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Abstract—It is widely recognised that compliant actuation is
advantageous to robot control once high-performance, explosive
tasks, such as throwing, hitting or jumping are considered.
However, the benefit of intrinsic compliance comes with high
control complexity. Specifically, coordinating the motion of the
system through a compliant actuator and finding a task-specific
impedance profile that leads to better performance is non-trivial.
Here, we utilise optimal control to devise time-varying torque and
stiffness profiles for highly dynamic movements in compliantly
actuated robots. The proposed methodology is applied to a ball-
throwing task where we demonstrate that: (i) the method is
able to tailor impedance strategies to specific task objectives
and system dynamics, (ii) the ability to vary stiffness leads to
better performance in this class of movements, (iii) in systems
with variable physical compliance, our methodology is able to
exploit the energy storage capabilities of the actuators. We
illustrate these in several numerical simulations, and in hardware
experiments on a device with variable physical stiffness.

I. INTRODUCTION

Recently, significant research effort has focused on develop-
ment of variable stiffness actuators (VSAs). Numerous designs
for VSAs have been proposed, with the motivation of (i)
improving safety of robots and humans (by providing an
intrinsic compliance) [26], (ii) adding additional redundancy
in the control (allowing robots to be stiff and accurate or
compliant to the environment according to task demands) [12],
and (iii) improving the energy efficiency and dynamic range
of existing actuators (e.g., by exploiting the energy storage
capabilities of such devices) [5].

Due to the last point, a particularly promising area in
which VSAs may be deployed are applications involving
highly dynamic, explosive movements. Such movements are
characterised by a large release of energy over a short time
frame, with typical examples including throwing, hitting,
kicking, or jumping. Additionally, rhythmic movements as
walking and running can also contain an explosive component
[24]. Achieving such movements with traditional, joint torque
actuators presents significant difficulties, particularly in respect
of the size and power limitation of the motors. In contrast, by
incorporating a physical elastic element, novel VSAs offer the
possibility of achieving a much higher dynamic range, with
much smaller, less expensive motors, by instead exploiting
the compliant nature of the actuators.

However, one of the difficulties of using such actuators is the
considerably increased complexity in the planning and control,
particularly in the context of such highly dynamic movements.
From the perspective of mechanical design, VSAs are often

developed with an antagonistic architecture [10, 19], but have
also been developed using more practical (technical) objectives
[21, 25]. Typically, this introduces additional complexity to the
dynamics in the form of non-linearities, coupling of stiffness
and motion characteristics, and increased dimensionality of the
control input. As a result, it becomes increasingly difficult to
design or hand-tune control strategies for such actuators, and
to exploit the benefits of variable stiffness.

Hogan [4] suggested that if the objective is to minimise the
tracking error and the interface force, then the manipulator
impedance should be inversely proportional to the environmen-
tal impedance. This rule, by which the manipulator should act
as the dual of the environment, is known as a duality principle
in impedance control [2]. It is, however, not entirely clear how
to select a desirable, possibly time-varying target impedance
for a given non-linear system and a generic dynamic task.
As such, it is usually the case that the control of the VSAs
presented in the literature to date is realised with ’tuned’
constant impedances that may not be optimal with respect to
the task.

There is growing interest in addressing this limitation. For
example, the benefit of optimal time-varying stiffness control
has been investigated in [9]. The utility of damping variation
was shown in [6], where a robot hand controlled by an
optimal variable damper effectively supported a human in a
cooperative lifting task. The optimisation of the passive system
properties has also been discussed under more dynamic con-
ditions. In this context, [22, 23], demonstrated that tracking a
small amplitude oscillatory motion of a pendulum can be made
efficient by matching the (constant) stiffness of the actuators
with the natural stiffness of the reference trajectory. With
a similar objective in [20], the authors combined trajectory
tracking with adaptation of the constant joint stiffness to its
optimal value.

In this paper, we investigate the use of model-based optimal
control for devising strategies for VSAs in highly dynamic,
explosive tasks. Specifically, we seek optimal torques and
time-varying optimal stiffness profiles for an explosive task
such as throwing. Our goal is to assess the benefits of variable
stiffness for such tasks, and to investigate how, by taking
an optimal control approach, we may exploit the physical
properties of a variable impedance system to improve perfor-
mance. Our approach has the benefit of providing behavioural
predictions that are non-trivial to obtain by other methods or
hand-tuning, for example, strategy changes due to modification
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of the system dynamics. Furthermore, predictions made by our
approach could be used as a tool to comprehend explosive task
execution strategies in humans. We illustrate our approach with
a number of simulation studies, and in a throwing experiment
on robotic hardware.

II. OPTIMAL TORQUE/STIFFNESS CONTROL

In this section, we present an optimal torque and stiffness
control methodology applied to compliantly actuated systems.
The basic ingredients of such control approach are (i) the
dynamic equation of the robot, (ii) the model of the compliant
actuator, (iii) the physical constraints on the actuator inputs,
and (iv) the performance index that defines the control task.

A. Robot dynamics

Consider an n-degree-of-freedom robotic system, the configu-
ration of which is uniquely specified by q ∈ Rn joint angles.
Let the equation of motion of the system be represented as

M(q)q̈+C(q, q̇) +G(q) = τ (q,u) + τf , (1)

where M ∈ Rn×n is a symmetric and positive definite mass
matrix, C ∈ Rn represents centrifugal and Coriolis terms,
G ∈ Rn are the gravitational terms, τ ∈ Rn are the joint
torques from the actuators, u ∈ Rm are the control inputs and
τf ∈ Rn represents the torques due to joint friction (e.g., due
to Coulomb and viscous friction). Usually, for industrial ma-
nipulators, τ is considered to be the control input (i.e., τ ≡ u)
[17] since it can be directly commanded through stiff (highly-
geared) joint-torque actuators. In the present paper however,
we consider robots equipped with compliant actuators, a model
of which is introduced in the following.

B. Compliant actuation

If the actuators have in-built compliance, the joint torques
τ cannot be directly commanded. In such cases, the torque
function is in general complicated, position dependent (see
(1)), and can only be indirectly modulated with the control
inputs u. For example, a popular approach is to use servo-
control to adjust the length and the moment-arm of the
compliant element (i.e., spring) embedded in the actuator [21].
In the following, we consider a model of VSAs which allow
simultaneous torque and stiffness control.

1) Torque control: On compliantly actuated systems, the
relation between the joint torques, joint angles and the control
inputs u ∈ Rm (m > n), is given in the following form1

τ (q,u) = AT (q,u)F(q,u), (2)

where A ∈ Rp×n (p ≥ n) is the moment-arm matrix, defined
by the geometric attributes of the actuators, and F ∈ Rp

are the corresponding forces due to the elastic elements
(characterised by the physical attributes of these elements).
As indicated in (2), both the moment arm and the associated

1While in the present paper, the actuator torque is assumed to be position
dependent (as is the case in the majority of VSA actuators), the formulation
remains valid for cases where the torque is velocity dependent (e.g., due to
viscoelastic forces for example).

forces may explicitly depend on the control inputs u. As will
be subsequently discussed, this dependence may allow one to
modulate not only the joint torques, but also the (passive) joint
stiffness of the actuators.

2) Stiffness control: Using (2), the passive joint stiffness of
the actuators K := −∂τ/∂q ∈ Rn×n, can be computed as

K(q,u) = −∂AT

∂q
F−AT ∂F

∂q
. (3)

Relation (3) allows one to identify the conditions under which
the control inputs u can change the joint stiffness. Specifically,
the first term in (3) indicates that the joint stiffness can
be directly changed by controlled modulation of the elastic
force F, if the moment arm A is position dependent (see
the antagonistic design in [12] for example). If the moment
arm is constant, then joint-level stiffness modulation requires
a non-linear force-angle relation (i.e., the stiffness defined
by kF = −∂F/∂q should be control dependent). This is
the mechanism used in many antagonistic actuators, see [10]
for example. One can however modulate the joint stiffness
through the second term, even if kF is constant. In that case
however, the moment arm should be control dependent, see
[21] for example. Regardless of which of these mechanisms
is employed, we assume that the actuators under consideration
have the necessary control redundancy (i.e., m > n) required
for simultaneous torque and stiffness modulation on one or
more of the joints.

3) Admissible control actions: In many compliant actuator
designs control constraints exist. In order to formally introduce
these constraints, we define the set of admissible controls as

U = {u ∈ Rm : u ∈ [umin,umax]}, (4)

where umin and umax is the lower and the upper bound on
the control inputs respectively. This set defined with box-
constraints is well suited to express the physical restriction
inherently present on compliant actuators.

C. Optimal control formulation
An optimal control problem is defined with a performance
criterion which is minimised (or maximised) with respect to
the control actions. There are two types of physical constraints
that apply to this minimisation in general. The first comes
from the plant dynamics (1) and (2), which specifies the state
output for a given control input, while the second is due to the
physical restrictions on the realisable control actions (4). In the
following, we introduce the computational framework used in
this work and discuss application of the result to compliantly
actuated robots in the context of optimal torque and stiffness
control.

1) Problem formulation: Let us consider a state-space
representation of the controlled system dynamics (1) and (2),
given as

ẋ = f(x,u), (5)

where x = (xT
1 ,x

T
2 )

T = (qT , q̇T )T ∈ R2n is a state vector,
while

f =
[ x2

−M(x1)
−1(C(x) +G(x1)− τ (x1,u)− τf )

]
, (6)



is a vector field which is in general non-linear in states x and
actions u.

Within the framework of optimal control, a wide variety of
tasks can be represented using the following formulation: For
a given finite time interval t ∈ [0, T ], and for a given initial
state of the system x(0) = x0, find an admissible control law
u = u(t,x) ∈ U that minimises the optimisation criterion

J(x0) = h(x(T )) +

∫ T

0

c(x(t),u(t,x(t)) ) dt ∈ R, (7)

where h(x(T )) ∈ R is the terminal cost, while c(x,u) ∈ R
is the running cost used to encode the control objectives
within the formulation [15]. Once the control law is devised,
the control sequence can be computed by state feedback as
uopt(t) = u(t,x(t)), and applied to (5) for optimal task
execution.

2) Solution method: For non-linear plant dynamics (5) and
non-quadratic cost in (7), a globally valid optimal control
law uopt = u(t,x) could be derived by means of dynamic
programming2. However such a solution method is compu-
tationally expensive (often intractable), and accordingly not
attractive for practical implementations. In order to circumvent
this issue, we utilise the iterative linear quadratic regulator
(iLQR) method [8] to efficiently compute the optimal control
actions for the non-linear optimal control problem (5) and (7),
as described below.

The iLQR method is initialised with a nominal control
sequence and the corresponding state trajectories (x̂, û). These
are then iteratively improved by means of sequentially solving
a set of local LQR sub-problems. The sub-problems are
formed by linear approximation of the system dynamics (5),

δẋ = fxδx+ fuδu, (8)

and quadratic approximation of the objective functional (7),

∆J=hT
x δx(T )+δxT (T )hxxδx(T )+

∫ T

0

(cTx δx+cTuδu) dt+

1

2

∫ T

0

(δxT cxxδx+ δxT cxuδu+ δuT cuuδu )dt, (9)

evaluated along the current state and control sequence (lower
indices in (8) and (9), denote partial derivatives with respect
to the corresponding variables). This sub-problem, (equations
(8) and (9)), is solved for (δx, δu) via a modified Ricatti-
like system [8], and a new (improved) sequence is formed by
x̂← x̂+δx and û← û+δu.

When the method converges (i.e., ∆J ≈ 0 achieved nu-
merically), it returns the optimal state and control trajectories
(x∗(t),u∗(t)) together with a set of feedback-gains3 L∗(t) ∈
Rm×2n. The feedback control law for optimal task execution
can then be defined as uopt(t,x) = u∗(t)+L∗(t)(x−x∗(t))).

2This method requires one to solve the non-linear Hamilton-Jacobi-Bellman
partial differential equation to define a general solution and the optimal
feedback control law, see [18].

3If the control inputs are saturated (i.e., restricted with “hard constraints”
(7)), the corresponding feedback gains may be set to zero, as proposed in
[8]. Alternatively, one could utilise penalty terms to embed the inequality
constraints in the objective functional (9), see [18].

While the feedback correction part may not be of a central
importance for short explosive movements, it may become
beneficial when the motion is long and/or when the system
dynamics are not well identified.

3) Application to compliant control: Using the optimal
solution given by x∗=(q∗T , q̇∗T )T and u∗, the optimal joint
torques τ ∗, and the optimal joint stiffness profiles K∗ can be
obtained from (2) and (3) by substitution. Moreover, if the
optimal feedback gains L∗ = (P∗,D∗) (where P∗ ∈ Rm×n

and D∗ ∈Rm×n) can also be computed, then the torque and
stiffness will be defined in a form of a locally valid feedback
control law: τopt=τ (q,uopt) and Kopt=K(q,uopt)+

∂τ
∂uP

∗,
where uopt = u∗ +P∗(q − q∗) +D∗(q̇ − q̇∗). Note that
the feedback correction on u∗ is a joint-level PD-control
performed with optimal position and velocity gains.

In order to obtain not only the torques, but also the optimal
time-varying stiffness profile, the present framework resolves
the control redundancy (i.e., u ∈ Rm, m > n) in a system
dependent and task specific way [14]. In this light, the control
redundancy is optimally exploited to devise the best stiffness
profiles for the system (1), actuator (2) and task (7) considered.

4) Implementation and limitation: In the iLQR imple-
mentation, we utilise finite differences to derive the linear
approximation of the system dynamics (8), and the quadratic
approximation of the cost (9) wherever an exact analytical
approximation is not feasible. Furthermore, we use a fixed-step
fourth-order Runge-Kutta method for numerical integration of
the dynamics during the iterations. The admissible domain for
the control actions is set by box constraints on the inputs as
defined in (4). It is also important to point out that the iLQR
method is local, and in order to circumvent local minima
issues, we utilise multiple (random) initialisations to select
the best possible solution. The model-based iLQR method
is a viable optimization tool when the model of the system
dynamics is reasonably well identified. If such model is not
available analytically or too complex to estimate accurately,
one could employ any model-free method for optimal control
that is able to optimize over the inputs u which non-linearly
enter into the dynamics. Alternately, one could also use iLQG
with learned dynamics (iLQG-LD, see [11]) where the model
is acquired from data.

III. CASE STUDY: OPTIMAL BALL THROWING

In this section, we investigate the use of an optimal control
approach to devising appropriate controllers for highly dy-
namic, explosive movements. As an example, we look at the
problem of throwing a ball using a compliant two-link arm.
Following the problem formulation, we analyse the control
strategies devised by our approach in the light of varying the
objective function and the dynamical properties of the system.
Our goal is to characterise the optimal solutions found by
our approach, before going on to analyse the exploitation of
variable stiffness in greater depth.

A. Problem formulation
Here we formulate the problem of ball-throwing with a two-
link, compliantly actuated robot arm. We present the system



Fig. 1. a) Configuration of the arm with the inertial and geometric parameters:
l1=0.25m, l2=0.25m, lc1 =0.125m, lc2 =0.125m, m1=0.1kg, m2=
0.1kg, mb ∈ [0.01, 0.1]kg, I1 = m1l21/12kgm

2, I2 = m2l22/12kgm
2.

b) Ball throwing. c) Prototype of the variable stiffness actuator (used on
the first joint). u1 = qe1 (and u2 = qe2) adjusts the equilibrium point
of the springs, while u3 (and u4) adjusts the spring pretension. Actuator
parameters: maximum limitations on the servos u1,2 ∈ [−π/2, π/2]rad
and u3,4 ∈ [0, π]rad, spring stiffness κ1,2 =(400, 200)N/m, radius of the
winding drum (for spring pretension) r1,2=(0.01, 0.01)m, other geometric
parameters B1,2 = (0.05, 0.05)m, C1,2 = (0.15, 0.15)m. Joint damping:
τf = −(b1q̇1, b2q̇2)T , where b1,2=(0.025, 0.025)TNms.

dynamics, introduce the variable stiffness redundant actuation
mechanism, and define the optimisation criterion.

1) System dynamics: The system dynamics of the arm,
depicted in Fig. 1a, (left hand side of the equation of motion
(1)), is specified as

M =
[m11 m12

m21 m22

]
,C =

[c1
c2

]
,G =

[g1
g2

]
,

where q=(q1, q2)
T define the joint angles, m11=I1+m1l

2
c1+

I2+m2(l
2
1+2l1lc2cos(q2)+l

2
c2)+mb(l

2
1+2l1l2cos(q2)+l

2
2), m12=

m21=I2+m2(l
2
c2+l1lc2cos(q2))+mb(l

2
2+l1l2cos(q2)), m22=

I2+m2l
2
c2 +mbl

2
2 specify the mass matrix, c1 = −(m2lc2 +

mbl2)l1sin(q2)(2q̇1q̇2+ q̇22), c2 = (m2lc2+mbl2)l1sin(q2)q̇
2
1

specify the Coriolis and normal inertial terms, while g1 =
(m1lc1 +m2l1 +mbl1)cos(q1)+ (m2lc2 +mbl2)cos(q1 + q2)
and g2 = (m2lc2 + mbl2)cos(q1 + q2) are the gravitational
terms. The geometric and inertial parameters of the model are
given in the caption of Fig. 1.

2) Actuation model: As an example of a physically re-
alisable VSA, we investigate throwing using an arm with
mechanically adjustable series elastic actuators (MACCEPA)
introduced in [21]. On this actuator (depicted in Fig. 1c), two
servo inputs are employed for direct control of the equilibrium
point of the actuator, and the pretension of the (linear) spring
respectively. The relations between the control inputs u, joint
torque τ , and joint stiffness4 K, is given by

τ =

B1C1 sinα1

E1
0

0
B2C2 sinα2

E2

[
κ1(ls1 − l01)
κ2(ls2 − l02)

]
, (10)

4In the present case the stiffness matrix has diagonal elements only. Off-
diagonal elements in the stiffness matrix appear if the configuration change
on one joint induces torque change on an another joint (see a human arm
model in [13] which incorporates bi-articular muscles).

Fig. 2. Depicted is: a) the torque-angle (q0 = 0) and b) the torque-stiffness
relation on the (first) joint. By changing the equilibrium point u1 = qe1, the
torque-angle curve translates in Fig.2a without affecting the torque-stiffness
characteristic depicted in Fig.2b. The torque-stiffness curve can be altered
with u3 by modulating the pretension of the spring. In this way, u1 and u3

together allow simultaneous torque and stiffness control. Note that, if u3 is
kept constant, the torque-stiffness curve is fixed in Fig.2b and simultaneous
torque-stiffness control is not possible. (The decreasing branch of the torque-
angle curve, in Fig.2a, corresponds to the negative stiffness of the joint.)

K = diag(k),k = [−∂τ1/∂q1,−∂τ2/∂q2]T , (11)

where u1,2 and u3,4 are the servo inputs associated with
equilibrium point modulation and the spring tensioning on
the first (base), and the second joint, respectively; q0 is
the equilibrium configuration under no external force and
no control input; r1,2, B1,2, C1,2, αi = ui − qi + q0i and
Ei =

√
B2

i + C2
i − 2BiCi cosαi, i ∈ {1, 2}, specify the

geometry of the actuators along (see Fig. 1); lsi = riui+2+Ei

is the length of the springs, l0i = Bi−Ci is the corresponding
equilibrium length and κ1,2 are the spring constants. The
specific parameter values can be found in the caption of Fig. 1.

Utilising (10) and (11), the torque and the stiffness of
the joints can be simultaneously modulated, however, these
relations are highly non-linear (see Fig. 2) which makes
(motion, torque and stiffness) control of this system non-
intuitive. Moreover, the range of motion of the adjuster servos
is limited, restricting the achievable value of the joint-stiffness
for a given torque. Such physical limitation, incorporated into
the formulation with (4), may be a necessary ingredient in the
optimal planning process, since it disallows unrealistic (e.g.,
infinitely large) controls to be employed for the task.

3) Performance criterion: The performance criterion for
the optimal ball throwing task considered is defined by

Jw = −d(q(T ), q̇(T )) + w

2

∫ T

0

‖F(q,u)‖2 dt, (12)

where d is the distance thrown (measured at the horizontal
ground level y0, see Fig. 1b), w ∈ (0,∞) weighs the effort
minimisation term (here, chosen as the time integral of the
squared spring forces5, F), while T is the time permitted for
task execution, t ∈ [0, T ].

The relation between the distance thrown and the configu-
ration of the arm (evaluated at the time of the ball release in
(12)) d = d(q, q̇), is computed from the ballistic equation of
the flying ball as

d = xm(q) + ẋm(q, q̇)Tm(q, q̇), (13)

5Alternatively, one could use other objectives as in [15] for example.



Fig. 3. a) Stroboscopic view of the optimal throwing motion. b) Joint torques.
c) Joint stiffness. The arm is initialised from the vertical resting configuration.
The limits on the control inputs are set to: u1,2 ∈ [−π/6, π/6]rad and
u3,4 ∈ [0, 2π/3]rad. The equilibrium of the springs (at no actuation)
correspond to q0 = [−π/2, 0]rad.

where xm= l1cos(q1)+l2cos(q1+q2) and ẋm=−l1sin(q1)q̇1−
l2sin(q1 + q2)(q̇1 + q̇2) denote the horizontal position and
velocity of the ball, and Tm is the ball flight time measured
from release until the time impact of the ball with the ground.
The latter is computed as

Tm =
1

g
(ẏm(q, q̇) +

√
ẏm(q, q̇)2 + 2g(ym(q)− y0)), (14)

where g is the gravitational constant, and ym = l1sin(q1)+
l2sin(q1+q2), ẏm= l1cos(q1)q̇1+ l2cos(q1+q2)(q̇1+ q̇2) de-
note the vertical position and velocity of the ball, respectively.

In the following, we confirm that our methodology is able to
find optimal solutions adapted to this problem setup. In partic-
ular, we first look at how varying the objective functional (i.e.,
varying w) affects the solutions found by our framework. We
then look at how changes to the system dynamics (specifically,
changes to the mass of the ball thrown) affects the solution
found by our approach.

4) Variation of the objective function: In this investigation,
we looked at how the solutions found by our framework
depend on the choice of weighting parameter w. The throwing
motion was performed with a ball of mass mb = 0.01 kg and
time duration T = 1 s.

Typical simulation results for choices of w ∈ [0.001, 0.04]
are depicted in Fig. 3. As can be seen, depending on the rel-
ative importance of the distance and effort terms in (12) (i.e.,
magnitude of w) a variety of optimal behaviours are predicted
(Fig. 3a) characterised by different torque and stiffness profiles
(Fig. 3b,c).

As expected, lower w (decreased penalisation of effort)
results in longer distance throws. More interestingly, we note

Fig. 4. Throwing movement predicted for two different masses. The optimi-
sation selects an under-arm strategy for the heavier ball (as in Sec. III-A4),
however, for the light ball an over-arm strategy is selected. The arm is
initialised from the vertical resting configuration, and the limits on the control
inputs are set to: u1,2 ∈ [−π/6, π/6]rad and u3,4 ∈ [0, 2π/3]rad;
q0 = [π/6, 0]rad.

that a common pattern emerges in the movements, irrespective
of the w chosen. This is a characteristic counter-movement
strategy whereby there is an initial back-swing prior to the
rapid forward acceleration before release. We note that such
a strategy is often used by humans during fast, explosive
movements (i.e, the “stretch shortening cycle” during throw-
ing, hitting, jumping, kicking) [7]. The numerical predictions
depicted in Fig. 3, obtained for a simple robotic device, are
consistent with this biologically plausible strategy.

5) Variation of the dynamics: In this numerical investi-
gation, we looked at how changes to the dynamics of the
system affect the solutions found by our framework. Here,
we analysed the effect of changing the mass of the ball on
the throwing strategy employed. For these simulations, the
duration was fixed to T = 1s, and we selected w = 0.001.
We compared throwing for mb = 0.1 kg and mb = 0.01 kg.

A representative result is shown in Fig. 4. Interestingly, we
see that for the two masses, very different throwing strategies
emerge. In particular, we see that for the heavy ball an under-
arm movement is used, while for the lighter ball an over-arm
strategy is employed.

Emergence of the two strategies can be explained by con-
sidering the dynamic effects during the corresponding task
execution. Specifically, if the weight of the ball is large, under-
arm throwing is more beneficial from the optimisation point
of view since lifting a heavy ball requires significant effort
penalised by the second term in the control objective (12).
On the other hand, if the ball is light, the effort required
for over-arm throwing can pay off through a larger distance
thrown (first term in (12)). In this case the motion is fast,
dominated by the inertial dynamics, and executed through a
fast counter-movement action. Again we note that both of these
strategies are similar to those naturally employed by humans.
Given a heavy ball, humans prefer to throw under-arm (as, for
example, in ten-pin bowling), while for lighter balls they more
commonly throw over-arm (as, for example, when fielding in
cricket or base-ball) when attempting to send the ball over
a large distance. The result presented in Fig. 4 demonstrates
that such strategy change in task execution can be predicted
by optimisation, depending on the weight of the ball.



IV. EXPLOITING VARIABLE STIFFNESS THROUGH OPTIMAL
CONTROL

It is often argued that variable stiffness actuation is beneficial
in order to achieve a human-like performance in highly dy-
namic, explosive tasks6. It is predicted that such benefits will
arise from the ability of VSAs to simultaneously modulate
joint torque and stiffness, and to amplify power (store energy).
Using optimal control, we can exploit these abilities in a
system dependent and task-specific way. This is demonstrated
by comparing a variable stiffness device with a fixed stiffness
device, where the joint torque-stiffness function cannot be
altered with the control inputs.

A. The benefit of stiffness variation

In order to investigate the benefit of optimal control with
variable stiffness, we performed a comparative study between
(i) the redundantly actuated system (10), and (ii) a system
with identical dynamics, but with the actuation redundancy
removed.

Specifically, the latter is a variant on the MACCEPA design,
but with a fixed pre-tensioning of the springs (i.e., the pre-
tensioning servos were commanded to a fixed position, u3,4=
const.), leaving the actuation to the equilibrium motors, u1,2,
alone. Commands for this system were selected by optimising
the constants u3,4, and seeking the optimal command sequence
for u1,2. Note that, keeping u3,4 constant does not ensure
constant joint stiffness, but it does ensure that joint torque
and stiffness cannot be independently optimised, see Fig. 2b
in Sec. III-A2.

For the purpose of demonstration, we consider a throwing
task specified with T = 3s, mb = 0.05kg and w = 0.001. In
Fig. 5a,b we show that the throwing performance is improved
for the case when both torque and stiffness are simultaneously
optimised (d=5.7m, Jw=−5.04) as opposed to using a fixed
torque-stiffness relation (d = 3.7m, Jw = −3.04). Note that
by choosing a longer time horizon (T = 3s), an interesting
cyclic movement emerges which is investigated in more detail
in the next section.

B. Energy storage with passive compliance

One of the proposed benefits of passive VSAs is their ability to
store mechanical energy, which can be later used to amplify the
power output of an actuator. This is particularly important for
explosive tasks [1, 24, 16] where, by exploiting this property,
we may significantly enhance the peak joint performance with-
out the need for increasing the size and power (and thereby
cost) of our actuators. In this section, we analyse the solutions
found by the optimal control framework to determine, if they
are indeed able to exploit energy storage effects.

Fig. 6a illustrates the strategy selected by our approach for
throwing with mb = 0.01kg, T = 3s and w = 0.001. As can
be seen, a sequential energy pumping strategy emerges during

6Human peak performance characterised with the rotation speed of the
shoulder during a baseball pitch of a professional pitcher, is between 6900−
9800o/s, [3]. This kind of high-performance task execution is not in the
scope of present robotic systems.

Fig. 5. Exploitation of variable stiffness actuation. Stroboscopic view of
the throwing motion: a) simultaneous torque/stiffness control, results plotted
in black and b) control with fixed torque-stiffness relation (u3,4 = const.),
results plotted in gray. c) Optimal equilibrium point commands, d) spring
pretension, (i.e., the optimal constant values, used in b), corresponds to the
maximal pretension, u3 = u4 = πrad), e) motion, f) torques, and g) time-
varying stiffness profiles. The arm is initialised from a vertical resting con-
figuration. Limits on the control inputs are set to: u1,2 ∈ [−π/12, π/12]rad
and u3,4 ∈ [0, π]rad; q0 = [−π/2, 0]rad.



Fig. 6. a) Stroboscopic view of the optimal throwing motion. The arm is
initialised from a vertical resting configuration. The limits on the control
inputs are set to: u1,2 ∈ [−π/6, π/6]rad and u3,4 ∈ [0, 2π/3]rad;
q0 = [−π/2, 0]rad. b) Ball velocity during the throwing motion. c) Output
mechanical power p = τT ϕ̇. d) Output mechanical energy calculated for: 1)
a compliant actuator ∆E− =

∫ T
0 pdt, 2) an actuator which has no ability to

store energy ∆Eo =
∫ T
0 (1/2)(p+ |p|)dt, and 3) a stiff actuator where both

acceleration and breaking is actively generated ∆E+ =
∫ T
0 |p| dt.

which the velocity of the ball is cyclically increased, and the
output power of the actuators is progressively amplified (see
Fig. 6c).

Implemented on systems with passively compliant actuators,
this energy pumping strategy would be realised by using the
actuators to cyclically accelerate the arm (which corresponds
to positive power), followed by braking the motion by storing
energy (negative power) (see Fig. 6c). This is in contrast to
some of the sophisticated actively controlled VS robots that
have the ability to modulate joint stiffness in software without
actually using passive elements in the design. While temporal
stiffness modulation is feasible, they are unable to realise
energy storage or power amplification during the motion. This
is illustrated in Fig. 6d, where we demonstrate the difference
in the output mechanical energy requirement for the same
throwing motion realised on the present passively compliant
system where energy storage is possible, and other (two)
actuators which does not allow bidirectional power flow, and
as such cannot store energy. As indicated, in Fig. 6d, the output
mechanical energy requirement would be considerably higher
if the system were to be actuated without passive elements.
However, whether the passive compliance mechanism will
significantly improve task performance depends on the system
dynamics, the capacity of the actuator to store energy, but also
the task considered.

V. BALL THROWING EXPERIMENT

In this section, we present a ball-throwing experiment per-
formed with a one-link variable stiffness robot (see Fig. 7a).
Simultaneous torque and stiffness control on this device is
achieved with a MACCEPA actuator. The actuator is realised
using two servomotors (Hitec HSR-5990TG) which are con-
trolled with 50 Hz PWM signals from a micro-controller

(Atmel ATmega328). The joint angle is measured with a rotary
encoder (Melexis MLX90316GO). The experiment is per-
formed with a tennis ball equipped with a small metallic plate.
Using an electromagnet (Magnet-Schultz, GMHX025X00A01
mounted at the end of the moving link, see Fig. 7a) the ball
is held during the movement and released at the final instant.

The optimisation for variable stiffness ball throwing is
performed using w ∈ {0.001, 0.01, 0.012, 0.015}, T = 2.5s,
mb = 0.075kg, with a model of the robot that incorporates a
third-order (linear) electro-mechanical model of the servomo-
tors. The corresponding experimental videos7 demonstrate that
with increasing effort weight the distance thrown decreases
(i.e., d = 2.3m, d = 1.7m, d = 1.4m, d = 0.9m). A similar
trend was predicted numerically for the two link arm (see
Fig. 3).

In Fig. 7 we present: b) the stroboscopic view, c,d) the
command sequences, and e,f) the recorder (and simulated)
joint angle and velocity data for a representative experiment
which corresponds to w = 0.01. As can be seen, in Fig. 7e,f,
there is a good match between the simulation and the data
recorded from the robot, in particular, with respect to the
synchronisation, ensuring near to optimal timing of the ball
release (i.e., at the maximum speed). We note also that these
results were obtained with open-loop execution of the optimal
commands: such a strategy is preferable for fast, explosive
movements in the presence of sensory feedback delays and
motor delays originating from the third-order dynamics of the
servos.

In addition to the above result, we also performed a fixed
stiffness throwing experiment (with optimal constant pre-
tensioning u2 = 1.1rad) for the task defined with w = 0.01,
T = 2.5s, mb = 0.075kg, (see supplementary video). As
predicted in the paper, variable stiffness throwing (d=1.7m)
provided a clear performance benefit compared to the corre-
sponding fixed stiffness case (d = 1.4m). However, unlike
the two-link example (see Fig. 5a,b), the performance gain
with variable stiffness on this one-link experimental device is
relatively modest. This highlights the fact that the benefits of
stiffness variation depend critically on the dynamics and the
actuator utilised. Reflected to the present case, due to space
constraints, the stiffness range in our implementation of the
MACCEPA actuator is relatively small. With larger stiffness
range better exploitation of variable stiffness is expected.

Furthermore, comparing the results in this section with those
predicted for the two-link devices (ref. Fig. 5), it appears that
stiffness variation may play an important role in exploitation
of the interaction-torques (i.e., torques given by C(q, q̇) in
(1)), not present during single joint movements. Exploration
of this effect is part of our future work.

VI. CONCLUSION

In this article, we demonstrate the utility of an optimal control
framework applied to compliantly actuated robotic systems in

7http://homepages.inf.ed.ac.uk/svijayak/pub/braun-RSS2011.wmv



Fig. 7. a) One-link variable stiffness arm. b) Stroboscopic view of the throwing motion. c,d) Optimal control sequences. e,f) Simulated and experimentally
realised trajectories of variable stiffness throw. The geometric and inertial parameters of the robot are: length l = 0.295m, link mass m = 0.2kg, mass of
the ball mb = 0.075kg. The design parameters of the MACCEPA actuator (see Fig.1c) are: κ = 323Nm, r = 0.01m, B = 0.03m and C = 0.13m.

the context of highly dynamic, explosive tasks. Using ball-
throwing as a prototypical example, we have characterised the
optimal strategies in settings with differing task demands, both
in terms of (i) the trade-off between performance and effort
costs, and (ii) changes to the dynamics induced, for example,
by changes to ball mass. In particular, we have seen the
emergence of torque/stiffness profiles that exploit the system
dynamics, often in a non-intuitive way, that would be difficult
to obtain through hand-tuning. Finally, we have presented an
analysis of these results in the light of the energy-storage
ability of compliant actuators, and demonstrated the benefits of
stiffness variation over fixed stiffness, both in simulation and
experiment. In future work, we intend to (i) further validate our
numerical predictions in the context of multi-link throwing,
and (ii) investigate the role of other impedance terms, such as
damping, in the context of optimal explosive movements.

ACKNOWLEDGMENTS

This work was funded by the EU Seventh Framework Pro-
gramme (FP7) as part of the STIFF project. The authors
gratefully acknowledge this support.

REFERENCES

[1] R. M. Alexander and H. C. Bennet-Clark. Storage of elastic strain energy
in muscle and other tissues. Nature, 265:114–117, 1977.

[2] R. Anderson and M. Spong. Hybrid impedance control of robotic
manipulators. IEEE J. Robotics and Automation, 4(5):549–556, 1988.

[3] I. P. Herman. Physics of the Human Body. Springer Verlag, 2007.
[4] N. Hogan. Impedance control: An approach to manipulation. ASME J.

Dyn. Syst., Meas., Control, 107:124, 1985.
[5] J. W. Hurst, J. Chestnutt, and A. A. Rizzi. The actuator with me-

chanically adjustable series compliance. IEEE Trans. Robotics, 26(4):
597–606, 2010.

[6] R. Ikeura, T. Moriguchi, and K. Mizutani. Optimal variable impedance
control for a robot and its application to lifting an object with a human.
In Proc. IEEE Int. W.S. Robot and Human Interactive Comm., 2002.

[7] P. V. Komi. Stretch-shortening cycle. The encyclopaedia of sports
medicine, volume In: Strength and power in sport. Blackwell Scientific,
Oxford, 1992.

[8] W. Li and E. Todorov. Iterative linearization methods for approximately
optimal control and estimation of non-linear stochastic system. Int. J.
Control, 80(9):1439–1453, 2007.

[9] M. Matinfar and K. Hashtrudi-Zaad. Optimisation-based robot compli-
ance control: Geometric and linear quadratic approaches. IJRR, 24(8):
645–656, 2005.

[10] S. A. Migliore, E. A. Brown, and S. P. DeWeerth. Novel nonlinear
elastic actuators for passively controlling robotic joint compliance. J.
Mechanical Design, 129(4):406–412, 2007.

[11] D. Mitrovic, S. Klanke, and S. Vijayakumar. From Motor Learning
to Interaction Learning in Robots: Adaptive Optimal Feedback Control
with Learned Internal Dynamics Models, volume SCI 264. Springer-
Verlag, 2010.

[12] D. Mitrovic, S. Klanke, and S. Vijayakumar. Learning impedance control
of antagonistic systems based on stochastic optimization principles.
IJRR, 30(2):1–18, 2011.

[13] F. A. Mussa-Ivaldi, N. Hogan, and E. Bizzi. Neural, mechanical, and
geometric factors subserving arm posture in humans. J. Neuroscience,
5:2732–2743, 1985.

[14] Y. Nakamura and H. Hanafusa. Optimal redundancy control of robot
manipulators. IJRR, 6(1):32–42, 1987.

[15] W. L. Nelson. Physical principles for economies of skilled movements.
Biological Cybernetics, 46(2):135–147, 1983.

[16] D. Paluska and H. Herr. The effect of series elasticity on actuator power
and work output: Implications for robotic and prosthetic joint design.
Robotics & Auton. Sys., 54:667–673, 2006.

[17] B. Siciliano and O. Khatib. Handbook of Robotics. Springer, 2008.
[18] R. F. Stengel. Optimal control and estimation. Dover Publications, New

York, 1994.
[19] G. Tonietti, R. Schiavi, and A. Bicchi. Design and control of a variable

stiffness actuator for safe and fast physical human/robot interaction. In
IEEE ICRA, pages 526–531, Barcelona, Spain, 2005.

[20] M. Uemura and S. Kawamura. Resonance-based motion control method
for multi-joint robot through combining stiffness adaptation and iterative
learning control. In IEEE ICRA, pages 1543 – 1548, Kobe, Japan, 2009.

[21] R. van Ham et. al. MACCEPA, the mechanically adjustable compliance
and controllable equilibrium position actuator: Design and implementa-
tion in a biped robot. Robotics & Auton. Sys., 55(10):761–768, 2007.

[22] B. Vanderborght, B. Verrelst, R. Van Ham, M. Van Damme, D. Lefeber,
B. M. Y. Duran, and P. Beyl. Exploiting natural dynamics to reduce
energy consumption by controlling the compliance of soft actuators.
IJRR, 25(4):343–358, 2006.

[23] B. Verrelst, R. Van Ham, B. Vanderborght, J. Vermeulen, D. Lefeber,
and F. Daerden. Exploiting adaptable passive behaviour to influence
natural dynamics applied to legged robots. Robotica, 23(2):149–158,
2005.

[24] A. M. Wilson, J. C. Watson, and G. A. Lichtwark. A catapult action
for rapid limb protraction. Nature, 421:35–36, 2003.

[25] S. Wolf and G. Hirzinger. A new variable stiffness design: Matching
requirements of the next robot generation. In IEEE ICRA, pages 1741
– 1746, Pasadena, CA, USA, 2008.

[26] M. Zinn, O. Khatib, B. Roth, and J. K. Salisbury. Playing it safe. IEEE
Rob. & Autom. Mag., 11(2):12–21, 2004.




