tive mapping (white means low variance, high cor_lfi()erB:iack Fig. 6 h . - ind f 500
object is latent space representation of the obstacle af#gping through ig. 6(a) shows running averages over a window o

out-of-sample GP of GPLVM. episodes of the cumulative reward per episode for 25 runs of
Fig. 5 shows a visualisation of our simulation in whichRL (trials). We plot running averages, because the random
several data sets are plotted. For clarity all data poirdgveh start states mean that the cumulative reward per episode is
are from the left hand of the robot only. The circles depichighly variable. The accumulated reward clearly increases
123 randomly sampled data points which fulfil the conwith learning. For the trial highlighted as the blue line, we
straints. We executed DR on their joint space representatigoresent the initial and learnt value functions in latentspa
drew uniform samples from the resulting latent space arfigures 6(b) and 6(d), respectively. As demonstrated by the
then mapped these to joint angles of the robot using theample trajectories in Fig. 6(d) the learnt policy sucagdhsf
generative DR mapping. The dots are the correspondirsplves the task, leading trajectories around the obstatde i
hand positions as computed with the forward kinematicthe goal. Fig. 6(c) depicts the resulting trajectories id-en
of the robot, colour-coded as to whether they fulfil theeffector space. For clarity we only plot the trajectorieshuf
constraint within a small error margin. The results clearlyeft hand, but right hand trajectories follow with the desir
show that PCA (Fig. 5, right) can only correctly representlistance of0.1m behind the left hand.
the constraint in a very small region of end-effector space ] )
while the GPLVM (Fig. 5, left) covers almost the completeC: Full-Body Humanoid Reaching
work space. Table | further documents this result. In our final experiment, we demonstrate the complete ap-
Having established that the constraints are correctlyereprproach on the 19 DOF KHR-1HV humanoid (Fig. 8). Similar
sented by the GPLVM we ran RL in its latent space. We usett the preceding experiments, we investigate a bi-manual
the above setup with the following changes: we set the widttask, this time to lift an object while avoiding obstacles.
of the Gaussian reward #=0.35, learning rate tax=0.8, Instead of devising an inverse kinematics for this task by
discount factor toy=0.99, time step tojt =0.05, soft-max hand, we demonstrated individual poses of 2 alternativesway
policy to 5 = 20, extended the action set to also includeof lifting an object (7 poses in total). Of the 19 DOF, 10 were
diagonal actions and ran the learning for 5000 episodes withajor contributors to the changes in posture, the remai@ing



task. This benefits RL by (i) reducing the size of the
space in which planning is done, and; (ii) avoiding wasteful
exploration of the parts of the space in which the constaint
are not satisfied and no solution exists. These benefits were
evident in our experiments where RL in latent spaces em-
phatically outperformed learning in the original state cgpa

. _ _ _ _ of the problem. By using this approach we saw that RL
Fig. 8. Left: Kinematic model showing the 19 DOF of the robote@tation  hacomes feasible even in very high-dimensional, contisuou
of circles indicates axis of rotation of rotation of the jminx: vertical . N

ellipse, y: circle, =+ horizontal ellipse. Right: Video frames of successful, SyStems such as the KHR-1HV humanoid to which the used
obstacle avoiding trajectory executed on KHR-1HV after RL. RL method could otherwise not be applied.

. - For future work, we are looking into extending the ap-
(marked in red in Fig. 8(b)) changed by less than 10 degregsyach in [7] to the nonlinear case within our framework

across different postures. The realised postures all lag onto provide the DR with additional information about the
central y-z-plane of the robot, i.e., the hands of the robaelevance of demonstrated postures to the task given by
did not move sidewards (subject to noise originating fronthe reward. Furthermore, we aim to reduce the number of
the manual demonstrations). Therefore, the space of delatgPiS0des needed during RL training by employing more
) . . ophisticated RL techniques.

movements was inherently 2D which motivated the use of 25
latent spaces for DR. Compared to the previous examples, REFERENCES
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backwards (Fig. 7(a)) causing it to fall after transitionr be o 21, pp. 1521-1544, 2007.
tween relevant poses. In contrast, with the GPLVM, the learn[3] A. Barto and S. Mahadevan, “Recent advances in hiereathiein-
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number of steps per episode to 200. An episode was aborted dimensional feature extraction for humanoid locomotion usiemel
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replaces the direct measures frpm the previous experiments’ jnverse kinematics,” i GGRAPH, 2004,
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indirectly by the demonstrations themselves). In Fig. 7 WR 2] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Yaumar,
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; ; ; Auton. Robots, vol. 27, pp. 105-121, 2009.
As in the previous examples, RL consistently learnt gooﬁs] C. Bishop, Pattern Recé)gﬁ“tion and Machine Learning,  Springer
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the obstacle. In the accompanying video we present these Research, vol. 6, pp. 1783-1816, 2005,
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V. CONCLUSION

In this paper, we explored the potential use of DR as abstrac-
tion for RL to improve its scalability to high-dimensional
continuous spaces. Our hypothesis was that for constrained
problems DR provides an alternative state representation,
that exploits the hidden low-dimensional structure of the

3The reward was defined over the positions of the hands and theed
forward kinematics to evaluate the generated movements in afiow!





