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Theory predicts that parametrically excited oscillators, tuned to operate under resonant condition, are capable
of large-amplitude oscillation useful in diverse applications, such as signal amplification, communication,
and analog computation. However, due to amplitude saturation caused by nonlinearity, lack of robustness to
model uncertainty, and limited sensitivity to parameter modulation, these oscillators require fine-tuning and
strong modulation to generate robust large-amplitude oscillation. Here we present a principle of self-tuning
parametric feedback excitation that alleviates the above-mentioned limitations. This is achieved using a
minimalistic control implementation that performs (i) self-tuning (slow parameter adaptation) and (ii) feedback
pumping (fast parameter modulation), without sophisticated signal processing past observations. The proposed
approach provides near-optimal amplitude maximization without requiring model-based control computation,
previously perceived inevitable to implement optimal control principles in practical application. Experimental
implementation of the theory shows that the oscillator self-tunes itself near to the onset of dynamic bifurcation
to achieve extreme sensitivity to small resonant parametric perturbations. As a result, it achieves large-amplitude
oscillations by capitalizing on the effect of nonlinearity, despite substantial model uncertainties and strong
unforeseen external perturbations. We envision the present finding to provide an effective and robust approach to
parametric excitation when it comes to real-world application.
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I. INTRODUCTION

Parametric excitation is a way to set oscillators in motion by
modulating their physical parameters. There is a characteristic
instability effect—known as principal parametric resonance—
where oscillations are achieved by parameter modulation that
has twice the natural frequency of the oscillator [1,2]. This
phenomenon is quite different from the one associated with
resonance by forced excitation.

The first well-documented example of a parametrically
excited system is the O Botafumeiro, a censer suspended by
a long rope in the Cathedral of Santiago de Compostela in
the northwest region of Spain, which dates back to the 14th
century [3]. This giant variable-length pendulum was set into
motion by a squat of priests who pulled the rope to cyclically
decrease and increase its length at the lowest and highest
points of the oscillation until they got the censer to the vaults.
The principle of parametric excitation was found useful in
different physical domains and various applications [4], such
as mechanical domain signal amplification [5], particle traps
enabling atomic-level measurements [6], signal amplifiers
revealing quantum information [7], nanoelectromechanical
oscillators challenging current standard quartz-crystal clocks
in timing applications [8], optical calculators performing
difficult mathematical calculations [9], as well as networks
of electromechanical oscillators promising energy-efficient
analog computation [10,11].

An ideal parametrically excited oscillator is operated in
the linear regime using time-dependent parameter modulation.
The model of such an oscillator is given by Mathieu’s equation
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[12] which predicts an infinite sequence of instability regions
[13] defined by the amplitude and frequency of the excitation
[14]. According to the theory, the presence of weak dissipation
may not limit the amplitude of the motion [15], while addition
of parasitic nonlinearity leads to finite amplitude oscillations.
This reflects, more closely, the real-world observation [16].

The effect of amplitude saturation inherent to nonlinear
vibrations, the sensitivity to model uncertainty (inevitably
present in real-world applications), and the limited sensitivity
to small parametric perturbations (apparent on most typical
monostable oscillators [17]) have been long perceived to limit
technological promises of actuation principles that employ
system parameter modulation.

In this paper we present a principle of self-tuning feedback
parameter modulation that is immune to the above-mentioned
limitations. Instead of the classical time-dependent parametric
excitation, or more recent time-delay feedback-based con-
trol implementations [8,18–20], we combine minimalistic
statistical information with optimal state feedback control
perturbations to realize self-tuning (slow autonomous param-
eter adaptation) and feedback pumping (fast state-dependent
parameter modulation) without model information, delicate
control computation, or sophisticated signal processing past
observations.

Similar to most typical parametric feedback excitation
schemes, this approach leads to a self-sustained oscillator
[21] capable of large-amplitude oscillations. However, unlike
alternative means to parameter modulation, it (i) exploits the
extreme sensitivity of bistable oscillators near the onset of
their dynamic bifurcation [22] and (ii) uses optimal feedback
control perturbations [23]. We present the first experimental
demonstration of this principle, which is shown to provide
unprecedentedly robust amplitude maximization despite weak
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parametric excitation, substantial model variation, and strong
unforeseen external perturbations.

II. OPTIMAL PARAMETRIC EXCITATION

A minimalistic model of a nonlinear parametric oscillator
is given by

q̈ + γ q̇ + kq + k3q
3 = 0, (1)

where q denotes the displacement of the oscillator, γ charac-
terizes viscous dissipation, k is the stiffness of the oscillator,
while the last term, where k3 > 0, represents Duffing-type
nonlinearity [24]. The stiffness of the oscillator can be
decomposed into

k = ko + kp(t), (2)

where the first term is the static stiffness while the second term
is the dynamic stiffness. When the parameter of the oscillator
is not subject to modulation kp(t) = 0, the oscillator can
be monostable ko > 0 (characterized with single-well static
potential) or bistable ko < 0 (characterized with double-well
static potential).

The oscillator (1) can be set into motion by stiffness
modulation, i.e., by changing kp(t) ∈ [kp min,kp max]. For a
linear oscillator this can be done using, e.g., square-wave
modulation [25], which has twice the frequency of the os-
cillator and which has an amplitude that exceeds the threshold
kp max − kp min > π

√
koγ defined by the static stiffness and

the coefficient of viscous dissipation. This kind of limitation
is fundamental to the principle of parametric excitation. It
indicates that, in order to generate oscillations, the energy
injected through parameter modulation must exceed the energy
lost due to dissipation.

Figure 1(a) shows a typical long-term behavior of a nonlin-
ear oscillator (1) under optimal dynamic stiffness modulation
kp = k

opt
p (t) ∈ [kp min,kp max] and different static stiffness ko

settings. The implemented time-dependent modulation max-
imizes the amplitude of the oscillator at every oscillation.
This modulation is the most effective among all modulations
subject to the same stiffness range limitation. Despite this, we
observe that when the oscillator operates in the monostable
regime its amplitude and sensitivity to parameter modulation
is limited compared to that observed just before the onset
of the dynamic bifurcation (gray area). In addition to this,
the implemented time-dependent excitation lacks robustness
and the capacity of adaptation vital for robust practical
implementation. This is why the benefit offered by model-
based optimization diminishes when it comes to real-world
implementation.

III. NEAR-OPTIMAL ADAPTIVE FEEDBACK
PARAMETRIC EXCITATION

Ideally, we wish to realize effective amplitude maximiza-
tion that is inherently robust under uncertainties in model
information and unforeseen external perturbations. While
using a model-based time-dependent (feed-forward) controller
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FIG. 1. (a) Model-based optimal parametric excitation. The sta-
tionary amplitude A of the oscillator is shown with gray lines. |A| ≈
|AB | denotes the state of the oscillator before the onset of bifurcation
(shaded gray area). The model parameters are given by ko ∈ [−12,5],
kopt

p (t) ∈ [−0.2,0.2], γ = 0.1, and k3 = 1. (b) Model free feedback
controller used to tune the oscillator, where q̄N denotes the N = 2
period moving average position, ĀN is the corresponding average
amplitude, �k = 0.1 is the stiffness increment per motion cycle,
while εq = 0.1 and εA = 0.01 denote the two switching thresholds,
respectively [26]. (c) Model-free optimal feedback controller used
to implement fast parameter modulation. The black dots in subplot
(a) represent the operation points of the oscillator after self-tuning.
The black line denotes the mean amplitude of the tuned oscillator.
The yellow area (state 3) indicates the 99% confidence interval of the
tuned static stiffness. These results were obtained by 100 simulations
of (1) using random initialization. We note that in the statically
monostable regime (k0 > 0) the oscillator could not be always set
into motion under the constraint imposed on the amplitude of the
fast parameter modulation, i.e., kopt

p (t) ∈ [−0.2,0.2]. Despite this, the
oscillator displays large-amplitude motion after it self-tunes itself
near to the onset of dynamic bifurcation (state 3, yellow area).

this does not seem to be viable, here we propose a minimal-
istic adaptive feedback controller that implements self-tuning
(long-term parameter adaptation) and near-optimal feedback
pumping (short-term parameter modulation) without sophis-
ticated model-based control computation. The principles that
underly this controller are summarized in the following two
observations:

(1) The amplitude of the oscillator is maximized near to
the onset of dynamic bifurcation [Fig. 1(a), gray area] where
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it displays extreme sensitivity to resonant perturbations [22].
Based on this observation, we aim to adaptively change the
stiffness of the oscillator ko, in order to tune the system
near to the onset of its dynamic bifurcation [Fig. 1(a), state
3, yellow area]. This is implemented using simple statistical
information—N -period mean position q̄N and mean amplitude
ĀN of the oscillator—using minimalistic on-line computation
and without model information [see Fig. 1(b)]:

ko = ko(q̄N ,ĀN ). (3)

According to this implementation, adaptation is achieved
by first reducing stiffness [Fig. 1(b) state 1], in order to induce
off-centered motion, and then increasing stiffness [Fig. 1(b)
state 2], until the emergence of centered large-amplitude
oscillations [Figs. 1(a) and 1(b) state 3, yellow area). There
are three important features of this tuning approach: First it is
easy to implement (it does not require extensive computation);
second, it is model-free (it does not require system parameter
identification); and, third, it is robust (it relies on generic
features of bistable oscillators) [27]. We now turn to the second
observation.

(2) In order to achieve amplitude maximization, the optimal
parametric pump implements the following simple actions:
Every time the oscillator passes through its trivial equilibrium
stiffness is reduced while every time the oscillator reaches its
maximum amplitude stiffness is increased [28] [Fig. 1(c)]:

kp(q,q̇) ∈
{
kpmax if qq̇ � 0
kpmin if qq̇ > 0.

(4)

We have recently shown [23] that this feedback controller
delivers the same amplification effect as the corresponding
model-based optimal excitation which maximizes the ampli-
tude of the oscillator at every oscillation. Importantly, this
holds not only for linear oscillators but also for a large
class of essentially nonlinear oscillators, including bistable
oscillators. In addition to this, this controller does not require
model information or control computation and, similarly to
other feedback based excitation schemes [8,18–20,29], it
is inherently robust compared to time-dependent parametric
excitation. These features make (4) desirable when it comes to
real-world implementation.

When applied to a prototypical bistable oscillator (1), the
composite controller:

k = ko(q̄N ,ĀN ) + kp(q,q̇) (5)

adaptively tunes the system to the onset of its dynamic
bifurcation where it achieves large-amplitude parametric
oscillations (see Fig. 1). In general, however, application
of this controller on more complex oscillators appears to
be hindered by two fundamental limitations. This is partly
because the stiffness parameter of a real physical systems
is, in general, not directly controllable [30] but also because
the above controller (5) requires stiffness modulation in two
fundamentally different spatial and temporal scales, i.e., while
the first term ko requires large-range and slow cycle-to-cycle
adaptation, the second term kp is designated to small-range
but fast stiffness modulation. Due to these reasons, it is often
difficult to provide a generalization of the above controller that
(i) remains effective in amplitude maximization, (ii) remains

robust to model variations, and (iii) enables low-energy-cost
practical implementation.

IV. GENERALIZATION AND PRACTICAL
IMPLEMENTATION

In this section we present a practical realization of a self-
tuning bistable parametric oscillator [Figs. 2(a)–2(c)] which
is not affected by the above-mentioned limitations. Using this
oscillator, we aim to outline general design features that enable
effective implementation of the proposed control scheme for
parametric excitation.

The behavior of the oscillator is captured by a three-degree-
of-freedom model [Fig. 2(d)]:

q̈ + γ q̇ + k(q,x)q = 0, (6)

ẍ + 2α ẋ + α2x = α2u, (7)

composed by a nonlinear oscillator (6) coupled to a two-degree
of freedom actuating subsystem (7). In this model, k(q,x)
denotes the state-dependent stiffness of the oscillator, x =
[x1,x2]� is the displacement of the position controlled actua-
tors, α = diag[α1,α2] quantifies the speed (closed-loop band-
width) of the actuators, while u = [u1,u2]� ∈ [umin,umax]
defines the control inputs. The state-dependent stiffness of
this device has additive structure:

k(q,x) = kI(q,x1) + kII(q,x2) + kIII(q), (8)

due to the parallel coupling of the three compliant subsystems
[Figs. 2(a)–2(d) (I)–(III)]. The first two terms in the above
relation are associated with the two leaf-spring mecha-
nisms [Figs. 2(a)–2(d) (I) and (II)]. The stiffness provided
by these mechanisms—kI,II(q,x∗) ∝ (δ∗ + x∗max − x∗)−3[1 −
O(q2)] (where δ∗ defines the largest achievable stiffness)
[31]—can be changed by controlling the effective length of the
leaf springs. In this way, the two actuators are used to change
kI,II from near-zero (x∗ ≈ x∗ min, long spring) to high positive
values (x∗ ≈ x∗ max, short spring). The additional extension
spring mechanism is shown in Fig. 2(c) (III). This mechanism
is pre-extended in order to pull the oscillator away from its
equilibrium configuration (q = 0). This effect leads to the third
term kIII(q) ∝ −1 + O(q2) in (8). This term is negative.

The redundancy in actuation (i.e., two independent inputs
u ∈ R2 are used to change the stiffness k ∈ R of the oscillator),
the inverse relation between kI,II and the positions of the
actuators x, and the instability of the static equilibrium position
caused by the negative stiffness element in the oscillator
kIII < 0 are the three design feature that make this oscillator:
wide-range tunable (tunable over monostable to strongly
nonlinear bistable regimes [shown in Fig. 2 and Fig. 4])
and well suited to low-power-cost stiffness modulation [see
Figs. 2(g) and 2(i) and Fig. 3].

The model presented above (6)–(8) will be subsequently
used to explain the working principle of the oscillator. It
is, however, important to note that this model is not general
enough to perform model-based optimization [32].

Using the actuators (7), we modify the internal geometry
of the device to implement redundant parametric excitation.
Specifically, we employ a slow actuator u1 to modulate the
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FIG. 2. Tunable parametric feedback oscillator. [(a)–(c)] Oscillator: (I) leaf-spring mechanism dedicated to tuning, (II) leaf-spring
mechanism dedicated to feedback pumping, (III) passive positive feedback mechanism, (IV) oscillating output link. (d) Schematic representation
of the oscillator. (e) Behavior of the oscillator under (f) quasistatic stiffness tuning and (h) parametric feedback pumping. B1,2 denote dynamic
bifurcations as the stiffness of the oscillator is decreased. [(g) and (i)] Average electrical power drained by the slow stiffness tuning and the fast
stiffness pumping motors (computed using 2.5-s and 0.25-s moving average filters, respectively).

effective length of the first leaf spring x1 [Figs. 2(a) and 2(d)]
to realize stiffness adaptation [Fig. 2(f)] and a fast actuator
u2 to change the effective length of the second leaf spring x2

[Figs. 2(a) and 2(d)] and as such implement stiffness pumping,
i.e., fast modulation [Fig. 2(h)]. Unlike in the minimalistic
model (1), the stiffness of this real system (8) is not directly
controllable, and, as such, our previously derived composite
controller (5) is not directly applicable. In general, finding
the optimal control inputs u to realize a desired stiffness
modulation, under realistic actuation [i.e., (7) and (8)], requires
model-based computation [30]. However, if the oscillator’s
restoring force [i.e., (6); −k(q,x)q] is strictly monotonic with
respect to the control inputs, one can formally replace the
stiffness in (5) [Figs. 1(b) and 1(c)] with the control inputs
in (7) to define a more general control law for nonlinear
parametric excitation [23]:

u = [uo(q̄N ,ĀN ),up(q,q̇)]� ∈ [umin,umax]. (9)

The design condition enabling this model and computation
free generalization is satisfied on our device under static
condition—due to the monotonic stiffness motor position
relation, i.e., u ≈ x, ∂k/∂x1 > 0, and ∂k/∂x2 > 0. This is
sufficient to implement near-optimal parametric excitation
using real (bandwidth limited) actuators. This holds not only
for slow adaptation uo but also for switching-like parameter
modulation up, provided the oscillator is slow compared to
the actuator performing the fast parameter modulation (i.e.,
the frequency of oscillations is an order of magnitude below
the bandwidth of the fast stiffness modulating actuator [33]).

There are three important features that set this redundantly
actuated self-tuning bistable parametric feedback oscilla-

tor apart from more conventionally actuated monostable
oscillators:

First, instead of utilizing one actuation mechanism to
realize fast parameter modulation in large stiffness range, the
proposed device employs two actuated compliant mechanisms:
one to enable slow temporal modulation in large stiffness
range and another to realize fast temporal modulation in the
small stiffness range. This redundancy in the actuation directly
allows the oscillator to exploit the physical differences inherent
to the tuning and pumping controllers. In particular, this
enables low-power practical implementation of the proposed
composite controller (9), see Figs. 2(g) and 2(i) and Fig. 3.

Second, in our device, stiffness modulation is realized with
variable-length leaf-spring mechanisms which largely decou-
ple the external load from the stiffness adjusting actuators.
By doing so, the actuators do not need to work heavily when
changing stiffness, and at the same time they require little
power to maintain stiffness [31]. This actuation principle
exemplifies a practical means to realize parametric excitation
with low actuation power and energy cost, see Figs. 2(g) and
2(i) and Fig. 3.

Third, our device incorporates a negative stiffness mecha-
nism that extends its mono-stable operation regime to strongly
nonlinear bistable regimes [Fig. 2(e) and Fig. 4]. Instead
of realizing adaptable positive feedback using energetically
expensive active control (e.g., by changing the length of the
large extension springs [Fig. 2(c) (III)] with a strong actuator),
our implementation does not require any energy input to
generate the positive feedback effect during the oscillations.
Unlike time-dependent parametric excitation of monostable
oscillators, this adaptive feedback-controlled negative stiffness
system enables self-initialization [Figs. 2(e) and 2(f), B1] and
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the experiments]. (b) Motion of the stiffness tuning actuator x1

(solid black lines) and the corresponding square-wave input motor
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gray lines). (c) Average power drained by the stiffness tuning actuator
(computed using a 2.5-s moving average filter). The plot shows no
essential difference between the electrical motor power in the case
when the oscillator was not deflected compared to the case when
it was maximally deflected from its equilibrium configuration. This
can be seen in the gray areas on the left. (d) Motion of the stiffness
pumping actuator x2 (solid black lines) given the square-wave input
command u2—chirp signal with frequency [0.06,0.2] Hz. (e) Average
power drained by the stiffness pumping actuator (computed using a
0.25-s moving average filter). The plot shows small variation between
the motor power in the case when the oscillator was not deflected
compared to the case when it was maximally deflected from its
equilibrium configuration. In both power plots there is a consistent
up-shift of the baseline motor power due to the increased frequency
of the excitation.

large-amplitude resonant vibrations [Figs. 2(e) and 2(f), B2]
using small control perturbations [Figs. 2(e) and 2(h)].

V. DISCUSSION AND CONCLUDING REMARKS

A typical operation of the oscillator is shown in Figs. 5(a)
and 5(b) (see also Movie 1 and Movie 2 provided in the Sup-
plemental Material [34]). The effect of the tuning [Fig. 5(c)]
can be identified by a long-term transient response that leads
to large-amplitude vibrations [Fig. 5(b)]. The concurrent fast
stiffness pumping [Fig. 5(e)] provides the energy input for sus-
tained vibrations. The experiment shows unprecedented level
of robustness, i.e., (1) self-tuning [Figs. 5(a) and 5(b)(A)], (2)
quick recovery under large short-term perturbations [Figs. 5(a)
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FIG. 4. Equilibrium angle of the oscillator as a function of its
static stiffness setting. The gray (black) lines denote the equilibrium
positions of the oscillator under quasistatic forward (and backward)
sweep of the stiffness. During these experiments three different
weights, i.e., m = {0,5,10} kg were attached to the oscillator. The
error bars on this plot denote two standard deviations. We observe
that when the stiffness is tuned to its minimum value (x1 ≈ x1min) the
trivial equilibrium of the system is unstable, the oscillator is bistable.
When the stiffness is tuned to its maximum value (x1 ≈ x1max) the
trivial equilibrium is stable, and the oscillator is monostable. In the
monostable case, the oscillator has nonzero static deflection. This
is due to symmetry-breaking terms in real-world implementation.
The bifurcation phenomenon seen in this plot is enabled by the
positive feedback (negative stiffness) extension spring mechanism
in our device [Figs. 2(c) and 2(d) (III)].

and 5(b)(B)], (3) readaptation under long-term perturbations
[Figs. 5(a) and 5(b)(F)], and (4) consistent retuning under
significant modification of the parameters of the oscillator
[Figs. 5(a) and 5(b)(C)–(D)]. None of these behaviors are
preprogrammed, i.e., neither the model of the system nor the
perturbations (provided by the experimenter) are used in any
way to control the oscillator. The adaptation process was also
tested by applying heavy damping and strong time-dependent
external driving to the oscillator (Fig. 6). Despite these effects,
the oscillator demonstrates robust readaptation [Figs. 6(b)
and 6(c)] without model information or knowledge of the
nonstationary excitation.

The operation of the oscillator can be decomposed to a
slow long time-scale adaptation [Fig. 5(c) and Fig. 6(c)] and
a fast but short time-scale feedback modulation [Fig. 5(e) and
Fig. 6(e)]. The adaptation process is intermittent if there are
no perturbations [Fig. 5(c)] and under stationary excitation
[Fig. 6(c)]. In addition to this, once adapted, the oscillator can
operate with low power to hold its stiffness setting [Figs. 5(d)
and Fig. 6(d)]. As opposed to stiffness tuning, the concurrent
fast parametric feedback pump is triggered twice per every
oscillation cycle. This excitation is effective despite the small
range of the corresponding position modulation x2. This is
because: (i) the oscillator is tuned to operate at the vicinity of
its dynamic bifurcation (where it displays extreme sensitivity
to parameter perturbations) but also because (ii) the oscillator
employs near-optimal resonance perturbations. These effects
can dramatically enhance the effect of parameter modulation
[i.e., which in turn reduces the power required to maintain
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stiffness modulation. (f) Power drained by the actuator implementing the fast stiffness modulation. The operation of the actuators and the
motion of the oscillator (between the dashed yellow lines) are shown in Movie 1 and Movie 2 of the Supplemental Material [34]. Additional
experimental results are provided in the Appendix (Fig. 7).

sustained oscillations; Figs. 5(d) and 5(f) and Figs. 6(d) and
6(f)].

The ability of the oscillator to increase its sensitivity by
self-tuning to the onset of bifurcation, is vital to realize
large-amplitude motion with weak parameter modulation.
However, self-tuning to critical transition is an effective
means of signal amplification even without fast parameter
modulation. Due to the generality, robustness, and minimal
implementation requirement, the present tuning approach may
be used to design active and adaptive sensors that, similarly to
the human ear [35], could achieve unprecedented bandwidth
and sensitivity in practical applications. In addition to this, we

posit that efficient implementation of wide-range self-tuning,
as the one demonstrated on our electromechanical oscillator,
could enable adaptive realization of the celebrated stochastic
resonance phenomenon [36] useful not only for signal ampli-
fication [37] but also for a variety of different applications,
including adaptive energy harvesting from random natural
vibrations [38].

Parametric excitation has been widely used for signal
amplification [39] and frequency stabilization [8] in micro-
and nanoelectromechanical oscillators. The high-quality factor
(low dissipation) makes these devices inherently sensitive
to parametric excitation. Also parametric actuation can be
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FIG. 6. Self-tuning oscillator under heavy damping and strong external excitation. The three pictures on the left show the device used to
impose controlled damping and external torque on the oscillator. In the first picture, the box on the right shows the two driving motors (M1 and
M2) while the box on the left shows the oscillator. The second and third pictures show the extreme left and the extreme right position of the
oscillator, respectively. One of the motors (M1) on this device is used to impose a velocity-dependent damping torque while another (M2) is
used to generate a time- and position-dependent driving torque. The red, blue, and green phases indicate (A) medium, (B) weak, and (C) strong
external driving imposed by the torque generator. (a) Phase plots of the motion. The colored cycles show stationary oscillations following the
adaptation. (b) Motion of the oscillator in time. (c) Stiffness adaptation. The strategy to first reduce stiffness, induce off-centered oscillations,
and then increase stiffness, backtrack until large amplitude oscillations, is clearly observed during all three motion phases. (d) Average power
for stiffness tuning. Regardless of the motion of the oscillator, the power required to maintain stiffness is near to the baseline power of the
resting actuator. (e) Stiffness pumping. (f) Average power for stiffness pumping. While maintaining stiffness requires negligible energy on our
system, the total energy cost for stiffness modulation is dominated by the speed of the stiffness pumping actuator, and it is significantly higher
than the one required for stiffness adaptation.

realized using a universal transduction scheme for nanome-
chanical oscillators [40]. However, the effective use of micro-
and nanodevices is in strongly nonlinear, large-amplitude,
regimes where the classical principle of time-dependent
parametric excitation suffers from frequency detuning and
amplitude saturation even under no dissipation.

The present finding provides robust, model-free, and near-
optimal parametric excitation using judiciously chosen feed-
back perturbations. Application of this principle could lead
to new-generation self-tuning bistable parametric oscillators
that provide near-optimal amplitude maximization and is
robust to variability in fabrication, nonlinearity in operation,
imperfections in actuation, and uncertain external effects
inevitably present in real-world implementation.
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APPENDIX

Figure 7 provides additional experimental results. These
results demonstrate the behavior of the oscillator under
substantial model variation.
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