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Human-in-the-Loop Optimization of Exoskeleton
Assistance Via Online Simulation of Metabolic Cost
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Abstract—Many assistive robotic devices have been developed
to augment or assist human locomotion. Despite advancements
in design and control algorithms, this task remains challenging.
Human walking strategies are unique and complex, and assistance
strategies based on the dynamics of unassisted locomotion typically
offer only modest reductions to the metabolic cost of walking. Re-
cently, human-in-the-loop (HIL) methodologies have been used to
identify subject-specific assistive strategies, which offer significant
improvements to energy savings. However, current implementa-
tions suffer from long measurement times, necessitating the use of
low-dimensional control parameterizations, and possibly requiring
multiday collection protocols to avoid subject fatigue. We present a
HIL methodology, which optimizes the assistive torques provided
by a powered hip exoskeleton. Using musculoskeletal modeling, we
are able to evaluate simulated metabolic rate online. We applied our
methodology to identify assistive torque profiles for seven subjects
walking on a treadmill, and found greater reductions to metabolic
cost when compared to generic or off-the-shelf controllers. In a sec-
ondary investigation, we directly compare simulated and measured
metabolic rate for three subjects experiencing a range of assistance
levels. The time investment required to identify assistance strategies
via our protocol is significantly lower when compared to existing
protocols relying on calorimetry. In the future, frameworks such as
these could be used to enable shorter HIL protocols or exploit more
complex control parameterizations for greater energy savings.

Index Terms—Assistive robotics, exoskeletons, human-in-the-
loop optimization, musculoskeletal modeling.

I. INTRODUCTION

FOR decades, assistive robotic devices such as exoskeletons,
exosuits, and prosthetic limbs have been a topic of major

interest in the biomechanics and robotics communities [1]. Many
of these developed platforms [2] are thought to have huge
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potential in a wide range of application domains related to human
movement. For example, devices such as the Lokomat [3], a gait
rehabilitation robot, have demonstrated the potential to be more
effective than conventional treatments at restoring mobility to
patients with spinal cord injuries [4]. Passive exoskeletons are
being developed to help reduce the potential for strain-related
injuries in the work-place [5], or to reduce the energy required
for locomotion [6]. New powered ankle prostheses continue to
be designed with the goal of replicating the energy efficiency of
the biological human ankle [7], [8].

A particularly common design goal for powered exoskeletons
and exosuits is to reduce the metabolic cost of walking [9]–[12].
Devices, which achieve this goal could be used either to augment
human locomotion capabilities, for example to assist humans
carrying heavy loads over long distances [13], or for long-term
mobility rehabilitation or assistance of movement-impaired or
elderly people [14]. This latter use case is of particular relevance
to modern society, which increasingly faces the issue of mobil-
ity loss tied to an aging population [15], [16] along with the
associated health problems and reduction in quality of life [17].
However, designing exoskeleton controllers, which can effi-
ciently assist human locomotion has proven to be a challenging
problem, as the efficacy of these devices is strongly dependent on
the timing and magnitude of the delivered assistance [18]–[22].
Moreover, this issue is compounded by the fact that, due to
variations in age, size, limb proportions, and even internal loco-
motion strategies, humans can exhibit significant differences in
walking styles [23]–[25]. The consequence of this is that generic
exoskeleton controllers may be suboptimal for a large number of
individuals.

Recently, a solution to this problem has emerged in the form
of human-in-the-loop (HIL) optimization. HIL optimization (see
Fig. 1) is a technique, which seeks to optimize some aspect of
an assistive device by iteratively taking measurements from the
intended wearer “in the loop,” evaluating device performance
according to some metric and updating the system accordingly.
Ultimately, the aim of this process is to produce a tailored
assistance solution for each individual. Typically this process
is used to optimize a parameterised control law [26]–[28],
though other objectives have included step frequency [29], [30],
parameterised design variables [31], and the energetic profile of
assisted locomotion [32]. Most commonly, device performance
is evaluated by quantifying metabolic rate via respiratory gas
analysis [26]–[30], however, other physiological signals such
as EMG activity [31], [33], or subject feedback [34], [35] have
successfully been used as a performance criterion. A critical
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Fig. 1. Schematic illustrating the key steps comprising a generic implemen-
tation of HIL optimization. To illustrate, a specific implementation [28] could
use calorimetry (the real-time measurement) to quantify metabolic cost (the
performance metric) while using Bayesian optimization (the optimization step)
to update some parameterised control law (the system update).

aspect of HIL optimization is the technique used to drive the
update of system parameters, which must be efficient in order
to promote convergence [30]. Two widely used and successful
methods are covariance matrix adaptation [27] and Bayesian op-
timization [28], [30], which have comparable performance [32].
Other implementations have utilised reinforcement learning
frameworks to optimize exoskeleton [33], [36] and prosthe-
sis [37]–[39] control parameters. In general, using HIL opti-
mization, researchers have been able to identify individualized
control patterns, which result in significantly greater energetic
savings than traditional control schemes [28].

Despite the impressive energetic cost reductions achieved by
existing HIL optimization implementations, a clear limitation
of the method exists: the significant time investment required
to produce optimized assistance profiles. This is particularly
relevant when the aim is to reduce metabolic cost, as to do
so typically involves the measurement of noisy, low frequency
calorimetric data, which requires large measurement times in
order to produce accurate readings [40]. This presents two
issues: first, as the time spent walking increases, so too does
the likelihood that the subject will become fatigued. Not only
is this uncomfortable for the subject, increasing the potential
for early termination of the process, but due to physiological
changes, which reduce the energy efficiency of fatigued mus-
cles [41], further measurements cannot be considered valid.
Second, long measurement times effectively place limitations
on the complexity of the optimization objective. For example,
relatively simple control profiles offering unimodal assistance
patterns may be used [27], [28], albeit to strong effect. In order
to explore the use of more complex control parameterizations,
which may offer even greater energetic cost reductions, or to
optimize the control of multijoint exoskeletons and exosuits,
more efficient HIL optimization protocols are necessary.

This problem of excessive runtimes in HIL protocols is
well recognised, and recent works have attempted to find so-
lutions by implementing early-stopping within the optimiza-
tion process [42] or by replacing the use of respiratory gas

analysis with machine learning models on less coarse data
inputs [43]. We propose an alternative approach, which leverages
the strengths of musculoskeletal modeling [44]. Simulation-
based approaches have proven useful both for the analysis of
exoskeleton-assisted locomotion [45], [46] and the design of
exoskeleton controllers [47]. Utilising dynamic models driven
by musculo-tendon actuators [48]–[51] combined with models
of muscle energetics [52], [53] the metabolic power consump-
tion of movements can be readily estimated [47], [54], providing
approximations to the ground truth data from calorimetry [53],
[55]. Musculoskeletal models can easily be scaled to match a
subject in terms of proportions, but adapting muscle parameters
(for example, to differentiate between subjects with different
muscle strengths) is challenging, and furthermore these models
do not by themselves account for innate differences in walk-
ing styles. By combining musculoskeletal modeling with HIL
optimization, we can efficiently simulate the metabolic cost of
walking using a scaled generic model, while retaining the ability
to learn personalized controllers using data collected directly
from subjects.

To summarise, in this article, we present a HIL methodol-
ogy, which optimizes the assistive torque patterns applied by
exoskeletons. Musculoskeletal simulations are conducted on-
line in order to simulate metabolic rate, significantly reducing
the time investment required to sample specific torque profiles
when compared to implementations relying on calorimetric
measurements. We evaluate the effectiveness of our method for
seven subjects wearing an active pelvis orthosis. In addition,
we present results from a secondary investigation in to the
correlation between simulated and experimental metabolic rate,
based on data collected from three additional subjects wearing
the same pelvis orthosis.

II. HARDWARE

A. Motion Capture Equipment

Our experiments were conducted in the Gait Lab, The Uni-
versity of Edinburgh, seen in Fig. 2. The lab is outfitted with
a 12-camera motion capture system (Vicon, Oxford, U.K.) to
track reflective marker trajectories as well as a six-axis, split-
belt treadmill (Motekforce Link, Amsterdam, Netherlands) for
measuring ground reaction forces and moments. The ground
reaction force data is measured independently for each foot via
two force plates integrated in to the treadmill, which report both
forces and torques, i.e.,

fg = (fx, fy, fz, 0, Ty, 0) ∈ R6 (1)

as well as the centre of pressure on each force plate

cp = (cx, cy, cz) ∈ R3 (2)

where we have assumed that the vertical axis is in the y-direction.
Note that twists in other directions could be introduced if verti-
cal shear forces were present, e.g., when walking on unstable
ground, however, this is typically not the case in treadmill
walking.

Subjects also wore a Cortex Metamax 3BR2 system (Cortex,
Leipzig, Germany) for a portion of the experiment, which was
used to experimentally quantify the metabolic cost of walking.
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Fig. 2. (a) Subject walking in the Gait Lab, The University of Edinburgh. Equipment shown includes a Vicon motion capture system, Motek Medical treadmill
and active pelvis orthosis (APO). (b) Close-up of the APO worn by the same subject whilst walking. (c) Realtime capture of motion data via Vicon’s Nexus software
and the APO controller. (d) Subject walking whilst wearing a respiratory gas analysis device.

Fig. 3. Series of closeup images of the APO illustrating the various components, which comprise the device. Labels indicate the position of the orthotic shells,
fastening straps, and the three main components of the exoskeleton itself: the backpack, actuator housings, and carbon fibre lateral arms.

The device takes breath-by-breath measurements of the rates
of oxygen uptake and carbon dioxide output by the wearer. A
subject is seen wearing the device in Fig. 2.

B. Exoskeleton System

During our experiments subjects wore the active pelvis
orthosis (APO), a rigid pelvis exoskeleton, which is de-
signed to offer flexion and extension assistance at the hip
joint during walking [56]. This exoskeleton was developed
at The BioRobotics Institute of Scuola Superiore Sant’Anna
(Pisa, Italy); the technology is currently licensed to IUVO Srl
(http://www.iuvo.company, Pontdera, Italy). The version of the
APO used in this article is an evolution of an earlier design [56],
which is now fully portable featuring an on-board battery with
a total mass of 6.8 kg.

The physical structure of the APO consists of a backpack
segment, which houses the battery and internal electronics; hous-
ings for the actuation units; two carbon fibre lateral arms, which
contain a 4-bar power transfer mechanism [57]; and two carbon
fibre links, which interface directly with the human thighs. Two
orthotic shells attached to the backpack help to distribute the
weight from the device evenly over the subject. The exoskeleton
is secured to the wearer via a series of straps: one securing each
thigh to the corresponding carbon fibre link, two straps securing
the shoulders to the upper orthotic shell, and finally two further
straps, which secure the lower orthotic shell to the pelvis. The
components of the APO are labeled for reference in Fig. 3.

The APO is driven by two series elastic actuation units, which
drive flexion and extension assistance on either side of the
device [56]. Each actuator contains a 100 W dc motor in series
with torsional spring of stiffness 100 Nm/rad. A harmonic drive
and four-bar mechanism are used for gear reduction and power
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TABLE I
APO TECHNICAL SPECIFICATIONS

transmission, respectively. More detail on the actuation system is
provided by Giovacchini et al. [56]. Each actuation unit contains
an absolute encoder, which measures the angle of each hip, as
well as an incremental encoder, which measures the deflection
of the torsional spring, which is used in combination with the
known spring stiffness to compute the torque at each joint.

The APO is capable of producing a peak torque of 35 Nm [56],
however, for safe and consistent operation a limit of 15 Nm of
peak torque is recommended [57]. In our article, we found a limit
of 10 Nm more suitable to maintain consistent operation of the
device. The exoskeleton is controlled via a software interface
built in LabView, which allows access to a low-level torque
controller [56]. The absolute limits for extension and flexion
angle of the carbon fibre links are −27◦ and 108◦, respectively.
However, software limits are in place to limit the range of
motion to [−20◦, 85◦] in practice for purposes of safety. The
technical specifications of the APO provided in this section are
summarized in Table I for ease of reference.

III. EXOSKELETON CONTROL

In this section, we introduce and list for reference the four
high-level control modes used by the APO in this article.

A. Transparent Mode

In this mode, the APO commands a desired torque of 0 to
its low-level PD controller τdes = 0 resulting in no assistance
or resistance to the user as a result of the device’s natural joint
resistance [56].

B. Adaptive Oscillator Mode

Adaptive oscillator (AO) mode is designed to provide assis-
tance to drive the wearer naturally towards their intended future
joint angle. The APO applies an assistive torque according to
the following relationship:

τdes = Kν(θ(φ+Δφ)− θ(φ)) (3)

where Kν and Δφ are tunable parameters known as virtual
stiffness and phase lead, respectively, φ is the current phase of
the gait cycle, and θ is a function, which translates current phase
in to an approximation of the current hip joint angle [56]. In
other words, this control scheme applies torques proportional to
the difference between current and future joint angles, where the
future angle is determined by the phase lead, and the difference is
scaled by the selected virtual stiffness. Adaptive oscillators [58]
are used to estimate θ and φ from measured joint angles.

C. Human-in-the-Loop Mode

To employ the HIL approach for exoskeleton control, we
require a parameterized control scheme for the APO. We define
a generic assistance profile, which is constructed as a piece-
wise combination of sinusoidal curves linking four node points,
p ∈ N4, where pi ∈ (0, 100) and pi < pi+1 for i ∈ {1, 2, 3}. In
order from p1 to p4, the node points correspond to the points in
the gait cycle at which maximum extension, positive inflection,
maximum flexion, and negative inflection occur, respectively.
This generic profile is shown in Fig. 4(a). Mathematically, the
control signal applied via the APO is a piecewise combination
of sinusoids, which takes the following form:

u(x,p) =
1

2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

τe(sin(g(x,p) +
π
2 )− 1) 0 ≤ x ≤ p1

τe(sin(g(x,p)− π
2 )− 1) p1 ≤ x < p2

τf (sin(g(x,p)− π
2 ) + 1) p2 ≤ x < p3

τf (sin(g(x,p) +
π
2 ) + 1) p3 ≤ x < p4

τe(sin(g(x,p) +
π
2 )− 1) p4 ≤ x ≤ 100

(4)

where we define

g(x,p) = π

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(x+101−p4)
(100+p1−p4)

0 ≤ x ≤ p1
x−p1

p2−p1
p1 ≤ x < p2

x−p2

p3−p2
p2 ≤ x < p3

x−p3

p4−p3
p3 ≤ x < p4

x−p4

100+p1−p4
p4 ≤ x ≤ 100

. (5)

Here, x ∈ [0, 100] is the point within a gait cycle expressed
as a percentage, while τe and τf define the magnitudes of the
negative and positive peaks, respectively. These magnitudes are
determined according to the following relationships:

τe = c (6)

τf =
2

3
τe. (7)

The shape of the HIL control mode was based on sample
data collected of subjects walking with the APO in transparent
mode. With the node points p chosen appropriately in their
respective domains the resultant trajectory approximates that of
the normalized hip torque trajectories from the sample data, as
shown in Fig. 4(b). However, the width of the node point domains
were made sufficiently wide, as seen in the shaded regions of
the x-axis in Fig. 4(a), in order to allow for significant deviation
from these trajectories. The constant c in (6) was chosen based
on feedback regarding comfort from subjects, while keeping
in mind the hardware limitations of the APO. The conversion
factor of 2/3 between extension and flexion torque magnitude is
an approximation of what is observed in human gait data [59].

Previous works have indicated that optimal assistance mag-
nitude can vary significantly between individuals [27], which
suggests it would be suitable to include assistance magnitude
as a parameter in the optimization process. Our framework did
not take this approach as fixing the torque profile magnitude
allowed for the use of a more complex control curve shape
without requiring a significantly higher dimensional parameter
space, which in turn would require an increase in data collection
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Fig. 4. (a) Control parameterization utilised for this HIL study. The four parameters determining the shape of the assistance profile are represented by coloured
dots. Each parameter has an associated allowable range, which is indicated by a shaded region on the x-axis. (b) Typical mass-normalized hip torque curve, with
standard deviation, of transparent walking in the APO. This data corresponds to a total of 35 gait cycles from 7 subjects observed during steady treadmill walking,
from an existing dataset of APO-assisted locomotion [46]. The parameterised HIL controller was designed so as to be able to approximate this trajectory whilst
also allowing for significant deviations by varying the positions of the node points within the gait cycle.

times. Compared to two existing HIL implementations, which
have focused on providing unidirectional assistance via two-
dimensional (2-D) [28] or 3-D [27] control laws, this 4-D control
law allows for a smooth transition between extension and flexion
assistance.

D. Generic Mode

In this control mode, subjects receive two bursts of constant
torque to assist flexion and extension of the hip. The parameters
comprising this generic profile are based on a study in to the re-
lationship between exoskeleton assistance timing and metabolic
rate reduction in hip exoskeletons, which is discussed further in
Appendix A. Extension and flexion assistance begins at 92% and
40% of the gait cycle, respectively, with each burst of assistance
lasting for 25% of the gait cycle.

Mathematically, we can express the generic control signal as
follows:

u(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−τe 0 ≤ x < 17

τf 40 ≤ x < 65

−τe 92 ≤ x ≤ 100

0 otherwise

(8)

where again x ∈ [0, 100] is the point within a gait cycle ex-
pressed as a percentage, while τe and τf are as defined in Sec-
tion III-C. The relationship between peak flexion and extension
assistance specified in (7) was enforced to maintain consistency
with the HIL control mode.

IV. SIMULATION PIPELINE

A. Musculoskeletal Modeling

Our simulation framework utilises musculoskeletal modeling
software OpenSim [44] in combination with a model designed
for the evaluation of APO-assisted locomotion [46]. Muscu-
loskeletal modeling is an increasingly widely used technique

Fig. 5. Human-APO musculoskeletal model. The APO (shaded yellow) is
constrained to the gait2354 model via weld joints. Model markers (shown
in pink) are used to scale the model and perform inverse kinematics using
experimental markers collected from motion capture.

in the computational biomechanics community; allowing for a
wide variety of research studies in to human movement to be
carried out in simulation [60]–[62].

The human-APO model, shown in Fig. 5, is based on the
gait2392 model; a 3-D model of the human musculoskeletal
system, which has been shown to accurately reproduce human
gait patterns [63], [64]. For this article, we use a lower com-
plexity version of the gait2392 known as the gait2354 model,
which features 54 muscles, as opposed to 92 [65], resulting in
lower computational overhead. The APO is constrained to this
model via weld joints at the pelvis and at each thigh, forming
the human-APO system model. The masses, inertia matrices,
and geometrical features of the APO were obtained from CAD
files provided by IUVO.
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The generic human-APO model is calibrated for a particular
subject via a scaling step, which minimizes the squared error
between model markers and experimental markers from motion
capture. The residual reduction algorithm is then used to account
for discrepancies between the model and collected calibration
data, which may result due to approximations in the model [44].

B. Motion Reconstruction

OpenSim uses the Simbody dynamics engine [66] to perform
inverse dynamics by solving the multibody equation of motion
over time, i.e.,

τ = M(q)q̈+C(q, q̇) + g(q) + J(q)T fext (9)

where τ and q are the vectors of joint torques and joint angles;
M and J are the system mass matrix and Jacobian; C and g
give the nonlinear and gravity terms; and finally fext is the net
external force acting on the system, which typically in this case is
due to a combination of ground reaction forces and exoskeleton
assistance components.

Joint kinematics trajectories q(t) are obtained from experi-
mental data via least squares minimization. The problem solved
at each timestep is of the following form:

min
q

m∑
i=1

wi||pi − xi(q)||2 (10)

where pi is the 3-D position in space of the ith experimental
marker and xi is the 3-D position of the corresponding model
marker, which is dependent on q.

C. Static Optimization

The 23 degrees of freedom of the human-APO model are
driven by 54 musculo-tendon units (MTUs). Each MTU pro-
duces force φm according to its current normalized lengths λm,
velocities νm, and the level of muscle activation αm, i.e.,

φm = H(αm, λm, νm, πm). (11)

Here, H is a black-box function, which encodes the relationship
between generated muscle force, the current state of the mus-
culoskeletal model, and a set of muscle parameters πm. These
parameters include both muscle-specific quantities, such as max-
imum isometric force, and subject-specific quantities such as
optimal fiber length and tendon slack length. Muscle-specific
quantities are as specified in the generic gait2354 model, while
subject-specific quantities are calculated during the scaling step
outlined in Section IV-A. The behavior of H depends on the
muscle model used, which in this case is a modified version of
a Hill-type muscle model [67], referred to within OpenSim as
the Thelen 2003 muscle model. In practice, muscle forces are
computed internally within OpenSim’s static optimization tool
via the MATLAB API, using the scaled model and input motion
data for each subject.

Consider a time history of torques at each joint of the model,
as computed by (9). These joint torques are composed of force
contributions from the muscles of the model, which are mapped
in to joint space by a coupling matrix Cm determined by the

placement of the muscle relative to the joint [68]. For a given
joint j with c muscles crossing that joint, we have

τj =

c∑
m=1

φ�
mCm. (12)

For a known set of joint torques there are infinitely many
solutions for the corresponding muscle activations. To identify a
unique solution, we can optimize over some objective function;
in this article, we choose to minimize the sum of squared muscle
activations, i.e.,

min
n∑

m=1

(αm)2, (13)

where for our model we haven = 54. The process of solving (11)
and 12 while minimising (13) is known as static optimization.
Static optimization is significantly faster computationally than
dynamic tracking algorithms such as CMC, and previous work
has indicated that for relatively low-impact movements (e.g.,
walking) the differences in the obtained muscle activations are
minimal [69], [70].

D. Muscle Energetics

Once the muscle activations are known, we employ a muscle
energetics model to compute the energy expenditure for each
muscle. The muscle energetics model used is based on the
well-known model by Umberger [52] with modifications to the
recruitment of muscle fibres and the treatment of mechanical
work [53]. For simplicity we will again use a black-box function
U to express this model

ε̇m = U(αm, λm, νm, πm) (14)

where ε̇m is the rate of energy usage of muscle m. Through
summation over the full set of muscles we can compute the rate
of energy usage of the entire model as

ε̇ =
n∑

m=1

ε̇m (15)

where ε̇ can be seen as the overall energetic cost associated
with the movement. In practice, computing muscle energetics in
OpenSim is achieved via the use of a metabolics probe, which
when added to a musculoskeletal model solves (14) for each
muscle at each timestep of a recorded motion [53].

V. HIL OPTIMIZATION IMPLEMENTATION

In this section, we will outline the specific components of our
HIL protocol, particularly with reference to the schematic given
in Fig. 1, which outlines the generic HIL optimization structure.

A. Real-Time Measurement

The real-time measurement in the protocol consists of marker
trajectories and external forces collected in the University of
Edinburgh Gait Lab. As part of the processing steps outlined in
Section VI-E, the raw data is segmented in to synchronized gait
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cycles.1 Therefore, we have

P = {p1,p2, . . . ,pn} (16)

F = {f1, f2, . . . , fn} (17)

where P and F contain marker and external force data, re-
spectively, for n total gait cycles. Here, the external force data
includes contributions from ground reaction forces as well as
torques applied by the APO. Note that vectors in this section
are indexed by time, i.e., p1(t), but we leave this dependence
implicit in order to simplify notation.

B. Performance Metric

In the context of this article, the APO is worn with the intent to
reduce the metabolic cost of walking as much as possible. To this
end, we use metabolic energy expenditure as our performance
criterion for the HIL optimization, and aim to minimize this
over the course of our protocol. To avoid the lengthy collection
times associated with the use of calorimetry we instead simulate
metabolic energy usage. This is done using the human-APO
model introduced in Section IV-A alongside the simulation
capabilities of OpenSim.

The performance metric calculation occurs over several steps.
For each gait cycle, we first use the collected marker data
to define the motion of the model via inverse kinematics
(see Section IV-B)

Q = {q1,q2, . . . ,qn}. (18)

Then, we use the modeled joint trajectories and the measured
external forces to find the set of muscle activations, which cor-
respond to this motion via static optimization (see Section IV-C)

A = {α1, α2, . . . , αn} (19)

and compute the metabolic energy rate using a muscle energetics
model (see Section IV-D)

E = {ε1, ε2, . . . , εn}. (20)

Next, we compute the normalized metabolic rate for each cycle.
For the ith gait cycle, which begins at time ti−1 and ends at time
ti, we compute the rate of energy consumption, normalized by
subject mass M , as follows:

Vi =
1

M(ti − ti−1)

∫ ti

ti−1

ε̇i(t)dt. (21)

The final step in our performance calculation is to average the
simulated metabolic rate over all collected gait cycles

Vs =
1

n

n∑
i=1

Vi. (22)

We refer to Vs as the simulated metabolic rate. Note that, similar
to the experimentally measured metabolic rate Ve introduced in
Section VI-E,Vs expresses an approximation to the ground-truth
normalized metabolic rate V .

1Here, we use the common definition of a gait cycle as beginning at heel-strike
and ending at the subsequent heel-strike of the same foot.

C. System Update

The component of our system, which we seek to optimize
is the assistive torque profile applied by the APO. We consider
the parameterised control signal u(x,p) defined in (4) with the
following constraints placed on control parameter domains:

p1 ∈ [5, 25] (23)

p2 ∈ [25, 45] (24)

p3 ∈ [50, 80] (25)

p4 ∈ [70, 95]. (26)

These ranges were chosen to limit the search space for the
optimization while still allowing for significant flexibility in the
possible assistance patterns, and in particular were chosen so
as to allow for assistance profiles, which mirror human joint
torques [59].

D. Optimization Step

We employ the use of Bayesian optimization in order to drive
the selection of control parameters between loops of the HIL
protocol. Bayesian optimization is a method of identifying the
minimum of a function f : X → R, for some bounded set X ,
where samples from f can be readily obtained. To do so, a model
for f is created using Gaussian processes, and updated with
the data from successive samples. The appropriate points in the
domain at which to sample from are determined through the
optimization of an acquisition function, which determines the
most valuable point according to some criterion [71].

This optimization approach is particularly well suited to
minimizing functions, which are expensive to evaluate, and as
such has been used successfully in a number of previous HIL
optimization protocols [28], [30], [31], which by their nature
involve lengthy data collection steps. Here, the function we are
aiming to minimize is the unknown relationship between the
control parameters and the ground truth metabolic rate, i.e.,

V = fC
s (p). (27)

Here, we use the subscript s to denote that the learned policy
is specific to each subject and the superscript C to denote an
underlying set of context parameters, such as walking speed and
inclination, which may also affect this relationship.

Our optimization process is implemented in MATLAB using
MATLAB’s bayesopt function, which is an implementation
of Bayesian optimization, and takes place over a total of 24
iterations. The first 12 samples are randomly selected within the
domain, so as to avoid early convergence to a local minima,
while the latter 12 follow from optimization of the expected
improvement acquisition function [71].

VI. EXPERIMENTAL DESIGN

We tested our HIL framework on 7 healthy subjects, com-
prising 5 males and 2 females, none of whom presented with
gait pathologies. All subjects were adults between the ages of
22 and 34 and were volunteers from the students and staff of the
School of Informatics, The University of Edinburgh. Healthy
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Fig. 6. Top: the sequence of steps which took place over the 2-day experimental protocol. Middle: the structure of a single walking trial within the HIL optimization
step. The upper layer of the figure indicates whether the APO was in transparent or active mode, while the lower layer shows the period during which data was
collected. Bottom: the structure of the verification phase, during which subjects walk whilst experiencing a number of APO assistance modes. The ordering of the
four active assistance modes (red background) was randomized for each subject.

TABLE II
PHYSICAL AND EXPERIMENTAL SUBJECT PARAMETERS FOR HIL SUBJECTS

subjects of a young age were preferred in order to minimise
the risk of fatigue affecting the results of the HIL algorithm.
Ethical approval for the study was sought and granted from
the School of Informatics Ethics Committee, The University
of Edinburgh.

Our experimental protocol consisted of a model calibra-
tion step followed by two distinct phases: the parameter iden-
tification phase, in which subject-specific control parame-
ters were identified, and the verification phase, in which the
metabolic cost of walking with a number of control modes
was evaluated for each subject. In order to avoid subject fa-
tigue, these phases were conducted over a two day period.
Fig. 6 illustrates the main steps, which took place over each
day.

All subjects completed the same verification phase, however,
for comparison purposes two subjects undertook an identifica-
tion phase based on a simple grid sampling procedure, while
for the remaining five subjects the HIL protocol outlined in
Section VI-B was used. The search strategy employed for each
subject is noted in Table II.

A. Model Calibration

Subject mass and leg length were measured at the beginning
of the experiment and are presented in Table II. The baseline
walking speed for each subject was determined according to the
principle of dynamic similarity [72], as follows:

v =
√

FrgL (28)
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Fig. 7. Schematic outlining the structure of a single trial taking place during the identification phase. Raw data are collected and run through a series of processing
steps, producing data for four gait cycles. The normalized metabolic rate is computed for each cycle and averaged to produce a single measurement for the trial.
This measurement is input to the Bayesian optimization algorithm, which then suggests control parameters for the next trial.

where v is baseline walking speed, Fr is the Froude number
(chosen here to be 0.1), g is gravitational acceleration, and L
is leg length (measured as the vertical distance from the greater
trochanter to the medial malleolus). All subjects were made to
walk at a pace equivalent to 120% of their baseline walking
speed.

During this step, marker data from a static pose was collected
and used alongside subject mass to scale the generic human-
APO musculoskeletal model for each subject. Participants then
underwent a 60 s walk with the APO in transparent mode. Gait
cycles from the latter 30 s of this transparent mode data were
used to produce a dynamically consistent scaled model via the
RRA algorithm [44], and to identify the preferred stride time
for each subject, which was taken as the average time of stride
across all gait cycles. The preferred stride times for each subject
are presented in Table II.

B. HIL Parameter Identification

During the parameter identification step, subjects were parti-
tioned in to two groups: those undergoing HIL-based sampling
and those undergoing a simple grid search. The search strategy
employed for each subject is noted for reference in Table II.

Subjects undergoing the HIL-based search strategy completed
24 consecutive walking trials, each of which corresponded to a
single measurement for the optimization. Each trial lasted 60 s
and consisted of 30 s walking in transparent mode followed by
30 s of assisted walking. Ten seconds of motion data was col-
lected from the end of the assisted period, and used to compute
the mean metabolic rate for each tested control parameterization.
For reference, the trial structure described here is illustrated in
Fig. 6. Subjects were given feedback in the form of a 4-s audio
cue prior to any change in assistance mode, but after recording
was completed for that trial.

The data processing pipeline for each trial is presented in
Fig. 7. Up to eight gait cycles were selected from the 10 s of
motion data collected in each trial. Using OpenSim’s modeling

algorithms (see Section IV), the model kinematics, muscle acti-
vations, and corresponding metabolic rates were computed. Due
to the limited time available to complete the data processing, the
MATLAB Parallel Processing Toolbox was employed to execute
these modeling steps for each gait cycle in parallel. The normal-
ized metabolic rate was then calculated before being passed to
the bayesopt function to select the new control parameters.

The control parameters p were updated for each trial accord-
ing to the optimization step outlined in Section V-D. The first
12 sets of control parameters were selected randomly, so as to
avoid early convergence to a local minima, while the latter 12
were determined automatically by the Bayesian optimization
algorithm. Subjects were given a 5 min rest period between the
first and second block of walking trials. After 24 iterations the
optimal control parameters identified for each subject were noted
in preparation for the verification phase.

For subjects selected to undergo a grid search, the control pa-
rameters p were selected randomly from a coarse discretization
of the full 4-D parameter space. In this case, since any set of con-
trol parameters were selected independently from the previous
set, the trial structure outlined in Fig. 7 was simplified to 30 s
of assisted walking per trial, of which 10 s were recorded. The
optimal combination of control parameters was then estimated
via GP regression on the resultant simulated metabolic rate data.

C. HIL Verification

The verification step is designed as a sanity check on the
results of the parameter identification phase. We collect indi-
rect calorimetry from all subjects walking with assistance from
the APO in HIL mode, with the optimized control parameters
identified during each subject’s individual identification phase.
This data are used to compute the steady-state approximation of
metabolic cost as outlined in Section VI-E, which is widely used
in literature where metabolic cost of movement is studied [9],
[12], [73]. Then, we contrast this result with further indirect
calorimetry measurements taken in other exoskeleton control
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TABLE III
ASSISTANCE MODE ORDERING

Note: the AO mode measurement for Subject 1 was collected on a subse-
quent day due to an issue with the calorimetry hardware.

modes in order to objectively quantify the performance of the
HIL-optimized control scheme.

The control modes utilized by the APO are outlined in a
generic form in Section III. For reference, and more specifically,
the control modes, which were evaluated during this phase are
as follows.

1) Transparent mode.
2) AO mode.
3) Generic mode.
4) HIL mode, using subject-specific parameters identified via

the optimization phase.
Subjects walked at the speed calculated during their parameter

identification phase, and completed a 6-min walk per assistance
mode in two blocks of 12 min each. The blocks were preceded
by 2 min of warm-up walking in transparent mode, and were sep-
arated by a 5 min rest period. For reference, the structure of the
verification phase is depicted in Fig. 6. Reference measurements
of resting metabolic rate (RMR) and free walking metabolic rate
were also obtained, immediately prior to the main verification
phase procedure.

In order to reduce the potential effects of fatigue on the verifi-
cation phase results, as well as minimize any potential bias from
mode order, the sequence of the assistance modes was randomly
determined for each subject at the beginning of their verification
day. The generated sequences are reported for each subject in
Table III. Modes 1–4 in the columns of Table III correspond to
the same modes of the verification phase, as depicted in Fig. 6.

In addition to collecting quantitative metabolic data, par-
ticipants were also asked to rate the assistance modes they
experienced in terms of both comfort and assistance quality.
This was done at three distinct points during the verification
process.

1) After Block 1, comparing assistance modes 1 and 2.
2) After Block 2, comparing assistance modes 3 and 4.
3) Upon completion of the verification phase, comparing all

four assistance modes.
The purpose of the first two questions was primarily to pro-

vide subjects with a reference point for the relative strength of
each assistance mode, while the responses to question three are
considered the final responses for each subject and are discussed
in more detail Section VII. In addition to the assistance modes
listed above, subjects were given additional options for each

question in case the perceived difference in assistance or comfort
between modes was so slight as to be insignificant. For reference,
full details of questions posed to subjects in the verification phase
questionnaire are presented in Appendix B.

D. Analysis of Simulated Metabolic Cost

A number of previous works have used musculoskeletal mod-
eling to quantify metabolic cost [47], [53], [54]. At least one
work has sought to validate simulated metabolic cost approxi-
mations with respect to the ground truth of calorimetry data [55],
finding that in general simulated and experimental metabolic
rate are well corrolated. However, such studies are typically
concerned with human locomotion in isolation, without the ad-
ditional complexity of human-exoskeleton dynamic interaction.

To quantify the accuracy of the human-APO musculoskeletal
model in terms of metabolic cost approximation, an additional
experimental setup was devised to allow the simulated and ex-
perimental estimates of metabolic cost to be directly compared.
A total of three healthy subjects between the ages of 21 and
33, two male and one female, walked with assistance from the
APO whilst experiencing three levels of exoskeleton assistance.
For this experiment, subjects wore both the Vicon marker set
and the calorimetry device, enabling both simulated and ex-
perimental metabolic cost to be computed simultaneously. The
data collected from each subject included marker trajectories,
ground reaction forces, torques applied by the exoskeleton, and
respiratory measurements.

Model calibration was carried out, as discussed in Section VI-
A, and subjects again walked at 120% of their baseline speed as
calculated by (28). The physical characteristics of each subject
are summarized in Table IV, along with details of the control
mode and level of assistance experienced by each subject, as
well as the ordering of assistance levels. To examine the rela-
tionship between model complexity and accuracy of simulated
metabolic cost, two personalized musculoskeletal models were
calibrated for each subject: one based on the gait2354 model
and other the gait2392 model, both of which are lower-limb
focused musculoskeletal models included within OpenSim. The
gait2354 musculoskeletal model is an approximation of the
gait2392 model intended to reduce the computation time of
simulations [65].

Data was collected during four six min blocks (see Fig. 8).
The collection protocol consisted of a RMR during quiet sitting
followed by three active measurements of 6 min of calorimetry
data. The active blocks were preceded by a warm up period of
2 min during which the APO was placed in transparent mode.
A total of 3 min of motion capture data2 was collected per
assistance level.

E. Raw Data Processing

Marker trajectories and ground reaction force readings were
collected at 100 and 1000 Hz, respectively. The marker and

2Here, motion capture data refers to marker trajectories and recorded forces,
but not calorimetry data.
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TABLE IV
PHYSICAL AND EXPERIMENTAL SUBJECT PARAMETERS FOR METABOLIC COST SUBJECTS

Note: the meaning of the “Low,” “Medium,” and “High” parameters is dependent upon the active control mode. In the AO control mode, these
parameters correspond to virtual stiffnesses, while in the generic control mode these correspond to the peak value of flexion assistance. Subject
9 required a reduction in virtual stiffness due to a failure of the AO algorithm to stay in phase at high stiffness levels.

Fig. 8. Top: the overall structure of the experiment designed to investigate the
accuracy of simulated metabolic cost as a surrogate metric for experimental
metabolic cost. All steps were carried out as part of a 1-day experimental
protocol. Bottom: a breakdown of the structure of the experiment. First, a rest
measurement was taken from each subject during a period of quiet sitting.
Then, subjects walked at three distinct levels of effort, while measuring both
simulated and experimental metabolic cost. The ordering of the effort levels
was randomized for each subject.

ground reaction force data streams were automatically time-
synchronised via the use of a Vicon Lock+ box.

All marker data was first processed using Vicon’s Nexus soft-
ware with a combination of gap-filling algorithms and low-pass
filtering at 6 Hz using a Butterworth filter. Custom code was
developed to process the ground reaction force data using a
sequence of thresholding and filtering steps, and to segment
both the marker and ground reaction force data in to discrete
gait cycles via stance phase detection.

Breath-by-breath measurements of oxygen uptake were ob-
tained using the Cortex Metamax 3BR2 system. Each measure-
ment was conducted over a 6 min period. The data from the first
4 min of each measurement was then discarded, leaving 2 min of
usable data per measurement. Discarding the first 4 min ensures
that the data used in subsequent calculations corresponds to a
steady state of metabolic rate, which is necessary to account
for the physiological delay between instantaneous and mea-
sured energetic cost [40], and is standard practice when dealing
with experimentally measured metabolic rate data [9], [12],
[73].

To compute the metabolic rate from this experimental data,
we employ the following relationship from Brockway [55], [74]

Ve =
4.184

60
(3.972 + 1.078R)V̇ O2, (29)

where R is the respiratory exchange ratio and V̇ O2 is the mean
relative oxygen uptake measured in ml/min/kg, meaning Ve has
units of W/kg. Note that here we have used a subscript to denote
experimentally measured metabolic rate, which we consider
to be an approximation to the ground truth metabolic rate V ,
which describes rate of energy consumption per unit mass. The
experimentally measured metabolic rate, Ve, was averaged over
the 2 min of usable steady-state calorimetry data to produce a
single value per measurement.

VII. RESULTS

A. Human-in-the-Loop Optimization

All subjects successfully completed both stages of the exper-
imental protocol. In Table V, the optimized control parameters
identified for each subject are listed, along with the metabolic
rates found in each tested mode of assistance during the ver-
ification phase. The RMR value for S1 is unavailable due to
an error in the data collection during this period; similarly, the
AO measurement for S7 was discarded due to a failure of the
adaptive oscillator algorithm to synchronise with the gait of the
subject.

An analysis of the statistically significant differences between
subjects and control modes is presented in Fig. 9. Notably,
only S1 and S5 experienced a significant difference between
transparent mode walking and any of the other tested control
modes; the modes in question being HIL mode for S1, and both
HIL and generic mode for S5. The overall level of statistical
difference between control modes, when averaged over groups
of subjects, is presented in Fig. 10(a) and (b). Only the change
in HIL mode metabolic cost was statistically significant when
averaging over our entire cohort of subjects. The statistical
analysis of calorimetry data was carried out via a one-way
anova on the breath-by-breath calorimetry data, making use of a
combination of MATLAB’s anova1 and multcompare functions.

The mean metabolic rates for each assistance condition are
averaged over all subjects and are collated at the bottom of
Table V. On average, only the generic and HIL-optimized con-
trollers are able to reduce metabolic cost relative to transparent
mode walking, though, as seen in Fig. 10(b), the difference in
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TABLE V
OPTIMIZED CONTROL PARAMETERS AND METABOLIC RATE DATA

Note: bold font is used to denote the assistance mode with the lowest measurement of experimental metabolic rate for each subject.

Fig. 9. Boxplot diagram illustrating the experimental metabolic rate measure-
ments for each combination of subject and control mode. The central dot of each
box corresponds to the median of the group, while whiskers convey the upper
and lower quartile, and exterior circles denote outlier data points. Asterisks are
used here to represent significant differences between groups, with p < 0.05,
p < 0.01, and p < 0.001 represented by 1, 2, and 3 asterisks, respectively.

generic mode is not statistically significant. Among those modes
in which the subject is encumbered by the APO, the lowest
absolute metabolic cost is incurred by the HIL-optimized control
scheme.

The final responses from the participant questionnaire with
regards to perceived comfort and assistance level are provided
in Table VI. The number of subjects identifying each assistance
mode as either most comfortable or the mode, which provided
the best assistance is displayed in Fig. 11(a) and (b), respectively.
From these graphs, we see that the HIL-optimized mode was the
most likely to result in an assistance profile, which was perceived
as comfortable and helpful amongst all assistance modes.

We found that the shape of the optimized assistive torques
varied significantly between subjects. In Fig. 12(a), the mean
optimized torque profile over all subjects is shown, alongside
the individual torque profiles identified for each subject, while
the standard deviation associated with each control parameter is
provided in Table V. Our data suggests that the point of peak

TABLE VI
PARTICIPANT QUESTIONNAIRE RESULTS

Note: answers to the participant questionnaire were not
recorded for Subject 1.

hip flexion moment (pflex) in particular is the most susceptible
to variations between subjects, exhibiting more than twice the
error range of any other parameter. Meanwhile, the rising point
of inflection (prise) is the control parameter, which exhibits the
least variance.

Convergence is difficult to quantify for Bayesian optimiza-
tion protocols, due to a tendency for the algorithm to balance
exploring areas of the objective function, which are either high
variance or near the currently expected minimum. In Fig. 13(a),
we display the evolution of the iteration at which the minimum
value of simulated metabolic cost was achieved. This quantity
indicates how many iterations have passed since the Bayesian
optimization has successfully sampled a lower point of the ob-
jective function, i.e. found a control parameterization resulting
in lower metabolic rate, in this case. From this figure, we see a
leveling off of the minimum index trace for each subject, which
ranges from iteration 6 at the earliest for S5 to iteration 18 at
the latest for S4. A more detailed example evolution of control
parameters is shown for a specific subject in Fig. 13(b).

B. Simulated Metabolic Cost

All subjects completed the experimental protocol without
issue, meaning the full 6 min of calorimetry data and 3 min
of motion capture data was collected for each combination of

Authorized licensed use limited to: University of Edinburgh. Downloaded on February 28,2022 at 13:06:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GORDON et al.: HIL OPTIMIZATION OF EXOSKELETON ASSISTANCE VIA ONLINE SIMULATION OF METABOLIC COST 13

Fig. 10. Boxplots illustrating the behavior of the verification phase data averaged over subjects. Here, the median value for each measurement is indicated by a
red line. (a) Data from Subjects 2–6 averaged over all tested assistance modes. (b) Data from all subjects, averaged over the transparent, HIL and generic control
modes. The asterisks indicate a significant difference with p < 0.01.

Fig. 11. (a) Number of subjects who selected each APO control mode as the most comfortable. (b) Number of subjects who selected each APO control mode as
providing the best level of assistance.

assistance level and subject. In Fig. 14, the simulated and mea-
sured metabolic rates are shown for each subject. For reference
purposes, recordings of APO torques collected from S2 and S3
are displayed in Fig. 12(b), to provide a visualization of the AO
and generic control modes.

In our results, simulated metabolic rate significantly overesti-
mates the ground truth metabolic cost for all subjects, though to
a lesser degree for S3 than S1 or S2. Metabolic cost is slightly
lower when simulated using the gait2392 model compared to the
gait2354 model, however, the general trend over effort levels is
consistent between both models. Both methods for estimating
metabolic cost are similarly noisy for S1 and S2, whereas for
S3 simulated metabolic cost is significantly less noisy than
experimental metabolic cost. This perhaps suggests that the
generic control mode leads to a more consistent gait pattern
than the AO control mode. In general, the relationship between

metabolic cost and effort level is captured most accurately by
the simulation methods for S2. For S1, the simulation-based
approach incorrectly categorizes Effort Level 2 as the most
energy efficient while according to the experimental measure
this level incurred the highest energy cost. The relationship
for S3 similarly was not captured by the simulation measures,
though this subject exhibited a particularly minimal difference
in experimentally measured metabolic cost between assistance
modes, perhaps suggesting that the generic control mode was
not effective at any magnitude for this subject.

VIII. DISCUSSION

A. Human-in-the-Loop Optimization

The HIL-optimized control scheme, which results from our
framework performs favourably compared to the two other
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Fig. 12. (a) Mean control profile (blue) obtained by averaging the obtained control parameters over all subjects, overlaid with the standard deviations (red) of each
control parameter at the corresponding node points. To illustrate the range of assistance profile shapes, each individual optimized profile is also shown (light grey)
with extension magnitude normalized to 1. (b) Recordings of torques applied by the APO during the metabolic cost experiments. The applied torque trajectories
for the AO and Generic control modes are shown, for S2 and S3 respectively, averaged over five gait cycles. The generic torque profile commanded to the APO is
shown in red. Both samples were taken from Level 3 of the assistance order for each subject.

Fig. 13. (a) Trace of the iteration at which the minimum objective value was observed for each subject undergoing HIL-optimization via Bayesian optimization.
Note that Subjects 6 and 7 are not included as their parameter identification phase relied on a grid search. (b) Diagram showing a sample of control parameter
evolution for a single subject (S1). Shaded regions show the allowable values for the corresponding parameter. The random selection of control parameters is
evident in the first 12 iterations, after which point the Bayesian optimization algorithm begins to converge towards a solution.

active controllers, and is the only control mode, which results
in a statistically significant reduction in metabolic cost when
compared to transparent mode walking, as shown in Fig. 10(b).
However, our results also indicate that the efficacy of the ex-
oskeleton control modes is highly affected by variations between
subjects. To better illustrate the relative performance of the tested
control schemes, we treat the cost of transparent-mode walking
as a baseline and calculate relative reduction in energetic cost
for the AO, generic, and HIL controllers. These results are
displayed in Fig. 15 for Subject 1 and Subject 5. We observe
that the metabolic benefit of the AO control scheme is minimal
in both cases. Meanwhile, the generic control scheme offers
a marked reduction in metabolic cost of approximately 10%

when compared to the baseline for both subjects. We find that
using the subject-specific control parameters identified by our
optimization, we are able to further improve energy efficiency
by a factor of 1.86 when compared to the generic controller for
S1, compared to no relative gain for S5.

Though the generic mode performs similarly for S1 and
S5, the results are quite different across the remainder of our
dataset, and indeed the generic control mode results in in-
creased metabolic cost for S4, S6, and S7. Comparatively, the
HIL-optimized mode results in decreased metabolic cost for
all subjects except S7. This is an interesting and quite unex-
pected result—the generic control mode was initially expected
to perform fairly well for most or all subjects, being based on
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Fig. 14. Series of boxplots depicting results from the comparison between simulated and measured metabolic cost for all 3 subjects. The effort levels 1–3 are
ordered as listed in Table IV. Metabolic rate was calculated in simulation using both the gait2354 and gait2394 models, as well as indirectly from calorimetry data.
Labels in blue indicate the columns of each graph which relate to each calculation method.

Fig. 15. Relative reduction in metabolic rate of the active control modes for (a) S1 and (b) S5, expressed as a percentage of the energetic cost of walking in
transparent mode. Labels indicate the relative magnitude of reduction between modes.

a controller, which was optimized to be effective on a group
level [20]. The poor performance of the generic mode over a
portion of our dataset may indicate that the optimal exoskeleton
assistance strategy is even more sensitive to subject parameters
than was expected. Meanwhile, the poor performance of the HIL
mode for S7 could be as a result of the grid search algorithm
used to identify the control parameters for this subject, though
it should be noted that the generic control mode also performed
poorly. More data are required to quantify the relative impor-
tance of the Bayesian optimization driven search algorithm,
however, a key advantage of this approach when compared to
grid search methods is scalability to higher dimensions of control
parameterization.

An interesting point of note is that subjects of similar mass and
assistance level can exhibit markedly different results for each
of the tested assistance modes. This is clear when comparing
the results for, e.g., the HIL-optimized and generic modes for S4
and S5. Typically, human-in-the-loop optimization protocols use
force and torque magnitudes which are fixed or scaled relative
to subject mass. These results suggest that a more appropriate

approach may be to include the maximum torque as an optimiza-
tion parameter. It is likely that this would require too significant
of a time investment for traditional HIL frameworks, which rely
on calorimetry; however, this may be an interesting source of
future work for our simulation-based framework.

While our HIL framework shows a statistically significant
improvement compared to transparent walking, none of the
tested control modes were able to consistently exceed the energy
efficiency of walking without the exoskeleton over multiple
subjects. Bettering the energy efficiency of not only transparent
walking but free walking also is a difficult challenge, especially
for a hip exoskeleton with on-board actuation and, thus, higher
mass than, e.g., a soft exosuit. Nevertheless, ultimately the goal
of exoskeletons for metabolic assistance is to improve the energy
efficiency of walking in absolute terms, and so further work is
required to improve the relative metabolic cost benefits of our
approach.

The differences in optimized control strategies seen in
Fig. 12(a) are likely due in part to the natural variations occurring
between subjects, both in terms of the physical characteristics
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Fig. 16. Comparison of gait data between Subject 1 and Subject 2. These plots were obtained from data collected during the model calibration phase, which
corresponds to 30 s of walking in transparent mode. (a) Mean and standard deviation of hip flexion/extension kinematics. (b) Mean and standard deviation of hip
flexion/extension moments, normalized by subject mass. (c) Comparison of a range of gait metrics - stance ratio (SR), GRF peak ratio (GR), step width (SW), hip
flexion/extension range of motion (HK), normalized peak to peak hip torques (HT). Asterisks denote a p-value of 0.001 and 0.05 for 3 asterisks and 1 asterisk,
respectively.

listed in Table II and in specific locomotion strategies. To
elucidate these internal differences, a sequence of diagrams is
provided to compare and contrast various aspects of gait between
two of the participants. In Fig. 16(a) and (b), respectively, we
compare the hip kinematics and mass-normalized hip torques
between Subject 1 and Subject 2, as measured during transparent
walking while wearing the APO. In Fig. 16(c), we use the
same dataset to compare a range of kinematic and dynamic gait
metrics between the two subjects. These subjects were chosen
as S1 experiences the most benefit from exoskeleton assistance,
compared to S2 who experiences almost no change in any mode
according to the values in Table V. The metrics tested include
stance ratio, GRF peak ratio, step width, hip flexion/extension
range of motion, and peak-to-peak hip torques (see Appendix
C for a more thorough description of these gait metrics). We
find statistically significant differences in 3 of the 5 tested
gait metrics, indicative of a disparity in underlying locomotion
strategies, but note no significant difference in peak-to-peak hip
torques or step width.

Although the primary objective of this article was to target
metabolic cost reductions, the postexperiment questionnaire
results [see Fig. 7(a)] indicate that our control parameterization
was both comfortable and gave the perception of increased
assistance. It is particularly notable that no other active control
mode was selected as the most comfortable. Although previous
work has shown that subject perception does not necessarily
match true metabolic cost [20], it is likely that subject comfort
would be an important factor in promoting adherence to rehabil-
itation regimes or exoskeleton assistance programs, especially
if the subject required assistance for extended periods of time.
Therefore, increased comfort is a desirable characteristic.

Thus far, the focus of this article has been on collecting data
from healthy participants, with a view to targeting exoskeleton
assistance for metabolic rate reduction. For people who deviate
significantly from normal gait patterns, such as those with gait
pathologies, exoskeleton controllers based on datasets of healthy
subjects are more likely to interfere with their walking style.
Therefore, the personalized control schemes generated by HIL
frameworks such as ours may be even more beneficial. Our

framework, while implemented here using metabolic cost as the
objective function, could be easily extended to further use-cases
due to the depth of analysis enabled by the musculoskeletal mod-
eling approach. For example, rather than looking at metabolic
rate as a whole, physiotherapists could select specific muscles
to target for assistance or training, depending on the needs of
the subject. Such muscles could include deep muscles, which
are hard to target experimentally (e.g., via EMG sensors).

B. Simulated Metabolic Cost

A potential weakness of our approach to the HIL optimization
framework is a reliance on modeling assumptions, which are
not present in traditional HIL protocols. The results discussed
in Section VII-B suggest that modeling accuracy was to some
degree dependent on both subject kinematics and the control
mode applied.

A potential explanation for the discrepancies in simulated
metabolic cost lies in the incomplete personalization of mus-
culoskeletal models. In Section IV-C, we noted that the muscle
parameters πm include a mix of muscle-specific and subject-
specific quantities. As a result of the scaling step mentioned in
section IV-A, the musculoskeletal models used in this article
were to some degree personalized for each individual subject.
However, due to the challenge of directly measuring muscle
properties from each subject, some muscle parameters, e.g.,
maximum isometric force, retained their generic values. Con-
sequently, it is possible that the simulated metabolic cost was
over or underestimated for subjects which significantly deviate
from the physiological measurements on which the gait2392
and gait2354 models are based [65]. An interesting source of
further study would be to investigate the sensitivity of our HIL
optimization framework to these muscle-specific parameters;
conducting a more detailed functional calibration for each sub-
ject could result in more personalized musculoskeletal models,
which compute metabolic cost more accurately, and hence,
perform better in our framework.

Additional tuning of musculoskeletal model parameters is
likely to be necessary for subjects with pathological gait; recent
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Fig. 17. Aomparison of the time taken per individual measurement between a
number of recent HIL works [27], [28], [30] and the approach presented in this
article (“Current Work”).

studies have identified sensitivities to muscle parameters in both
metabolic cost estimates of poststroke gait [75] and contact
forces in the knee of an amputee walking with a prosthesis [76].
An additional source of further work for our framework will be
to investigate the potential of musculoskeletal model calibration
techniques [77] in combination with alternative objective func-
tions, with the aim to recruit patients with gait pathologies. The
input of a doctor or physiotherapist would be valuable in such
cases to ensure that any modifications to muscle parameters are
appropriate for the physiology of the subject.

C. Computational Efficiency

A key motivation for pursuing a human-in-the-loop opti-
mization protocol with a simulated objective function was the
potential benefit in terms of time investment. The results we have
presented here involve only 60 s per iteration of the HIL process,
compared to at least 120 s, but often longer, for methods based
on calorimetry [26]–[30].

Total time of a HIL protocol is dependent upon factors like
complexity of control parameterization and number of initial
seed parameters, so it is difficult to directly compare this metric
between studies. However, the length of an individual trial or
measurement—for example, a single measurement of metabolic
cost—is directly comparable. As set out in Fig. 6, the time
required for each of our measurements was 60 s. In Fig. 17,
we compare this trial time to a number of other recent studies,
which have investigated the use of HIL optimization to reduce
metabolic cost [27], [28], [30]. Our approach is more time-
efficient than existing protocols, even where a more complex
metabolic cost approximation method is used to shorten data
collection times to 2 min [27], [28].

The 60 s required for our measurements can be further de-
composed in to four phases: acclimatization, recording, raw
data processing, and OpenSim processing. Acclimatization and
recording times were fixed at 15 and 10 s, respectively. The total
time for raw data processing (in Vicon’s Nexus software) and

OpenSim analysis (solving for inverse kinematics and subse-
quently static optimization) did not exceed 35 s, aided by the use
of MATLAB’s Parallel Processing Toolbox in combination with
a high-spec computer processor (Intel(R) Core(TM) i9-9900KF,
3.60 GHz, 8 cores).

It should be noted that aspects of our HIL protocol involve
additional overhead in terms of offline computation, e.g., initial
scaling and calibration of musculoskeletal model, which does
extend the total time taken. Crucially, however, subjects are not
required to walk or otherwise generate data during this time, and
so this does not incur any additional fatigue. A drawback of our
approach is the requirement for a computer processor, which is
sufficiently powerful to run static optimization at the required
speed.

IX. CONCLUSION

In this article, we have presented a framework for optimiz-
ing exoskeleton control strategies based on a combination of
musculoskeletal modeling and human-in-the-loop optimization.
By leveraging the strengths of both approaches, our method
can produce assistance strategies, which outperform generic
controllers while requiring less time investment (particularly
for participants) than recent state-of-the-art human-in-the-loop
optimization methods. This is critical if these approaches are to
be used for those with injuries or gait pathologies, where long
experimental protocols are not an option, and so that increas-
ingly complex control parameterizations can be investigated.
Our method could also be useful for labs with motion analysis
equipment and experience in musculoskeletal modeling, but
without the ability to measure metabolic rate via calorimetry.

The results presented here further highlight the sensitivity
of exoskeleton assistance strategies to differences between sub-
jects, be they resulting from physical differences in height or
limb length (for example), or variation in internal locomotion
strategies. Even off-the-shelf control schemes, which have pre-
viously exhibited strong performance on the group-level were
detrimental to the walking efficiency of some of our subjects.
This highlights the need to identify personalized control strate-
gies, which work well on an individual level—indeed, this is
the primary strength of pure human-in-the-loop approaches.
This need is, again, even more pertinent for those with gait
pathologies, whose walking patterns are likely to be further
removed from the normal trajectories on which many generic
assistance controllers are based.

Further work remains to be done on the combined approach
of musculoskeletal modeling and human-in-the-loop optimiza-
tion, particularly to improve the accuracy of modeling human-
exoskeleton interaction, and to explore alternate search strate-
gies. However, we believe that this intersection of fields has a
great potential benefit for the growing community of people who
benefit from assistive robotic devices.

APPENDIX A
GENERIC ASSISTANCE PROFILE

The form of the generic assistance mode used in this in-
vestigation is based on a previous study in which the authors
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investigated the effect of assistance onset timings on the per-
formance of a hip exoskeleton [20]. A range of possible onset
timings for hip flexion and extension assistance was tested on
a set of 10 healthy subjects. They found that on average the
combination of timing parameters, which reduced metabolic
rate most effectively was 92.2% for the onset of hip extension
assistance and 40.2% for the onset of hip flexion assistance.
The duration of applied assistance was 25% for both flexion
and extension. This particular study was chosen over similar
alternatives [18], [19], [21] due to similarities in exoskeleton
hardware (i.e., use of a rigid pelvis exoskeleton).

APPENDIX B
QUESTIONNAIRE FORMAT

As part of the verification phase outlined in Section VI-C,
subjects were asked a series of questions regarding the perceived
level of assistance and comfort offered by the tested control
schemes. Subjects were asked to compare the control modes
immediately after each block of the verification phase (see
Fig. 6) and once again after completing the full experiment.
For reference purposes, the full series of questions posed in the
questionnaire is reproduced below.

1) You have just experienced Assistance Mode A followed by
Assistance Mode B.
a) Which of the two modes, if either, did you find most

comfortable?
1) Mode ii) Both the same iii) Not sure

b) Which of the two modes, if either, do you think best
assisted your walking?
1) Mode ii) Both the same iii) Not sure

2) You have just experienced Assistance Mode C followed by
Assistance Mode D.
a) Which of the two modes, if either, did you find most

comfortable?
1) Mode ii) Both the same iii) Not sure

b) Which of the two modes, if either, do you think best
assisted your walking?
1) Mode ii) Both the same iii) Not sure

3) You have now finished the verification phase of the experi-
ment. You experienced four assistance modes in the order
A, B, C, D.
a) Which of the four assistance modes, if any, did you find

most comfortable?
1) Mode ii) No one mode was best iii) Not sure

b) Which of the four assistance modes, if any, do you think
best assisted your walking?
1) Mode ii) No one mode was best iii) Not sure

APPENDIX C
GAIT METRICS

Gait metrics are commonly used to assign quantitative mea-
sures to recorded gait patterns [46]. In Section VII, we compare
the values of 5 kinematic and dynamic gait metrics between two
subjects. The metrics used along with their definitions are as
follows.

Fig. 18. Example trajectory of vertical ground reaction force of the leading
foot over a gait cycle. The locations of the primary and secondary force peaks
used in the calculation of the GRF peak ratio gait metric are shown.

1) Step width is defined as the medial-lateral distance be-
tween the heel of the subject at consecutive heel strikes.

2) Stance ratio is defined as the proportion of the gait cycle
in which the leading foot is in stance.

3) GRF peak ratio is the ratio between the primary and
secondary peaks of the vertical ground reaction force of
the leading foot (see Fig. 18).

4) Hip flexion/extension range of motion is the absolute
difference between the points of maximum and minimum
hip flexion.

5) Peak-to-peak hip flexion/extension torque is the absolute
difference between the maximum and minimum hip flex-
ion torque, normalized to subject mass.
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