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Abstract— Physically assistive robots and exoskeletons have
great potential to help humans with a wide variety of collabora-
tive tasks. However, a challenging aspect of the control of such
devices is to accurately model or predict human behaviour,
which can be highly individual and personalised. In this
work, we implement a framework for learning subject-specific
models of underlying human motion strategies using inverse
musculoskeletal optimal control. We apply this framework to a
specific motion task: the sit-to-stand transition. By collecting sit-
to-stand data from 4 subjects with and without perturbations,
we show that humans modulate their sit-to-stand strategy in
the presence of instability, and learn the corresponding models
of these strategies. In the future, the personalised motion
strategies resulting from this framework could be used to
inform the design of real-time assistance strategies for human-
robot collaboration problems.

I. INTRODUCTION

Robots and exoskeletons are increasingly being employed
in collaborative tasks to assist humans in the workplace
[1], [2], and as medical devices for rehabilitation [3] or
locomotion assistance [4]. These scenarios can be thought of
as shared control problems, in which predicting the actions
of the uncontrolled human agent is important to ensure
the efficacy of the system as a whole [5]. Biomechanical
models of the human body can provide insight as to the
physiological dynamics that underpins motions [6], but do
not easily account for individual biases which can lead to
subject-specific motion strategies [7].

In this paper, we present and validate a framework for
learning personalised human motion strategies for specific
tasks using inverse musculoskeletal optimal control. As an
example application of this framework, we learn strategies
for sit-to-stand transitions (Figure 1) using experimental data
collected from 4 subjects. This choice of motion task is
motivated by the prevalence of musculoskeletal injuries af-
fecting nurses and other healthcare professionals due to high
exertion at work, and the increasing interest in occupational
exoskeletons to circumvent this issue [8].

Other works have considered the use of biomechanical
models to simulate human motion strategies, however typi-
cally the relative weighting of the objective function is fixed

This work was supported by the Alan Turing Institute, UK and Honda
Research Institute Europe GmbH, Germany.

Daniel F. N. Gordon and Sethu Vijayakumar are with the School of
Informatics, The University of Edinburgh, Edinburgh, UK, and also with
the Alan Turing Institute, London, UK (e-mail: daniel.gordon@ed.ac.uk,
sethu.vijayakumar@ed.ac.uk).

Andreas Christou is with the School of Informatics, The University of
Edinburgh, Edinburgh, UK (e-mail: andreas.christou@ed.ac.uk).

Theodoros Stouraitis and Michael Gienger are with Honda Re-
search Institute Europe GmbH, Offenbach am Main, Germany (e-mail:
theodoros.stouraitis@honda-ri.de, michael.gienger@honda-ri.de).

Fig. 1. Upper row: snapshots of a subject completing a sit-to-stand
transition. Lower row: corresponding images of a reconstruction of the
movement using a musculoskeletal model. Blue spheres represent contact
geometries. The red plane represents a seat, which acts as a contact surface
and can be placed at a specified height.

[9]–[11], i.e. there is no inverse step, and personalisation
would require hand-tuning weights for individual subjects.
Those approaches which do include an inverse step differ
from our approach in the consideration of different motion
tasks [12], [13] or optimisation approaches [14], [15]. In
addition, our paper provides additional insights in to biome-
chanical adaptations during perturbed sit-to-stand transfers.

To summarise, the key contributions of this paper are the
development of an inverse musculoskeletal optimal control
framework for learning personalised human motion strate-
gies, and the accompanying validation of this methodology
against simulated and experimental human sit-to-stand data.
In Section II we introduce and formulate the inverse mus-
culoskeletal control framework. In Section III we instantiate
a particular instance of the framework, applied to the sit-
to-stand transfer motion, and discuss the specifics of the
musculoskeletal model and constraints. In Section IV we
present a computational validation of the framework, and in



Section V we examine the effect of perturbations on under-
lying human sit-to-stand motion strategies by applying the
framework to experimental data collected from 4 subjects.
Finally, in Section VI, we discuss key features of the results
and highlight areas for further research.

II. INVERSE MUSCULOSKELETAL OPTIMAL CONTROL

Inverse optimal control is a bi-level optimisation technique
used to identify cost functions that correspond to measured
data samples [13]. The approach is underpinned by the
assumption that the the observed data is optimal with respect
to some underlying objective function, and thus the technique
is of particular relevance for the study of human locomotion
[16]. Structurally, a lower-level optimal control optimisation
enforces the dynamics and constraints, while an upper-level
gradient-free optimisation modifies the relative composition
of the objective to match the experimental samples.

The inverse optimal control framework presented in this
work consists of a forward musculoskeletal optimal control
problem in the lower-level wrapped by a sampling based
upper-level optimiser. We discuss the details of each level in
turn in the forthcoming subsections.

A. Musculoskeletal Optimal Control

Simulation-based investigations are increasingly employed
by the biomechanics community to gain insights in to human
locomotion [17]. In particular, OpenSim [6] is a widely-
used open-source software package which allows for the
building and analysis of custom musculoskeletal models for
movement analysis [18]. In this work, we employ OpenSim
Moco [19], an open-source optimal control solver which
builds upon OpenSim to enable solving optimal control
problems with musculoskeletal models. Assuming a known
finite time horizon [0, T ] and constrained initial and final
states x0 and xT , respectively, we consider the following
musculoskeletal optimal control problem1:

min
u
J(x(t),u(t)),

J(x(t),u(t)) =

n∑
i=1

wiGi(x(t),u(t)),

Gi(x(t),u(t)) =

∫ T

0

gi(x(t),u(t), t)dt,

x(t) = (q(t), q̇(t), z(t)),

ẋ(t) = fm(x(t),u(t), t),

θ(q) = 0,

x(0) = x0,

x(T ) = xT ,

xL ≤ x ≤ xU ,

uL ≤ u ≤ uU ,

(1)

which hereafter we refer to as System 1. Here, the state vec-
tor x is composed of generalised coordinates q, generalised

1OpenSim Moco is also capable of dealing with path constraints and
time-invariant parameters, which are not relevant for our problem and so
are excluded from our formulation.

velocities q̇, and additional state variables z induced by the
use of muscle-based actuators (e.g. muscle fiber lengths),
while u are the system controls. The function fm represents
musculoskeletal dynamics, and we have bounds on both
states and controls. The function θ imposes any kinematic
constraints applied to the musculoskeletal model. The cost
function J of the musculoskeletal optimal control problem is
a weighted sum of distinct pre-defined goals Gi(x,u). The
weights and goals comprising the cost function are chosen
based on the motion task. Example goals for a specific
motion task (a sit-to-stand transfer) are given in Section III.

B. Upper-level Optimisation

Let S = {xi(t) | i = 1, 2, ..., n} be a dataset of state
trajectories corresponding to a given motion. The aim of
inverse optimal control is to identify the objective function J
that best explains this set of motion samples. Assuming that
the composition of goals in J is fixed, the mechanism for
altering J is restricted to the suitable choice of the weights
vector w. Therefore, the optimisation of J can be expressed
generically as follows in System 2:

min
w
d(S,x(t)),

(x(t),u(t)) = FP (w),

w ∈ Rn.

(2)

Here, we have encapsulated System 1 in the function FP

which maps weights w on to optimal control solutions
(x(t), u(t)), where P denotes the additional parameters that
configure the forward optimal control problem (i.e. the bound
and configuration vectors and underlying musculoskeletal
model). The function d is a metric which quantifies the
similarity or distance between the set of samples S and the
state vector x obtained at each iteration.

In practice, the optimisation problem expressed in System
2 is difficult to solve without additional constraints on the
space of weights. Firstly, it is desirable to normalise the
terms in the objective function such that similar weights
lead to similar cost values. To achieve this, we define
a set of basis weight vectors using standard basis vector
notation, i.e. ei denotes a weight vector with a 1 in the ith

coordinate and 0 elsewhere. Then, we compute the basis
cost for each term of the objective function by running
the forward optimal control problem on each normalisation
weight vector. Mathematically, we compute a normalised
cost matrix C = diag(c1, c2, ..., cn) where:

ci =
1

J(FP (ei))
. (3)

Given C and an input weight vector w, we compute the
corresponding normalised weight vector w̄ as follows:

w̄ = Cw. (4)

Under this construction, a choice of comparable weights in
the coordinates of w translates to comparable constituent
terms of the objective function J(FP (w̄)).



In addition to normalisation, it is also useful to further
constrain the space of weights to reduce redundancy. Con-
sider that without such a constraint w1 = (1, 1, ..., 1) and
w2 = (2, 2, ..., 2) are valid weight vectors, but from the
perspective of relative cost ratios are functionally equivalent.
To avoid such cases, we constrain the domain of the input
weights, along with their sum, as follows:

n∑
i=0

wi = 1, (5)

w ∈ [0, 1]n. (6)

As a useful side-effect of this constraint and the normalisa-
tion procedure, a valid input weight vector can be interpreted
as the relative importance of the terms in the objective
function, e.g. w = (0.5, 0.3, 0.2) describes a situation in
which G1, G2 and G3 contribute 50%, 30% and 20% to the
total cost of the motion, respectively.

Incorporating the normalisation and non-redundancy con-
straints in to System 2 results in the following formulation
for the upper-level optimisation:

min
w
d(S,x(t)),

(x(t),u(t)) = FP (w̄),

w̄ = Cw,

C = diag(c1, c2, ..., cn),

ci =
1

J(FP (ei)
,

n∑
i=1

wi = 1,

w ∈ [0, 1]n.

(7)

Similarly to the forward optimal control problem, we can
encapsulate System 7 in the function IP . The inverse muscu-
loskeletal optimal control problem for a set of configuration
parameters P and motion samples S can then be stated as:

w∗ = argmin IP (S), (8)

where w∗ is the optimal weights vector for tracking the state
trajectories in S.

The optimiser used to solve Equation 8 is required to be
gradient-free, support bounds and inequality constraints on
parameters, and to perform well with computationally costly
objective evaluations. In this work, we use NOMAD [20],
[21], a black-box optimiser based on surrogate optimisation
which performed favourably compared to Bayesian optimisa-
tion and genetic algorithm approaches in our initial testing.
NOMAD does not support equality constraints, and so in
practice Equation 5 was replaced with:

m∑
i=1

wi ≤ 1, (9)

for m = n − 1, and the following was prepended to the
calculation of the objective function:

wn = 1−
m∑
i=1

wi, (10)

which has the favourable side effect of reducing the dimen-
sionality of the problem by 1.

III. APPLICATION TO SIT-TO-STAND TRANSFER

When considering a specific motion task, we define an
instantiation of Equation 8 by fixing the underlying muscu-
loskeletal model, the objective function composition, and the
task-specific constraints. Here, we consider inverse muscu-
loskeletal optimal control applied to sit-to-stand transitions.
We denote the sit-to-stand specific forward and inverse
optimal control problems by FP

STS and IPSTS, respectively.

A. Musculoskeletal Model

The sit-to-stand biomechanics are modelled using a 2-
dimensional musculoskeletal model with 4 joints represent-
ing the joint angles of the back, hip, knee and ankle. The
joints are driven by coordinate actuators which respect acti-
vation dynamics. Contact forces, based on a smoothed Hunt-
Crossley model, are used to model the physical interaction
between the model and a seat, fixed at a specified height.
Additional contact geometries are placed on the heel and toe
bodies for the purpose of objective calculations. In Figure
1 the model is shown, alongside snapshots of a sit-to-stand
movement.

B. Objective Composition

The set of goals comprising the objective function are a
vital component of inverse optimal control problems. Ideally,
the goal terms should be able to generate a rich variety of
motions whilst being based on principles from movement
biomechanics. In this work, we choose an objective function
which consists of six goal terms. First, we include a measure
of control effort:

g1 =
1

d

4∑
i=1

u3i , (Effort)

where ui is the ith model control and d is the displacement
of the centre of mass. Previous works have indicated that
cubed controls are related to fatigue [22], [23].

Next, we include a measure of system stability, defined
as:

g2 = |pcom − pbos|. (Stability)

Here, pcom is the extrapolated centre of mass, defined as:

pcom = xcom + vcom

√
ycom

g
, (11)

where xcom, ycom and vcom are the x position2, y position
and x velocity of the centre of mass, respectively, and g is
acceleration due to gravity. The quantity pbos is centre of
the boundary of support in the x direction, measured as the
midpoint between the heel and toe contact geometries. This
stability goal is otherwise known as the margin of stability

2Here, and throughout this paper, we use the standard OpenSim coordi-
nate system, where x is directed forwards from the point of view of the
model, y is directed upwards, and z is directed to the right.



in the sagittal plane, which is related to dynamic stability
when leaning [24].

Finally, the remaining goals compute the joint loading [25]
at each degree of freedom of the model:

g3 = llumbar(t), (Lumbar Loading)
g4 = lhip(t), (Hip Loading)
g5 = lknee(t), (Knee Loading)
g6 = lankle(t). (Ankle Loading)

The joint loading terms are calculated using OpenSim’s
underlying dynamics simulator Simbody [26].

Overall, using notation from System 1, the sit-to-stand
specific objective function is as follows:

JSTS =

6∑
i=1

wiGi. (12)

This form of objective was chosen to balance the contri-
butions from effort, stability, and joint-loading preferences
that serve to personalise sit-to-stand behaviour for individual
subjects.

C. Bounds and Constraints

The initial configuration of the model corresponds to a
static sitting position, with q(0) = qs and q̇(0) = 0. The
joint angle vector qs is typically obtained from individual
subject measurements. The final configuration corresponds
to a static standing position, i.e. q(T ) = q̇(T ) = 0. Wide
bounds on joint angles were chosen based on reference data
in the literature [27], [28] as well as initial investigations on
collected sit-to-stand data:

qlumbar ∈ [−50, 15], (13)
qhip ∈ [−18, 135], (14)
qknee ∈ [−140, 5], (15)
qankle ∈ [−60, 15], (16)

while joint speeds were chosen to be expansive to allow for
a wide range of viable motions:

q̇ ∈ [−360, 360]n. (17)

Note that joint angles are specified in degrees and joint
speeds are specified in degrees per second.

D. Upper-level Objective

The distance measure used to compare the forward optimal
control motion with the set of sample trajectories is the mean
continuous RMS of the joint angles, defined as follows:

dSTS(S,x) =
1

n

n∑
i=1

√√√√√ 1

mT

∫ T

0

 m∑
j=1

sij(t)− xj(t)

2

dt,

(18)
where S contains n motion samples which for convenience
of notation we here write as S = {s1, s2, ..., sn}. Without
loss of generality we assume that the joint angles occupy
positions 1 to m of the state vectors x and si.

Fig. 2. The evolution of the objective RMSE (blue) and Euclidian distance
error of the estimated weight vector (red) when solving for 8 pre-generated
weights vectors, shown on a log scale. Each transparent line corresponds to
a unique win.

IV. COMPUTATIONAL VALIDATION

To evaluate the efficacy of the upper-level optimiser, we
can first generate a solution to the forward problem using
a known set of valid input weights, and directly compare
those known weights to the result of the upper level opti-
miser. In other words, we execute the following sequence of
operations:

1) Generate a valid input weight vector win.
2) Compute w̄in and solve FP

STS(w̄in) for xin.
3) Set S = {xin} and compute wout = IPSTS(S).
4) Evaluate Ew = ||win − wout||2, e = abs(win − wout)

and EF = |FP
STS(w̄in)− FP

STS(w̄out)|.
This process was carried out for a total of 8 inputs weights
vectors, generated randomly subject to Equations 5 and 6.
Graphs depicting the evolution of error in the objective func-
tion and weight vector estimate are shown in Figure 2. Table
I reports the resulting errors EF , Ew and e averaged over
all input weight vectors. Overall, the upper-level optimiser
is able to obtain close approximations of the input weights,
with a mean value of 0.123 for the error in the weight vector
approximation. The weight estimates recovered had an error
of 0.03 in the best case to 0.372 in the worst case.

V. EXPERIMENTAL VALIDATION

A. Evaluation of Perturbed Sit-to-Stand Biomechanics

The motion strategies employed by humans are highly
context-dependant; for example, typical gait patterns are
markedly different when walking on stable or unstable
ground [29]. The same is true of sit-to-stand transfer, partic-
ularly when the motion becomes difficult due to underlying
pathology or old age [30].

To investigate this phenomenon further, an experimental
protocol was devised whereby 4 subjects were asked to
complete a number of sit-to-stand transfers in the potential
presence of perturbations, which induce instability in to
the movement. The subjects carried out repetitive sit-to-
stand transfers using a bench secured to a Motek Medical



Fig. 3. A comparison of back, hip and knee joint angles during sit-to-stand transitions in the stable, unperturbed and perturbed modes for S1. Shaded
regions indicate phases in which there was a statistically significant difference (p < 0.05) between the stable and unperturbed modes.

TABLE I
MEAN ± STANDARD DEVIATION OF COMPUTATIONAL VALIDATION RESULTS

EF Ew e1 e2 e3 e4 e5 e6

0.006± 0.009 0.123± 0.118 0.016± 0.029 0.014± 0.02 0.028± 0.038 0.042± 0.042 0.056± 0.067 0.082± 0.075

TABLE II
SIT-TO-STAND BIOMECHANICS EVALUATION

Subject Mass (kg)

Range of Statistically Significant Difference (SSD) (% of Motion) Total SSD (% of Motion)

Back Hip Knee Ankle Back Hip Knee Ankle

1 92.5 0-26, 53-67, 70-74 4-36, 43-79 42-85 50-94 44 68 43 44
2 46.7 None 40-62 0-41, 50-60 0-60, 75-100 0 22 51 85
3 83.5 0-10, 99-100 0-16, 30-41 0-36, 98-100 0-51, 71-100 11 27 38 80
4 70.3 0-11, 31-100 0-8, 24-36, 49-100 52-79 27-54, 84-100 80 71 27 43

treadmill (Figure 1). A Vicon motion capture system was
used to measure the kinematics of the back, hip, knee and
ankle joints. Perturbations took the form of a brief negative
acceleration of the treadmill belts, in order to simulate
slippage of the feet in unstable conditions. The presence of
a perturbation was determined randomly prior to each sit-
to-stand transfer, with a likelihood of 50%. The perturbation
was also randomly determined to begin at either 25%, 50%
or 75% of max subject body weight being detected on the
treadmill force plates. For reference, unperturbed sit-to-stand
data was also collected for each subject, with the likelihood
of perturbation set to 0%.

Following data collection, the resulting marker data was
filtered, segmented and then processed via inverse kinematics
in OpenSim to compute joint angle trajectories. The resulting
motions were classified in to one of three categories:

• Stable, in which the perturbation likelihood was 0%.
• Unperturbed, in which there was a 50% likelihood of

perturbation, but no perturbation occurred.
• Perturbed, in which there was a 50% likelihood of

perturbation, and a perturbation did occur.

In Figure 3, we show sit-to-stand kinematics of the back, hip,
and knee joints indexed by sit-to-stand perturbation mode for
one subject as a visual example. In particular, the regions
of the sit-to-stand transfer at which there is a statistically

significant difference between stable and unperturbed biome-
chanics are indicated via shading. Statistical significance was
calculated using Welch’s t-test. The full data on statistically
significant ranges for combination of subject and perturbation
mode is provided in Table II. Each subject contributed 5
motion samples to each mode.

B. Sit-to-Stand Strategy Modulation
The results presented in Table II show that, even when

a perturbation does not occur, subject awareness of the
potential perturbation induces a statistically significant differ-
ence in sit-to-stand biomechanics. This suggests that humans
modulate their sit-to-stand motion strategy in the presence of
potential instabilities.

To test this hypothesis, we used the inverse musculoskele-
tal optimal control framework to compute the weights vector
for each subject across both the stable and unperturbed sit-
to-stand modes, via the following sequence of steps:

1) Set Ss and Su to be the sets of motion samples
corresponding to the stable and unperturbed modes.

2) Compute ws = IPSTS(Ss) and wu = IPSTS(Su).
3) Evaluate |ws−wu| and |dSTS(Ss,xs)−dSTS(Su,xu)|,

which quantify the difference in underlying motion
strategy and in tracking performance, respectively.

In Figure 4 we compare for visualisation purposes the
resultant stable and unperturbed weight vectors, along with



Fig. 4. Top row: analysis of strategy modulation between the stable and unperturbed sit-to-stand modes for Subject 3. Additional plots are shown
which indicate the tracking performance of the forward optimal control problem using the recovered weights. Solid lines show the mean of experimentally
measured kinematic trajectories, shaded regions show their standard deviation, and dash-dot lines show the predicted motion. Bottom row: a similar
analysis, but where the ankle loading goal has been replaced by a tracking goal. This improves the tracking performance of the lumbar joint.

TABLE III
SIT-TO-STAND STRATEGY MODULATION RESULTS

Subject
Unperturbed Weights Perturbed Weights Tracking Error (dSTS)

w1 w2 w3 w4 w5 w6 w1 w2 w3 w4 w5 w6 Stable Unperturbed

1 0.17 0 0.151 0.217 0.168 0.294 0.293 0 0.2 0 0.168 0.339 0.178 0.221
2 0.016 0.045 0.363 0.064 0.083 0.429 0 0.367 0.067 0 0.267 0.3 0.134 0.260
3 0.159 0 0.103 0.161 0.065 0.513 0.131 0.209 0.014 0.208 0.208 0.230 0.235 0.194

the associated tracking errors, for Subject 3. As a point
of comparison, we also show the results obtained when
replacing the ankle loading goal g6 with a tracking goal. The
full results for strategy modulation and tracking performance
for each subject are provided in Table III.

VI. DISCUSSION

The computational validation in Section IV illustrates
that the inverse musculoskeletal optimal control method
presented in this work is able to recover close approximations
to known input weights. In addition, the experimental results
from Section V show firstly that humans modulate their un-
derlying sit-to-stand strategy in the presence of perturbations
(Figure 3) and furthermore that the nature of this modulation
is highly subject-specific (Table II). For example, Subject 2
largely modulates knee and ankle angle trajectories in the
presence of potential disturbances, while Subject 4 largely
modulates back and hip angle trajectories.

Similarly, we see that the recovered motion strategies for
each subject (Table III) are also subject-specific. Subjects 2
and 3 both increase the weight of the stability goal at the
cost of loading terms, while Subject 1 increases the lumbar

loading term, with no influence from stability. Notably, the
tracking error obtained when running the framework on
experimental data (Table III) is higher than when using
simulated data (Figure 2). In particular, the deviations in
lumbar angle for Subject 3 are not recreated when tracking
is included in the cost function (Figure 4). This suggests that
the components of the overall cost function J(x,u) do not
fully span the set of experimental sit-to-stand trajectories.

A key benefit of this framework lies in the generation
of human strategy models which can potentially be used as
human motion predictors for human-robot collaboration. As
evidenced in Figure 4, the performance of these models is
likely strongly linked to the choice of the underlying objec-
tive composition used in the IOC process. In the future, we
intend to explore a wider range of cost function compositions
which can be directly compared in their ability to track
experimental data, thus providing biomechanical insights into
the criteria underpinning human sit-to-stand strategies. We
also intend to explore the generalisability of our framework
to other motion tasks. Moving forward, we will quantify the
predictive power of the obtained models in experiments with
human-exoskeleton systems.
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