
IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 5, OCTOBER 2013 1085
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Abstract—Anthropomorphic robots that aim to approach hu-
man performance agility and efficiency are typically highly redun-
dant not only in their kinematics but also in actuation. Variable-
impedance actuators, used to drive many of these devices, are ca-
pable of modulating torque and impedance (stiffness and/or damp-
ing) simultaneously, continuously, and independently. These actua-
tors are, however, nonlinear and assert numerous constraints, e.g.,
range, rate, and effort limits on the dynamics. Finding a control
strategy that makes use of the intrinsic dynamics and capacity of
compliant actuators for such redundant, nonlinear, and constrained
systems is nontrivial. In this study, we propose a framework for op-
timization of torque and impedance profiles in order to maximize
task performance, which is tuned to the complex hardware and
incorporating real-world actuation constraints. Simulation study
and hardware experiments 1) demonstrate the effects of actuation
constraints during impedance control, 2) show applicability of the
present framework to simultaneous torque and temporal stiffness
optimization under constraints that are imposed by real-world ac-
tuators, and 3) validate the benefits of the proposed approach under
experimental conditions.

Index Terms—Dynamics, optimal impedance control, redundant
robots, variable impedance actuation.

I. INTRODUCTION

MODERN anthropomorphic robots, which aim to ap-
proach human behavior and performance, are highly
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Fig. 1. DLR Hand-Arm System resembles the complexity of a human upper
limb. This device has 26 kinematic degrees of freedom, all driven by variable
stiffness actuators. These actuators incorporate 52 motors.

redundant, not only in their kinematics but in their actuation
as well (e.g., DLR Hand-Arm System [1]; see Fig. 1). Vari-
able impedance actuators (VIAs) [2]–[9], used to drive many
of these devices, are capable of simultaneous torque and pas-
sive impedance (i.e., stiffness and/or damping) modulation as
opposed to more classic actuators on torque controlled robots
[10]. The premise of impedance control [11] and the variable
impedance actuation paradigm is to increase the performance
i.e., dynamic range, agility, and safety of robots [12]–[17]. This,
however, does not come for free. Indeed, VIAs introduce nonlin-
earities by design, employ multiple motors per joint, and assert
important actuation constraints such as range, rate, and effort
limitations, that are often neglected on classical devices. Due to
these reasons, the potential that is offered by variable impedance
actuation may only be exploited if the control problem at hand
is algorithmically treated and if the control redundancy is
optimally resolved in a task specific manner [18]. However,
there are number of challenges to this:

1) First, it is known that the model structure of a compliantly
actuated robot is more complex than that of rigid robots.
As such, it is often nontrivial to find the right represen-
tation of the dynamics that is neither too complex to be
computationally intractable nor too simple to lack validity
with respect to the real physics of the system.

One of the widely used models of elastic-joint robots, with
constant joint stiffness, was derived by Spong [19]. In this
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model, the tradeoff between complexity and physical validity
was balanced by neglecting the inertial coupling between the
motor and the link-side dynamics. This was shown to be viable
under highly geared actuation. If this design condition is not
provided, one may be required to work with a more general
model, as the one introduced by Tomei [20]. There is consider-
able interest in providing extensions for such models for systems
with variable joint elasticity. To this end, there are various for-
mulations that are derived using Spong’s assumption and by
assuming “arbitrarily fast” dynamics of stiffness modulation.

In Section II, we propose a general model for compliantly
actuated robots driven with series-elastic and variable-stiffness
actuators (i.e., SEAs [21] and VSAs [8]) that: 1) incorporates
the inertial coupling between the rigid body and the motor dy-
namics; 2) is valid for (physically and/or geometrically) nonlin-
ear, redundantly actuated systems, and 3) in the case of VSAs,
includes the real dynamics that are associated with stiffness
modulation. As derived, this model generalizes those frequently
used for elastic joint robots, while it also extends represen-
tations of variable stiffness systems recently presented in the
literature [22]–[24]. Based on this model, we propose a physi-
cally consistent minimalistic representation of the dynamics for
optimal control planning. In Section VII, this representation is
tested (and shown to be viable) for complex variable stiffness
robots that perform dynamic movements.

2) Second, it is of interest to find a suitable control strategy
that enables exploitation of the natural dynamics of the
system through utilization of the intrinsic compliance of
the actuators.

The control literature of elastic joint robots that have con-
stant joint stiffness contains various approaches, especially to
the position control problem [25]. Among these are the singu-
lar perturbation-based approaches [26], decoupling-based ap-
proaches [19], [27], backstepping-based schemes [28], and the
passivity-based approaches [29], [30] to mention a few. In
the same context, combined position and stiffness control of
variable stiffness robots is more recently investigated using (a
decoupling-based) feedback linearizion [31], [32]. These ap-
proaches generally combine closed-loop motor position and ve-
locity control with link-side feedback on positions, torques, and
their derivatives. Using the former, one compensates the uncer-
tainties in the motor dynamics, while using the latter, one may
track desired link-side position (and stiffness) trajectories.

In this paper, we assume that the model of the system dy-
namics is reasonably well identified: either using standard sys-
tem identification [33] or online learning [34], [35]. Under this
assumption, we investigate an approach to open-loop elastic
torque and stiffness modulation. In this formulation (see Sec-
tions III and IV), the link-side motion is not preplanned and
tracked in a traditional sense, but instead it is a consequence
of the mechanical properties of the link-side dynamics and the
output of the compliant actuators. This output is provided by
the elastic torques and stiffness that is continuously modulated
through an optimally planned motor program. This motor pro-
gram is implemented through motor position and velocity feed-
back. Accordingly, we employ active feed-back control to gain
robustness with respect to uncertainties in the motor dynam-

ics, while relying on the mechanical feedback at the link-side
dynamics that is provided by the physical compliance of the
actuators.1 It is important to note that using VIAs, this physical
compliance is not fixed but can be optimally modulated dur-
ing the motion. This allows one to fit the intrinsic properties of
the system to the task requirement, that in turn enables better
exploitation of the system dynamics during the movement.

3) Third, it is vital to employ algorithmic methods that can,
in a unified way, treat the nonlinear coupling between
motion, torque, and impedance characteristics inherent to
systems driven with compliant actuators, and that allow
planning impedance control strategies under real-world
actuation constraints.

One way to define the desired impedance is through the op-
timal control formulation, where the control task is encoded
by an objective functional [37]. Using this idea, it was demon-
strated how impedance adaptation can decrease the energy that is
required for movement generation [38] and how impedance op-
timization can be used to enhance safety in human–robot inter-
actions [14]. Along this line of research, the benefit of temporal
impedance optimization, and accordingly impedance modula-
tion during movement, has also been recently investigated [16],
[17], [24], [39]–[41]. In this context, using algorithmic tools was
recognized as especially important since VIAs introduce non-
linear coupling between motion, torque, and impedance char-
acteristics, actuation redundancy (increased dimensionality of
the control inputs), and actuation constraints (range, rate, ac-
celeration limits introduced in Section V). These make heuristic
methods less effective when used in planning and control on
compliantly actuated systems.

In Section VI, we consider planning optimal impedance con-
trol strategies under actuation constraints [42], [43]. While an-
alytical approaches may have limitations for constrained prob-
lems, there are numerical methods that can be effective in this
context [44], [45]. To this end, we provide a systematic treat-
ment of constraints on robotic systems by explicitly embedding
nonlinear state inequality constraints into the dynamics. In this
way, the number of state constraints may either be reduced
or even fully eliminated from the consideration. As a result,
state constraints, that would otherwise require problem specific
derivation and sophisticated computation, become easier to treat
numerically. In Section VII, we demonstrate the viability of this
framework in simulations and hardware experiments. The ma-
terial that is presented in the last two sections is an extended
exposition of our previous work [24].

In summary, we present a model-based constrained optimal
control framework, realizing (variable) impedance control tuned
to the task, and specificity of the system dynamics. The promise
of this framework is: applicability to complex compliantly
actuated robots that perform dynamic tasks under real-world
conditions.

1This is unlike active stiffness control (e.g., [36]) realized through link-side
position feedback on torque controllable devices.
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Fig. 2. Schematic representation of a compliantly actuated robot: θ (motor
positions), τM (motor torques), φ (spring length), τE 2 (motor-side elastic
torques), τE 1 (link-side elastic torques), K (link-side stiffness of the actuators)
q (link positions).

II. MODEL OF A COMPLIANTLY ACTUATED ROBOT

In this section, we present a dynamic model for compliantly
actuated robotic systems. In this model, the classical rigid body
dynamics of the robot is supplemented with the model of the
compliant actuators. These compliant actuators can be SEA [21]
or VSA [8] with no restriction on generality.

A. Robot Dynamics

Consider an n−DOF autonomous robotic system, the config-
uration of which is uniquely specified by q ∈ Rn generalized
coordinates (e.g., joint angles). Let this system be equipped
with m compliant actuators (e.g., SEAs and/or VSAs), and let
θ ∈ Rm (m ≥ n) denote the motor angles reflected through gear
reduction (see Fig. 2). In the remainder of this paper, we refer
to q and θ as link-side and motor-side coordinates, respectively.
Due to standard geometric features, we assume that:
A.1: the rotation axes of the motors and gearboxes are axes

of symmetry and correspondingly they coincide with the
principal axes of inertia.2

Based on (A.1), we next define the kinetic and the gravi-
tational potential energy of the rigid body dynamics and the
dynamics of the motors. In addition, we also define the elastic
potential energy to characterize the elastic torques/forces that
are generated by the actuators. Using these energy functions,
the equation of motion of the compliantly actuated system is
derived through application of the Lagrangian formalism [47].

1) Kinetic Energy: Under assumption (A.1), the kinetic en-
ergy of the considered dynamical system reads

T =
1
2
q̇T M(q)q̇

︸ ︷︷ ︸

T1 1 (q,q̇)

+ q̇T S(q)θ̇
︸ ︷︷ ︸

T1 2 (q,q̇,θ̇)

+
1
2
θ̇

T
Jθ̇

︸ ︷︷ ︸

T2 2 (θ̇)

(1)

where M ∈ Rn×n is the symmetric and positive definite inertia
matrix of the rigid body dynamics (that may in general include
the inertial parameters of the actuators), S ∈ Rn×m represents
the inertial coupling between the rigid body and the motor dy-
namics, while J ∈ Rm×m is a constant and diagonal matrix that
contains the inertia of the motors/gearboxes. In the aforemen-
tioned relation, the inertial coupling between the link-side and
the motor-side dynamics is represented by T12 . This term ex-
ists since the rotational kinetic energy of each motor/gearbox

2This is a standard assumption for models of elastic-joint robots, see [19],
[20], [46] (assumption A.2 in these references).

assembly is not only due to their self-rotation, but also due to
the rotation of the actuators induced by the motion of the robot.

2) Gravitational Potential Energy: Under the assumption
(A.1), the center of the mass of the actuators will not change
due to the self-rotation of the rotors and the gears. This means
practically that the center of mass of the composed system does
not depend on θ. Direct implication of this is that the gravita-
tional potential energy of the entire system only depends on the
configuration of the rigid body dynamics

UG = UG (q). (2)

3) Elastic Potential Energy: In this paper, we consider series
elastic and variable stiffness actuators where:

A.2: the actuator compliance is provided by elastic elements
(i.e., linear and/or nonlinear springs).

Under this (fairly general) assumption, the conservative elas-
tic forces by the actuators can be characterized with a potential
energy function3

UE = UE (q,θ) = −
p

∑

i=1

∫ li (q,θ)

li 0

Fi(s)ds (3)

where li and li0 denote the length and equilibrium length of the
ith spring, while Fi = Fi(li) is the corresponding spring force
Fi(li0) = 0. In the following, we employ (3) to define the elastic
torques that are provided by the compliant actuators.

4) Equation of Motion: Using the Lagrangian formalism,
the equation of motion of the robotic system becomes

[

M S
ST J

][

q̈
θ̈

]

+
[

C Cq

Cθ 0

][

q̇
θ̇

]

+
[

Dq̇
Dθ θ̇

]

+
[

G
0

]

=
[

τE 1
τE 2

]

+
[

0
τM

]

(4)

where the inertia matrix is defined by M = ∂T 2/∂q̇2 , S =
∂T 2/∂q̇∂θ̇, and J = ∂T 2/∂θ̇

2
, while

Cq̇ = C(q, q̇, θ̇)q̇ =
∂2(T11 + T12)

∂q̇∂q
q̇ − ∂T11

∂q
(5)

Cq θ̇ = Cq (q, q̇)θ̇ = −∂T12

∂q
(6)

Cθ q̇ = Cθ (q, q̇)q̇ =
∂2T12

∂θ̇∂q
q̇ (7)

G = G(q) =
∂UG

∂q
(8)

τE 1 = τE 1(q,θ) = −∂UE

∂q
(9)

3If the elastic elements are linear springs, Fi = ki (li − li0 ), then (3) sim-
plifies to

UE (q, θ) =
1
2

(l(q, θ) − l0 )T Ks (l(q, θ) − l0 )

where l(q, θ) = [l1 , l2 , . . . , lp ]T is the length of the springs, l0 = [l01 , l02 ,

. . . , l0p ]T are the equilibrium lengths, while Ks = diag{[ks1 , ks2 , . . . , ksp ]}
is a diagonal matrix that contains the stiffness constants of the springs.
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τE 2 = τE 2(q,θ) = −∂UE

∂θ
(10)

where C ∈ Rn×n , Cq ∈ Rn×m , and Cθ ∈ Rm×n are matrices
that represent the Coriolis and normal inertial forces, Dq̇ ∈ Rn

and Dθ θ̇ ∈ Rm are the forces due to viscous friction (may be
derived using the virtual work principle), G ∈ Rn are the gravi-
tational forces, τE 1 ∈ Rn are the elastic joint torques that affect
the rigid body dynamics, τE 2 ∈ Rm contains the elastic reac-
tion torques, at the input to the actuators, that affects the motor
dynamics, while τM ∈ Rm are the motor torques. Accordingly,
the first term in (4) represents the link-side dynamics, while the
second term corresponds to the motor-side dynamics.

As derived, equation (4) provides a general model of a com-
pliantly actuated robot. In particular, it extends the model of
elastic joint robots that are proposed in [20], since it remains
valid for redundantly actuated systems (i.e., m ≥ n), and is
applicable to robots that have nonlinear and variable joint elas-
ticity. Compared with the model that has been proposed for
variable stiffness robots in [24], (4) accommodates the inertial
coupling between the motors and the link-side dynamics (and
as such it remains valid even if the motor gearing is not partic-
ularly high). Compared with the model that has been proposed
in [23], (4) is derived for compliant actuators with no assumption
on the physical/geometric nonlinearities they introduce to the
system.

III. ON MOTOR POSITION CONTROL OF COMPLIANTLY

ACTUATED SYSTEMS

In this paper, we investigate an approach to feed-forward
elastic torque and stiffness modulation. In this approach, the
elastic joint torques given by (9) and the associated joint stiffness
(defined in Section IV-B) are optimally modulated through a
motor program. This motor program is defined by the desired
motor trajectories that are implemented through closed-loop
control introduced next.

A. Closed-Loop Motor Dynamics

According to the full model (4), (7), and (10), the actuator
dynamics is defined by

Jθ̈ = τM −ST (q)q̈ − Cθ (q, q̇)q̇ − Dθ θ̇ + τE 2(q,θ)
︸ ︷︷ ︸

τ θ (q,q̇,q̈,θ)

(11)

where J = n2Jm , Jm ∈ Rm×m is a diagonal matrix that con-
tains the rotational inertia of the motors and gearboxes (at the
input to the gear reducers), i ∈ {1, 2, . . . ,m}, n2 = diag{n2

i } ∈
Rm×m are the squared gear ratios, while τ θ ∈ Rm denotes the
inertial effects from the link dynamics and the reaction torques
by the compliant elements that affect the actuators.

In order to perform motor position control, we employ the
following control law

τM = −τ̂ θ − n2Km (θ − θd) − n2Bm θ̇ (12)

where the feed-forward component τ̂ θ is the estimate of τ θ

in (11), Km = diag{kmi} ∈ Rm×m , and Bm = diag{bmi} ∈
Rm×m are the user-defined (servo) gains while θd = θd(t) ∈

Rm is the desired motor position. By substituting (12) into (11),
the closed-loop motor dynamics becomes

θ̈ + 2βθ̇ + κ2θ = κ2θe (13)

where β = 1
2 J

−1
m Bm , κ = J−1

m Km , while θe is the motor equi-
librium position defined by

θe = θd + (n2Km )−1Δτ θ (14)

and Δτ θ = τ θ − τ̂ θ . Following the aforementioned relation,
we can define three conditions under which the actuator dynam-
ics may not be (significantly) affected by link-side motion [i.e.,
state dependent torques included in τ θ , see (11)]. Indeed, if
C.1 the inertial torques and the elastic reaction torques are well

identified: τ̂ θ ≈ τ θ ⇒ Δτ θ ≈ 0;
C.2 the motors operate through high gear reduction:

min{n1 , n2 , . . . , nm} � 1;
C.3 the control torques (12) are realized with high position

gains: min{km1 , km2 , . . . , kmm} � 1;
then the last term in (14) becomes negligible i.e., θe ≈ θd(t)
and the actuator model, (13) and (14), simplifies to

θ̈ + 2βθ̇ + κ2θ = κ2θd . (15)

The first condition (C.1) requires precise system identification
of the motor-side dynamics that may or may not be provided.
On the other hand, high gear reduction (C.2) is often used on
robotic systems, and a high position gain (C.3) is a standard
attribute of any servo-control system. Accordingly, we assume
that at least one of the latter two conditions is satisfied, and
as such (15) is a valid representation of the closed-loop motor
dynamics.4

Regarding the choice of the parameters in (15) we note that:
1) critical damping, i.e., β = κ leads to the fastest response
without overshoot; and 2) servo-control, i.e., ∀κi � 1, leads to
θ ≈ θd independent of the specificity of the motor side dynam-
ics (11). In Sections VI-A and VI-E, we will invoke both of
these arguments to ensure that the constraint consistent motor
program θd leads to optimal constraint consistent motor trajec-
tories θ, irrespective of the motor-side dynamics (11).

It is of interest to note at this point that highly geared motor
units (C.2) and/or servo-control (C.3) do not cancel out the in-
trinsic link-side dynamics of the robot on compliantly actuated
systems. This is because the compliance of the (SE and VS)
actuators effectively decouples the link-side from the motor-
side dynamics. This is in contrast with rigid actuators, where
bandwidth limitations on the servo-controlled motor dynamics
directly limits the speed/acceleration of the link-side motion.
Moreover, this decoupling is the reason why identification of
the link-side dynamics, i.e., the first equation in (4), is easier
on compliantly actuated systems than on their rigidly actuated
counterparts.5 This makes adequate system identification and

4This argument holds (under C.2 and/or C.3) even if no model-specific feed-
forward torque is included in the control law (12) (i.e., τ̂θ ≡ 0).

5This is because the nonlinear (and possibly nonsmooth) frictional terms, that
are difficult to model and identify, are decoupled from the link-side dynamics
by the intrinsic compliance of the actuators.
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correspondingly feed-forward elastic torque/stiffness modula-
tion viable on series elastic and variable impedance systems
e.g., [18], [24].

IV. MODEL OF A COMPLIANT ACTUATOR

In this section, we propose a general representation of com-
pliant, series elastic, and variable stiffness actuators, where the
motor positions are the control inputs while the elastic joint
torque and the joint stiffness are the actuators output. Here we:
1) define the torque and stiffness characteristics of these actu-
ators; 2) identify the necessary and sufficient conditions that
make independent torque and stiffness modulation viable; and
3) introduce the fundamental smoothness conditions inherent to
compliant actuated systems.

A. Torque Characteristic of the Actuators

According to (9), using the motor side positions θ as inputs

τE 1 = τE 1(q,θ) (16)

provides the elastic joint torques as actuator outputs.6 The state
(i.e., q) dependence of this static torque characteristic is due
to the passive elasticity, built into the actuators, and not due
to active feedback [36]. By setting a constant motor position
θ = c, (16) defines the passive torque characteristic of the actu-
ators, τ c(q) = τ (q, c), while by changing the motor positions,
θ = θ(t), these passive mechanical characteristic are actively
modulated. In order to do this, however, the actuators should be
torque controllable. A necessary condition for torque controlla-
bility is provided if the number of motor inputs is at least equal
to the number of torque outputs (i.e., m ≥ n), while a sufficient
condition is given by

d = det

(
[

∂τ

∂θ

] [

∂τ

∂θ

]+
)

	= 0. (17)

It may be of interest to note that this condition is state depen-
dent, and that real VSAs may have singular regions in their
work space, where torque controllability is not provided. While
this can lead to reduced control authority, it may not adversely
affect the present feed-forward scheme since we do not use the
inversion of (16) in the implementation.

B. Stiffness Characteristic of the Actuators

By definition, stiffness relates the torque response to position
perturbation. In this light, the output stiffness of the actuators
K ∈ Rn×n , that is, the stiffness of the actuators seen by the
rigid body dynamics, is given by

K = K(q,θ) = −∂τ

∂q
. (18)

By analogy with the previous section, one can define the de-
sign specific (often highly non-linear) passive stiffness char-
acteristics of the actuators by fixing the motor positions,

6For notational convenience, we drop the index in the aforementioned equa-
tion, such that τ = τE 1 will denote the elastic joint torques in the remainder
of this paper.

Kc(q) = K(q, c). On the other hand, using time-dependent
motor positions, the actuator stiffness and torque can be simul-
taneously modulated, although they may not be independent.
Independent modulation of τ (q,θ) and K(q,θ) through θ(t)
is, however, one of the key attributes of variable-stiffness actu-
ators. The necessary condition to achieve that is provided by
actuation redundancy (i.e., m > n), while a sufficient condition
is given by

r = rank

(
[

∂k
∂θ

]
(

I −
[

∂τ

∂θ

]+ [

∂τ

∂θ

]
))

	= 0 (19)

where k = vec(K) ∈ Rn2
is the column vectorized stiffness

matrix, I ∈ Rm×m is an identity matrix, while (∗)+ denotes the
Moore–Penrose generalized inverse of (∗) (see [48]).

Practically, (19) ensures that the motor positions that can-
not affect the joint torques, can be used to modulate the joint
stiffness. It is important to note that (19) is not sufficient to mod-
ulate all components of the stiffness matrix. Indeed, the number
of components that can be independently modulated through
θ is defined by r. It is also important to recognize that the
above condition is not satisfied for series elastic actuators (i.e.,
m = n ⇒ I − (∂τ/θ)+(∂τ/θ) ≡ 0), while it must be satis-
fied, at least for some portion of the work space, for variable
stiffness actuators.

C. Fundamental Smoothness Conditions

When the smoothness properties of the link and the motor-
side positions,7 i.e., θ(t) ∈ C1 and q(t) ∈ C2 are reflected
through the actuators,8 the output torque and stiffness character-
istics admit the following continuity and smoothness conditions
as functions of time:

τ (q(t),θ(t)) ∈ C1 and K(q(t),θ(t)) ∈ C0 . (20)

The previous two conditions may be seen as fundamental
smoothness requirements that are asserted by general princi-
ple of dynamics to a general class of compliant actuators that
admit continuously differentiable torque-angle characteristic9

(16).
It is of interest to note here that exact link-side position and

stiffness tracking on variable stiffness systems is only possible
if the desired position/stiffness trajectories are at least four/two
times differentiable, respectively (see [32]). Compared with
(20), such a tracking scheme requires stronger conditions, i.e., an
actuator that provides a two-times continuously-differentiable
stiffness-angle relationship K(q,θ) in addition to motor-side
positions θ(t) ∈ C2 generated by continuous motor torques.

7Cs denotes the set of all s-times differentiable functions.
8Here, we assume that the motor positions may be generated by piecewise-

continuous motor torques that leads to continuously differentiable motor po-
sitions. This assumption asserts that the dynamics in the electrical domain
associated with the motor-torque control is negligible on the time scale rele-
vant in mechanical domain. This assumption is accepted here since it leads to
the weakest continuity requirement that is physically justified in the present
investigation.

9While it is possible, in principle, to design actuators that have nondiffer-
entiable torque-angle characteristic (in which case the stiffness K = −∂τ/∂q
may not be well defined) such designs are not considered here.
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On the other hand, torque and stiffness control may be in-
stantaneous with respect to the time-scale relevant to the rigid
body dynamics on noncompliant actuators. Accordingly, a sim-
ilar condition to (20) does not restrict active impedance con-
trol on robots driven with (torque controllable) noncompliant
actuators [36].

V. ACTUATION CONSTRAINTS

Conditions (17) and (19) may be seen as design constraints,
while (20) provides fundamental physical constraints. There
are, however, additional constraints that also restrict the output
torque and stiffness of compliant actuators. In the following, we
introduce these actuation constraints.

A. Constraints on the Motor Trajectories

Regardless of whether the system is compliantly actuated or
not, the motor trajectories are subject to inequality constraints
due to range, rate, and acceleration limits posed by their servo-
controlled dynamics. The admissible set of trajectories subject
to these constraints can be defined by

Θ = {θ ∈ C1([0, T ],Rm ) : θm � θ(t) � θM

|θ̇(t)| � θ̇M , |θ̈(t)| � θ̈M } (21)

where θm and θM , (θm ≺ θM ) denote the lower and the upper
bounds on the motor positions, while θ̇M and θ̈M (0 ≺ θ̇M , 0 ≺
θ̈M ) are the achievable maximal velocities and accelerations,
respectively. To be physically realizable, the motor trajectories
should adhere to these limitations: θ(t) ∈ Θ.

B. Deformation Limits on the Compliant Elements

In addition to the aforementioned constraints, series elastic
actuators and variable stiffness devices may also posses nonlin-
ear state inequality constraints, due to limits on the deformation
of the compliant elements. The admissible set of the actuator
positions that are associated with these constraints is formally
defined by

Φ = {φ ∈ C1(Rn ×Rm ,Rm ) :

φm (θ) � φ(q,θ) � φM (θ)} (22)

where φ denotes the quantities (e.g., length of the springs [see
Fig. 2)] to be constrained during the motion, while φm and
φM (φm ≺ φM ) define, the possibly state-dependent, lower
and upper bounds.

It is noteworthy that violation of these constraints would not
only lead to behavior that considerably differs from the planned
one, but it would permanently damage the actuators.10 Accord-
ingly, enforcing the aforementioned constraints, φ(q,θ) ∈ Φ
may often be prioritized in real-world applications.

10In this case, the moving elements in the actuators would run into hard stops
and/or the compliant element (spring) would be operated in the plastic region,
and as such permanently deformed.

VI. OPTIMIZATION UNDER ACTUATION CONSTRAINTS

Here, we present an optimal control formulation and an ap-
proach to trajectory optimization to plan control strategies best
suited to the dynamics and the specificity of the task considered.
Using this approach, we can systematically treat the complexity
(i.e., nonlinearity, redundancy, and constraint) inherent to com-
pliantly actuated robots. While finding control programs, i.e.,
desired motor trajectories (and the associated torque and pas-
sive impedance) under actuation constraints poses significant
challenges, the present formulation is able to deal with this in a
systematic way, without problem specific derivation or difficult
computation.

In the following, we: 1) derive a minimalistic (physically
consistent) model for compliantly actuated robots; 2) introduce
the treatment of constraints; 3) propose an optimal control for-
mulation; and finally 4) define the optimal motor program for
hardware implementations.

A. Minimalistic Model for Optimization

In this section, we assume that conditions (C.2) and (C.3),
stated in Section III-A, apply. Consistent with the former con-
dition is Spong’s assumption by which

A.3: the inertial coupling between the motor-side and the link-
side dynamics is negligible, i.e., T12 ≈ 0
in (1), see [19].

Under (A.3) the following simplifications apply [see (1), and
(5)–(7)]:

S ≈ 0,C = C(q, q̇),Cq ≈ 0,Cθ ≈ 0. (23)

As a consequence, the original equation (4) supplemented with
the control law (12) reduces to

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + G(q) = τ (q,θ) (24)

θ̈ + 2κθ̇ + κ2θ = κ2θd (25)

where (25) resembles a critically damped11 closed-loop motor
dynamics (15), where β = κ (see Section III-A). We note that
if the gear reduction is not particularly high [i.e., (A.3) does
not apply] one should complement the link-side dynamics (24)
with additional inertial terms indicated by (4). On the other
hand, the validity of (25) is not conditioned on highly geared
actuation as long as high-gain servocontrol is employed (see
Section III). The purpose of this latter equation is to plan for
realizable (smooth enough) motor trajectories, i.e., θ that are
consistent with the constraints. In this paper, we consider (24)
and (25) to be a minimalistic representation of (4)–(10), which
ensures the fundamental continuity conditions (20) for any, at
least, piecewise-continuous desired trajectory θd .

11It may be important to note here that assuming critical-damped closed-loop
motor dynamics is not restrictive. This is partly because critical damping is
often preferred in trajectory tracking schemes (especially for systems driven be
compliant actuators), but also because the subsequent results, that depend on
this assumption, can be generalized to overdamped systems (i.e., β 
 κ).
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B. Treatment of Constraints

While incorporating the constraints (21) and (22), into the
optimization is vital, numerical treatment of them is nontriv-
ial. Indeed, solving an optimal control problem with state in-
equality constraints is often computationally demanding and
complicates the numerical treatment (see Section IX). More-
over, excessive application of constraints makes the associated
formulation more susceptible to local-minima issues. Finding
an optimal solution to such a formulation is known to be diffi-
cult. Therefore, the reduction of the number and complexity of
the constraints is often preferred in practice. Here, we address
this issue by replacing nonlinear state inequality constraints
with canonical control constraints that are easier to treat nu-
merically. To achieve this, we present a differential-algebraic
transformation that enables us to explicitly embed number of
inequality constraints as hard constraints (i.e., constraints that
cannot be violated) into the dynamics.

1) Transforming the Constraints: Let us now consider a set
of user defined nonlinear inequalities

Ψ = {ψ ∈ C1(Rn ×Rm ,Rm ) :

ψm (θ) � ψ(q,θ) � ψM (θ)} (26)

where Ψ denotes the admissible set of quantities ψ ∈ Rm (e.g.,
including motor positions θ and/or spring lengths φ) to be con-
strained during the motion, while ψm ≺ ψM are the associated
(possibly state-dependent) lower and upper bounds. We assume
that these bounds are also continuously differentiable functions
of their arguments.

In a special case when ψ = θ, (26) reduces to the range
constraints on the motor positions, while in the other extreme
case when ψ = φ(q,θ), (26) would reduce to (22). To embed
these constraints into the dynamics, we may proceed in the
following way:

1) define a canonical input set12

Zd = {zd ∈ PC([0, T ],Rm ) : 0 � zd � 1} (27)

2) then introduce a set of canonical state variables

zi =
ψi − ψim

ψiM − ψim
(28)

3) finally generate z = [z1 , z2 , . . . , zm ]T through a second-
order critically damped differential equation

z̈ + 2αż + α2z = α2zd (29)

where ∀i ∈ {1, 2, . . . ,m}, αi > 0, α2 = diag{α2
i } and

zi(0) ∈ [0, 1] is defined by (28) based on the initial state
of the system.

This differential-algebraic transformation, (28) and (29), pro-
vides constraint consistent state output for any admissible con-
trol input

∀zd ∈ Zd ⇒ ψ ∈ Ψ. (30)

It may be of interest to recognize that this transformation is not
problem specific, but its application requires one parameter α to

12P C([0, T ],Rm ) denotes a set of piecewise continuous functions mapping
[0, T ] to Rm .

be set for every embedded constraint; this is detailed in Sections
VI-C1 and VI-C2.

2) Computing the Motor Trajectories: One of the main ques-
tions regarding the proposed transformation is how to include
the new state variables z into the dynamics (24) and (25). To
this end, we consider (28) to be a coordinate transformation that
relates z with θ and q through the following relation:

Ψ(q,θ, z) = 0 (31)

where Ψ(q,θ, z) := ψ(q,θ) − diag(ψM (θ) − ψm (θ))z −
ψm (θ). Using (31), we may find the motor trajectories θ as
functions of the canonical states z (and q). Indeed, according
to the implicit function theorem [49], one can (at least locally)
define the following inverse mapping of (31)

θ = Ψ−1
θ (q, z) (32)

for every (q, z) for which ∂Ψ/∂θ ∈ Rm×m is a full-rank
matrix. i.e.,

det(∂Ψ/∂θ) 	= 0. (33)

In addition, as long as ψ, ψm , and ψM are continuously dif-
ferentiable with respect to their arguments (as assumed), the
same is true for the inverse mapping Ψ−1

θ (q, z), and the motor
trajectories θ that are computed using (32).

It is important to note that fulfillment of (33) depends on the
constraints. In particular, if (26) represents the constraints on
the motor trajectories, the inverse mapping Ψ−1

θ exist uncondi-
tionally (this is the case for the model of the two-link arm driven
by mechanically adjustable compliance and controllable equi-
librium position actuators (MACCEPAs) used in Section VII-B
[see also Section VI-C1)]. It is also important to point out that
the proposed scheme favors constraints that admit an analyti-
cal representation of Ψ−1

θ and as such explicit computation of
the motor trajectories [as in the model of the DLR Hand-Arm
System used in Section VII-C (see also Section VI-C2)]. When
this is not possible, one may employ Newton’s method [50] to
solve (31) for θ directly. As long as the inverse mapping is well
defined, i.e., (33) holds, the associated iterative computation can
be well initialized and reliably solved with little computational
effort.13

Finally, we note that the number of state inequality constraints
that can be treated in this way is defined by the number of
control inputs (motor positions) m. In the case when only the
motor position are constrained, this allows full embedding of
the constraints (discussed in Section VI-C1). In the case when
deformation limits are also present, the proposed embedding
can be used to reduce the number of constraints to be treated
by a complementary approach. We note that in such a case, the
proposed embedding may be employed on the complex defor-
mation limits (22) that are vital to be enforced, while leaving
the simpler motor position constraints to be treated separately
(as exemplified in Section VII-C).

13This is because one can effectively initialize Newton’s method for the
computation of the motor positions θ(tn +1 ) using the nearby solution for the
previous time step θ(tn ), since θ = θ(t) defined by (32) is a continuously
differentiable function.
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C. State-Space Representation

Let us now formally introduce the state vector and the control
inputs as

x =

⎡

⎢

⎣

x1
x2
x3
x4

⎤

⎥

⎦ =

⎡

⎢

⎣

q
q̇
z
ż

⎤

⎥

⎦ , u = zd (34)

where x ∈ R2(n+m ) and u belongs to a canonical box-
constrained set

U = {u ∈ PC([0, T ],Rm ) : 0 � u � 1}. (35)

Using this notion, the state-space representation of the original
constrained system (24)–(26) becomes

ẋ = f(x,u)

f =

⎡

⎢

⎣

x2
−M−1(x1)(C(x1 ,x2)x2 +Dx2 +G(x1)−T(x1 ,x3))

x3
−2αx4 − α2x3 + α2u

⎤

⎥

⎦

(36)

where T = T(x1 ,x3) denotes the actuator torques that are ex-
pressed through the new state variables

T = T(x1 ,x3) = T(q, z) = τ (q,Ψ−1
θ (q, z)). (37)

Taking these together, the proposed formulation is fully speci-
fied with (36) and (37), where the control inputs are restricted
with the simplest set of inequality constraints (i.e., canonical
box-constraints) e.g., (35), but it does not involve any state in-
equality constraints e.g., (26).

In order to employ this formulation, however, one must define
one parameter for every embedded constraint α = diag{αi}.
If these parameters are positive, ∀αi > 0, then the range con-
straints (26) cannot be violated.14 In the following, we give
a physical interpretation of α, and discuss how to select this
parameter in two important practical cases of interest.

1) Embedding Bandwidth Limitations on the Motor Dynam-
ics: Let us now assume that, for a given actuator, there are no
complex state inequality constraints (e.g., there are no limita-
tions on the elastic deformation of the springs), or even if such
limits exist, they are not expected to be violated during the mo-
tion.15 In that case, any admissible motor trajectory must obey
the range, rate, and acceleration limits given by (21)

θ ∈ Θ. (38)

Using the formulation in the previous section, we can enforce
the associated range limits θm � θ � θM , by setting

a) ψ = θ, ψm = θm , ψM = θM .
In this case, the inverse mapping (32) can be explicitly defined

θ = Ψ−1
θ (z) = diag(θM − θm )z + θm . (39)

14This follows directly from u ∈ U ⇒ 0 � x3 = z � 1 and (28).
15This assumption may be ensured through design as is done for our two-link

variable stiffness robot introduced in Section VII-B.

Direct implication of this relation is that, for a critically damped
motor dynamics, α coincides with the position gains κ in (25).
Accordingly, we can ensure that not only the range constraints
but also the bandwidth limits that are associated with the rate and
acceleration constraints |θ̇| � θ̇M and |θ̈| � θ̈M are satisfied by
choosing

b) αi ∈ (0, αiM ], ∀i ∈ {1, 2, . . . ,m} where

αiM = e × min

⎧

⎨

⎩

θ̇iM

θiM − θim
,

√

θ̈iM

θiM − θim

⎫

⎬

⎭

. (40)

Note that embedding the velocity and acceleration limits is
indeed possible in this way since αM represents the maximal
position gains that guarantee (21), under piecewise-continuous
inputs u ∈ U . Regarding the choice of αi , we note that any
αi ∈ (0, αiM ] would ensure (21), however, αi = αiM would
lead to the best exploitation of the motor-side dynamics and
as such it may be preferred in practice.16 It is noteworthy that
under conditions a) and b) introduced in this section, the formu-
lation (34)–(37) reduces to the one proposed in [18]. For further
application of this formulation, see [41].

2) Embedding Deformation Limits on the Elastic Elements:
Let us now consider another case when the length of the springs
in the actuators have to be constrained during the motion. In this
case, we may require

φ(q,θ) ∈ Φ. (41)

Using the proposed formulation (35)–(37), the aforementioned
restriction can be ensured by setting ψ = φ(q,θ). In that case,
the canonical states z represent the normalized spring lengths

φ(q,θ) = diag(φM (θ) − φm (θ))z + φm (θ). (42)

The inverse mapping θ = Ψ−1
θ (q, z), that solves this relation

for θ, is in general link-side position dependent and may be
hard to define explicitly. A notable exception to this is when
the spring length is a linear function of a motor-side position.
For example, φi = θi − qi as in elastic joint robots or in the
model of the DLR hand-arm system (see Section VII-C). In
such cases, the motor positions can be explicitly defined: θi =
ψ−1

θ (qi, zi) = qi + (φiM − φim )zi + φim (as long as φiM and
φim do not depend on θi).

Regardless of whether one can explicitly compute the motor
trajectories, the dynamics that are associated with z [third and
fourth lines in (36)] defines the dynamics of the normalized
spring motion. The physical implication of this is that, here α
limits the bandwidth of the entire system (i.e., link-side and
motor-side dynamics), and as such it cannot be used to embed
the bandwidth limitations on the actuators alone. In this light,
the velocity and acceleration limits |θ̇| � θ̇M and |θ̈| � θ̈M

16It is also noteworthy that αiM computed from (40) often turns out to
be conservative. There are two main reasons to this. One is because αiM is
calculated assuming a maximal step response command θiM − θim , although
this may not be the usual command in practice, while the another is because
real servo-systems are often deliberately pushed to saturation to improve their
tracking performance compared with an unsaturated ideal linear servo model
[51]. Due to these reason one may chose αi > αiM as long as this does not
jeopardize the tracking accuracy.
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cannot be embedded into the formulation, in a way described
in the previous section, and as such remain to be treated by a
complementary approach. In Section VII-C, we illustrate this
through simulations and a practical application.

D. Optimal Control Problem

In order to define optimal control strategies for compliantly
actuated robots, we consider the following control problem. For
a given finite time interval t ∈ [0, T ], and for a given initial state
of the system x(0) = x0 , find the control inputs u that minimize
the optimization criterion defined by

J = h(T,x(T )) +
∫ T

0
c(t,x(t),u(t))dt (43)

where J ∈ R is the cost functional, h(T,x(T )) ∈ R is the ter-
minal cost, while c(t,x,u) ∈ R is the running cost used to
encode the control objectives into the formulation [52]. This
minimization problem is restricted with the plant dynamics

ẋ = f(x,u) (44)

and the control constraints (i.e., canonical box-constraints)

u ∈ U (45)

defined by (35)–(37).
In this paper, we employ the iLQR framework [53] in or-

der to find the optimal solutions x∗ = x∗(t) and u∗ = u∗(t)
for the constrained optimal control problem defined by (43)–
(45). A discussion on alternative methods to solve this problem
is provided in the Appendix. In the following, we show how
to compute the desired motor trajectories required in practical
implementations, once the optimal state trajectories are found.

E. Computing the Desired Motor Trajectories

If the constraints on the actuators (21) are incorporated into
the formulation, the motor trajectories computed by (32), i.e.,
θ∗ = Ψ−1

θ (q∗(t), z∗(t)) = Ψ−1
θ (x∗

1(t),x
∗
3(t)), will be within

the bandwidth of the actuators. This means that by using servo-
control on the motor side [see (15) or (25)], with optimal desired
trajectories computed by

θd = Ψ−1
θ (q∗(t), z∗(t)) = Ψ−1

θ (x∗
1(t),x

∗
3(t)) (46)

will ensure that the real motor positions θ closely follow the
corresponding optimal motion θ∗, i.e.,

θ ≈ θd = θ∗. (47)

It is noteworthy that this argument does not rest on the linearity
of the closed-loop controlled motor dynamics. As such it re-
mains valid, even if the servosystem is deliberately pushed into
saturation to provide better tracking performance [51].

VII. APPLICATION

In this section, we provide numerical simulations and hard-
ware experiments to demonstrate the viability of the proposed
optimal control formulation. These simulations and experiments
involve two redundantly actuated variable stiffness robots,
specifically:

1) the two-link robot [18], shown in Fig. 3(a), driven by
MACCEPAs [54] [see Fig. 3(b) and (c)];

2) the integrated DLR hand-arm system (HASy) [1], shown
in Fig. 7, equipped with variable stiffness floating spring
joints (FSJ) [7] [see Fig. 5(a) and (b)].

The purpose of the presented numerical study is to illus-
trate the effect of the actuation constraints on robotic systems
driven by compliant actuators. The purpose of the hardware
experiments is to demonstrate the viability of the constraint em-
bedding method and the proposed optimal impedance control
planning under real-world conditions.

A. Control Task

The following investigation involves a ball throwing task.
This task is associated with fast movements, where exploitation
of the full capacity of the actuators, under given constraints, is
important to improve task performance (i.e., distance thrown).
Within the framework of optimal control, ball throwing is rep-
resented with the following objective functional (see [18]):

Jt = −d +
1
2

∫ T

0
(w‖F‖2 + ε‖u‖2)dt (48)

where T is the time permitted to task execution, d =
d(q(T ), q̇(T )) is the distance thrown, F = F(q,θ) is the spring
force, u is the control input while ‖ ∗ ‖ denotes the Euclidean
norm.

Here, we consider a predominantly distance maximization
task characterized with small effort penalization (i.e., w → 0),
and a small regularization term (i.e., 0 < ε � 1) that makes the
objective explicitly control-dependent and the control problem
nonsingular. It is important to note that the optimal strategy
should adhere to the actuation constraints (21) and (22), since
it will only be physically realizable if these constraints are sat-
isfied.

B. Two-Link Variable Stiffness Robot

The variable stiffness robot, shown in Fig. 3, has two kine-
matic DOFs, and is equipped with two VSAs driven with
four motors. The configuration of this system is defined with
the corresponding joint angles q = [q1 , q2 ]T and motor angles
θ = [θ1 , θ2 , θ3 , θ4 ]T . One of the motors in each VSAs (θ1 and
θ2) changes the joint equilibrium, while the another (θ3 and
θ4) modulates the passive joint stiffness. In Fig. 3(c)–(e), we
show the actuation mechanism, and the torque-angle and torque-
stiffness characteristics of these actuators.

1) Simulation and Experimental Results: In Fig. 4(a) and
(b), we show the effect of the actuators range and rate (band-
width) limitation on the optimal control strategy. It can be rec-
ognized that using larger stiffness range θ3,4 ∈ [0, π/2]rad and
fast (high-bandwidth) actuators for stiffness modulation α3,4 =
5[
√

10,
√

10]s−1 , instead of small ranges θ3,4 ∈ [0, π/4]rad and
slow (low-bandwidth) actuators α3,4 = 5[1, 1]s−1 , not only af-
fects the systems performance, but it can also qualitatively mod-
ify the stiffness control strategy. Specifically, when the actuators
are slow, active modulation of the torque-stiffness characteris-
tics of the joints appear not to be beneficial [see gray lines in
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Fig. 3. (a) Two-link variable-stiffness robot. (b) and (c) Variable-stiffness actuator. The physical parameters of this system are given in [18]. (d) Torque-angle
curves. (e) Torque-stiffness curves. Each of these curves define the passive torque-stiffness characteristic of the joint corresponding to constant stiffness commands
θ3 = c (see Sections IV-A and IV-B). By changing the equilibrium point θ1 = θ1 (t) but keeping the pretension commands fixed θ3 = c, one can move along these
passive isocurves in the torque-stiffness plane. However, by changing the pretensioning continuously in time θ3 = θ3 (t), one can also modify these curves during
the movement. This ability to actively modify the passive torque-stiffness characteristics of the joint allows simultaneous torque and stiffness modulation. Note
that by keeping θ3 = c, this VSA becomes a series elastic actuator that has: 1) nonlinear torque-angle characteristic; and 2) fixed torque-stiffness characteristic
regardless of θ1 = θ1 (t). This means that under θ3 = c, this actuator cannot provide independent torque and stiffness modulation. This can be easily verified
using (19). On the other hand, by fixing θ1 = c but changing θ3 = θ3 (t), the actuator can generate different torque-stiffness characteristics, but it may not be able
to generate any output torque, e.g., if θ1 = q1 . This may be verified using (17).

Fig. 4. Ball throwing using: (a, a1, a2) actuators having large stiffness range θ3 ,4 ∈ [0, π/2]rad and high bandwidth α = 5diag([1, 1,
√

10,
√

10])s−1 (black
lines) or low bandwidth α = 5diag([1, 1, 1, 10])s−1 (gray lines); (b, b1, b2) actuators having small stiffness range θ3 ,4 ∈ [0, π/4]rad and high bandwidth
α = 5diag([1, 1,

√
10,

√
10])s−1 (black lines) or low bandwidth α = 5diag([1, 1, 1, 1])s−1 (gray lines). Limits on the motor positions (depicted with dashed

red lines) are set to: θ1 ,2 ∈ [−2π/5, 2π/5]rad. Practical implementation of the optimally planned motor program, corresponding to high-bandwidth and large
stiffness range actuators [see Fig. 4(a)—black line], is demonstrated in the supplementary material. For further experiments on this system (and a similar one-link
device) [see [18] and [16] respectively].



BRAUN et al.: ROBOTS DRIVEN BY COMPLIANT ACTUATORS: OPTIMAL CONTROL UNDER ACTUATION CONSTRAINTS 1095

Fig. 5. (a) DLR floating spring joint [7]. (b) Schematic representation: q1 is the joint angle, θ1 is the motor angle that is associated with the equilibrium position
of the virtual rotational joint spring, φ1 = θ1 − q1 is the length of the virtual spring, while θ3 is the motor angle that is associated with the stiffness of this spring.
(c) Deformation limit of the spring give rise to nonlinear (stiffness command dependent) inequality constraints: φ1m (θ3 ) ≤ φ1 ≤ φ1M (θ3 ). (d) Torque-angle
characteristics. (e) Torque-stiffness characteristics. Note that, by setting θ3 = c, the DLR-FSJ behaves as a nonlinear spring with controllable joint equilibrium
angle θ1 , while by setting θ1 = c, it becomes a joint that could have different stiffness properties depending on θ3 . It is of practical interest to recognize that a
single torque-stiffness curves indicates that the actuator is not capable of independent torque/stiffness modulation (i.e., SEA), while multiple curves (that enclose
a region in the torque-stiffness plane [see Fig. 3(e) and Fig. 5(e)] indicate that independent torque/stiffness modulation is viable (i.e., VSA). Accordingly, visual
inspection of the torque-stiffness characteristics may be used as an alternative to the analytical condition (19).

Fig. 4(a2) and (b2)], as opposed to the case when the same task is
realized with actuators capable of fast stiffness modulation [see
black lines in Fig. 4(a2) and (b2)]. Moreover, when the stiffness
range is smaller, the difference between variable and constant
stiffness control becomes less apparent. These results illustrate
the crucial effects of various actuation constraint on optimal
(impedance/stiffness) control strategies and support our claim
by which these constraints are vital to be considered during
control planning.

2) Discussion: It is clear that having a limited stiffness
range, the benefit that is provided by variable stiffness optimiza-
tion compared with constant stiffness control, may be negligible
(e.g., see (26) in [39]). It is however less obvious that the limi-
tation on the speed of the stiffness modulation can significantly
impact the effect of variable stiffness control in dynamic tasks.
At the extreme, optimal stiffness control may predict that active
stiffness modulation is not beneficial if the speed of this modula-
tion is slow compared with the dynamics of the movement [18].
This is to say that the optimal strategy is not only task specific
(i.e., that relates to the objective functional), or specific to the
rigid body dynamics (that relates to the first equation in (4) [or
(24)]), but it can significantly depend on the actuator dynamics
(second equation in (4) [or (25)]) and the actuation constraints
i.e., (21) and (22). Due to this reason, there is an obvious danger
that the actuator dynamics (when slow) filters out a stiffness
modulation that may be intuitively expected for a given task,
but also that some actuator-specific stiffness control feature are
mistakenly attributed as task induced.

There are important implications of this to: 1) new compli-
ant actuator designs; and 2) interpretations concerning human
impedance control. Regarding actuator designs, it becomes ap-
parent that not only the range but also the dynamics (i.e., band-
width) related to stiffness modulation needs to be part of the
design specification. This is especially important for dynamic
tasks, where stiffness modulation must be fast enough to be-
come relevant on the time scale set by the task and the link-side
dynamics. If this condition is not met, the benefit that may come
from simultaneous torque and impedance modulation will be
lost. Accordingly, just because a variable impedance actuator is

capable of torque and impedance modulation, it does not mean
that this feature will be beneficial. This could be due to the task
itself, characteristic of the link-side dynamics, but also due to
the constraints imposed by the actuators. We note that while
high-bandwidth actuation may not be vital in static tasks [55], it
becomes important and highly relevant in dynamic tasks. This
should be taken into account when interpreting human stiff-
ness (impedance) control strategies that is subject to realistic
biological (e.g. muscle-tendon) bandwidth-limitations [56]. Re-
garding this last point, we note that care should also be taken
when transferring experimental observations from humans to
robots or vice versa [57]. This is because impedance strategies
by humans are subject to inherent bandwidth limitations of the
muscle-tendon system and as such, may not contain important
task-specific features that could be utilized by robots equipped
with fast actuators. This is to say that biological control strate-
gies could be very different from those optimal for robots (even
if both are obtained through optimization of the same objective
functional).

C. DLR Hand-Arm System

The DLR-HASy is a state-of-the-art variable stiffness robot
that resembles the complexity of a human upper limb (see
Fig. 7). For the purpose of the present investigation, the simu-
lation/experimental results conducted with this device, are re-
ported in the sagittal plane, namely the shoulder and elbow
rotation joint (i.e., q = [q1 , q2 ]T ). Both of these joints incor-
porate variable stiffness actuators [see Fig. 5(a)]. These VSAs
involve a main motor (θ1 and θ2) that modulate the set point
of the virtual spring and a small motor (θ3 and θ4) that adjusts
the joint stiffness [see Fig. 5(b)]. In Fig. 5(c) and (d), we show
the deformation limits and the torque-angle characteristics of
these actuators, while in Fig. 5(e), we show the torque-stiffness
characteristics of the joints.

The range/rate constraints that are associated with the lim-
itations on the position and velocities of the stiffness adjuster
motors σ = [θ3 , θ4 ]T and the deformation limits on the floating
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Fig. 6. Treatment of constraints. (a) High-bandwidth stiffness modulation α = diag[25, 25, 15, 15]s−1 . (b) Low-bandwidth stiffness modulation α =
diag[25, 25, 1.5, 1.5]s−1 . The simulations are performed with different ball masses: m ∈ {0.1, 1, 2, 3, 4, 5, 6, 7.26}kg (corresponding to black to light-gray
lines) and fixed execution time T = 1s. The limits on φ are depicted with dashed red lines in Fig. 6(a1), (a2), (b1), and (b2) while the constraints on
θ3 ,4 = σ1 ,2 ∈ [0, 0.178]rad are shown in Fig. 6(a3) and (b3). In addition, we set: θ1 ∈ [-1.05, 3.05]rad, θ2 ∈ [2.27, 0.44]rad, and θ̇1 ,2 ∈ [−8, 8]rad/s in these
simulations as shown in Fig. 6(a4), (a5), (b4), and (b5). In all cases, the throwing motion is started from a vertical hanging configuration with minimum stiffness.
Note that in Figs. 6(a1) and (b1) each solution (gray and black lines) strictly satisfies its own corresponding constraint (red dashed lines).

springs are given as

0 � σ � σM , |σ̇| � σ̇M (49)

φm (σ) � φ � φM (σ) (50)

where the maximal limits are defined by: σM =
0.178[1, 1]T rad, σ̇M = 0.541[1, 1]T rad/s and φm (σ) =
[φm1(θ3), φm2(θ4)]T , and φM (σ) = [φM 1(θ3), φM 2(θ4)]T are
the state dependent constraint boundaries depicted in Fig. 5(c)
(dashed red lines). The present formulation encodes these as
hard constraints. Additional limits to be considered are the
range/rate limits associated with the main motors [i.e., that mod-
ulate the set point of the virtual joint springs θ1,2 , see Fig. 5(d)].
These constraints θ1,2m ≤ θ1,2 ≤ θ1,2M , |θ̇1,2 | ≤ θ̇1,2M , where

θ1,2m = [−1.05,−0.44]T rad, θ1,2M = [3.05,2.27]T rad, and
θ̇1,2M = 8[1, 1]T rad/s define the maximal ranges, are treated
as soft constraints and embedded through penalty terms in the
objective functional. This is one way to deal with constraint
that cannot be embedded into the dynamics using the present
formulation.

1) Simulation: A typical simulation result is shown in
Fig. 6(a) corresponding to high bandwidth stiffness modula-
tion and Fig. 6(b) corresponding to a low bandwidth one. In
Fig. 6(a1) and (b1), one can see that the present formulation en-
forces the state inequality limits, as hard constraints. Fig. 6(a2)
and (b2) shows that this is nontrivial since the boundaries of the
constraints depend on stiffness modulation. Indeed, higher θ3
and θ4 in Fig. 6(a3) and (b3) result in stronger restriction on φ1
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Fig. 7. Ball throwing using optimal variable stiffness control. (a1) and (b1) motor and link-side trajectories. (a2) and (b2) Stifness adjustment. (a3) and (b3)
Motor and link-side velocities. Both of these experiments are performed using a fixed execution time T = 1s and a ball weighting m = 0.06 kg. For the first
experiment (a) the motor velocity limits are set to θ̇1 ,2 ∈ [−3, 3]rad/s, while for the second experiment (b) it was set to θ̇1 ,2 ∈ [−2, 2]rad/s. The additional limits
are defined by θ1 ∈ [−1.05, 3.05]rad, θ2 ∈ [2.27, 0.44]rad, θ3 ,4 = σ1 ,2 ∈ 0.8[0, 0.178]rad, and α = diag[25, 25, 15, 15]s−1 . The throwing motion is started from
a vertical hanging configuration with no initial velocity and minimum stiffness. In these experiments stiffness modulation is restricted to the second joint. For
further experiments on this system, see [40].

and φ2 , respectively. In Fig. 6(a2) and (b2), one can also rec-
ognize a bang-bang like strategy (especially on the first joint).
This strategy is planned under changing constraint boundaries
and is smooth due to the bandwidth limitations of the actua-
tors. Fig. 6(a4), (a5), (b4), and (b5) shows that neither of the
constraints corresponding to the positions and velocities of the
main motors (used to modulate the set-point of the virtual joint
springs) are violated. This result demonstrates the applicabil-
ity of the present optimal control formulation under nonlinear
state inequality constraints that are often present as actuation
constraints on robotic systems.

2) Experiment: Using the proposed framework, we com-
puted and implemented one set of optimal motor trajectories
that correspond to high bandwidth stiffness modulation realiz-
ing ball-throwing on the DLR-HASy. In Fig. 7, one can ob-
serve a good match between the simulated and the real link-

side motions [i.e., q(t)]. This is partly because of an accu-
rate system model, but also because the proposed optimiza-
tion algorithm plans motor trajectories [i.e., θ(t)] that respect
all physical constraints and as such can be precisely tracked
on this complex system. In addition, and similar to the sim-
ulations in Fig. 6, we can see a characteristic counter move-
ment action, initial back swing before rapid forward accelera-
tion [see Fig. 6(a) and (b) and the multimedia material], and
a similar stiffness modulation pattern despite the difference in
dynamics [see Fig. 6(a3)] and constraints [see Fig. 7(a2) and
(b2)]. Moreover, we also recognize the characteristic sequen-
tial velocity peaks, first on the proximal link and then on the
distal link in Fig. 7(a3) and (b3). These peaks are associated
with the sequential (proximal-to-distal) motions of body seg-
ments often reported in human studies of striking and throwing
skills [58].
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Fig. 8. Best throwing performance of a rigid robot as a function of the release
configuration and under a given velocity limit: θ̇1 ,2 ∈ [−3, 3]rad/s, i.e., q̇m ax =
[3, 3]T rad/s.

3) Stiffness Modulation: By means of stiffness modulation,
we observe a characteristic decrease followed by a rapid in-
crease of the stiffness just before the ball release (t ≈ 1s) [see
Figs. 6(a3), and 7(a2), (b2)]. This stiffness modulation strategy
bears clear physical interpretation. Indeed, decreased stiffness,
near to the end of the movement, enables the link to maximally
depart from its equilibrium configuration. This then makes it
possible to accelerate the arm by increasing the stiffness just
before ball release. This mechanism is predicted to be optimal
on the present robotic system. Whether a similar mechanism is
employed during human throwing and striking motions has yet
to be investigated.

It is important to recognize that a stiffness modulation strat-
egy that has been shown in Figs. 6(a3),7(a2), and (b2) is not
possible in the case of fixed stiffness control [18] or when the
bandwidth of the actuators associated with stiffness modulation
is low [see Fig. 6(b3)]. This leads to lower performance (i.e.,
shorter distance thrown) [see Fig. 6(b)].

4) Variable Stiffness Versus Rigid Actuation: Finally, we
investigate how the performance of the optimally controlled
compliantly actuated robot (i.e., DLR HASy) compares with
the best performance of the corresponding rigid robot (where
q̇ = [θ̇1 , θ̇2 ]T ). To ensure a common ground for this compari-
son, we consider both systems to be subject to the same motor
velocity limits. i.e., θ̇1 ∈ [−3, 3]rad/s and θ̇2 ∈ [−3, 3]rad/s, as
well as assume no-torque limit on the rigid robot.17 By compar-
ing the link-side velocities, it becomes immediately clear that
the same velocity peaks shown in Figs. 7(a3) and (b3) could not
have been achieved with a rigid robot. When reflected to the
task performance, we found by kinematic calculation that while
the rigid robot could, under no effort limitation, throw a ball
d = 3.6 m (see Fig. 8), the VS joints allowed the DLR HASy

17This latter assumption makes the restrictions on the rigid robot weaker
compared with those that apply on the DLR HASy, where the elastic joint
torques are limited, both in range and bandwidth.

to throw a ball d ≈ 5 m. (For the corresponding experimental
video, see the multimedia attachment).

This comparison shows the ability of the present optimal
control framework to exploit the rigid body dynamics and
the capacity of the compliant actuators to achieve better task
performance. Moreover, it demonstrates the utility of optimal
impedance control and the advantage of compliant design for
the next generation of robotic systems.

VIII. CONCLUSION

In this paper, we provide an optimal-control formulation for
compliantly actuated robots subject to actuation constraints. In-
stead of employing problem specific analytical derivations or
using sophisticated numerical algorithms to treat the inequality
constraints inevitably present on compliantly actuated robots,
this formulation employs canonical box-constraints on control
inputs to explicitly embed the actuation constraints into the dy-
namics. In practice, these actuation constraints can be range
limits on the motor positions, bandwidth limitations due to the
motor dynamics, as well as deformation limits on the elastic
elements inherent to many SEA and VSA designs. In this paper,
we: 1) illustrate the impact of these limits on the performance
and the control strategy during optimal variable stiffness con-
trol; and 2) demonstrate the viability of the proposed formula-
tion on two conceptually different variable-stiffness system that
perform a dynamic task in simulations and experiments. The
proposed framework may be further developed by integration
of: 1) a mechanism for active feedback control, to deal with
unforeseen disturbances and environmental uncertainties; and
2) a framework for online dynamics adaptation, to deal with
systematic changes in the dynamics.

Finally, we note that this investigation has been partly moti-
vated by the latest hardware developments in anthropomorphic
robots, exoskeletons, and prosthetic devices, where compliance
is deliberately introduced into the system. In that regard, this
study demonstrates the utility and viability of the proposed
optimal control framework and provide some valuable design
guidelines for the next generation of robotic devices, where
compliant actuation and variable impedance control is likely to
play a dominant role.

APPENDIX

APPROACHES TO CONSTRAINED OPTIMIZATION

Here, we consider several alternative approaches that can
be used to solve (43)–(45). The purpose of this section is to
highlight the benefits of different methods and to point out the
practical difficulties related to the treatment of complex (i.e.,
high-dimensional, nonlinear, and constrained) optimal control
problems. For a more elaborate exposition on this matter, the
reader may refer to [45].

A. Indirect Methods

In an indirect approach, one attempts to find a solution that
satisfies the first-order optimality conditions to the original con-
strained functional minimization (43)–(45). For this purpose:
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1) the first-order optimality conditions are derived using Pon-
tryagin’s maximum principle [59]; 2) these conditions are
then represented with a multipoint boundary value problem
(MPBVP) [44]; and finally 3) the obtained MPBVP is solved
using a multiple-shooting method (see [60]). The MPBVP gen-
erally contains the state equations, adjoint equations, transver-
sality conditions, and differential equations that locate the entry
and exit points for every state and control constrained subarcs
and the associated jump conditions.18

There are notable differences in this representation and the
corresponding solution, depending on whether state or only con-
trol constraints are considered. This is because state inequalities
lead to piecewise defined adjoint equations and discontinuous
adjoint functions. This complicates the treatment of state con-
strained formulations, partly because the discontinuities may
lead to sensitivity/accuracy issues during numerical integration,
but also because the number of functions that represent the
piecewise defined adjoint equations has to be guessed. Both of
these issues can be circumvented using the present formulation
that is subject to control constraints only.

Even if only control constraints are present, however, applica-
tion of multiple-shooting methods generally requires the user to
guess the missing initial data to integrate the adjoint equations,
and to find the structure of the control constraint subarcs. This
imposes strong restrictions, namely to make the numerical al-
gorithm converge, the user must guess the details of the optimal
solution. [61].

B. Direct Methods

In direct methods, one employs control and/or state
parametrization to transform the original optimal control prob-
lem, e.g., (43)–(45), to a nonlinear programming problem (NLP)
[62]. Instead of finding a solution to the first-order optimality
conditions, the original infinite dimensional constrained func-
tional minimization is directly converted to a finite dimensional
function minimization that is easier to solve numerically. In-
deed, such a function minimization can be solved using sophis-
ticated NLP methods, e.g., using sequential quadratic program-
ming [63].

There are numerous reasons that make this formulation at-
tractive. One of these is that, direct methods do not require the
optimality conditions to be analytically derived (that is often
nontrivial and cumbersome for high-dimensional constrained
problems). Moreover, unlike multiple shooting methods, non-
linear programing is robust to initializations. Notably, for con-
strained problems, nonlinear programming can be applied with-
out a prior specification of the sequence and number of con-
strained subarcs. This is because the entry and exit points on
these sub-arcs are automatically identified by standard active
set algorithms [45].

On the other hand, however, control and state parameteri-
zation generally leads to a large-scale NLP. Due to this rea-
son, exploiting the sparsity pattern of such an NLP is essen-
tial for computationally tractable implementation. Even if the

18Erdmann–Weierstraß corner conditions [61].

computation is optimized in this way, there is a natural trade-
off between computational tractability and the accuracy of the
solution this approach provides. To circumvent possible accu-
racy issues, merging direct and indirect methods has been sug-
gested [64]. Alternatively, successive approximation methods
may also be employed.

C. Successive Approximation Methods

The idea behind these methods is to derive a subproblem
that can be iteratively solved to improve the nominal control
trajectory, initially provided by the user. Examples of these ap-
proaches are: differential dynamic programming (DDP) [65],
the iterative linear quadratic regulator/Gaussian (iLQR/G) ap-
proach [53], as well as many other first- and second-order meth-
ods that are derived from Bellman’s dynamic programming or
by using variational calculus [66]. Compared with direct meth-
ods, these iterative approaches provide more precise solutions
while compared with indirect methods, these approaches are
robust against initializations. In this light, many of the issues
discussed previously (e.g., computational efficiency, sensitivity
to initialization, accuracy of the solution) could be addressed
using methods for successive approximation. Authors in [67]
provide a unified view of such approximation methods in the
language of KL divergence minimization. While these methods
are primarily derived to solve unconstrained problems, there are
also many alternatives when optimizing under state and control
constraints [68].

In the present context, the state constraints are explicitly em-
bedded in the dynamics, such that any method allowing box-
constraints on controls would suffice. One of these methods is
provided with the iLQR/G approach [53] that is applicable to
nonlinear problems and remains efficient for high-dimensional
systems. This approach is used in Section VII.
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