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Abstract— Exoskeletons have the potential to increase the
independence and quality of life of patients with walking
pathologies. To do this effectively, the exoskeleton requires a
control paradigm that can determine the timing and magnitude
of assistance that is suitable for the user’s task and environment.
This paper searches for a metric that can be optimised,
enabling assistance to be applied without compromising the
energy efficiency and stability of gait. Spatial and temporal,
kinematic, kinetic, and other novel dynamic stability metrics
were compared across three different assistance scenarios and
five different walking contexts. Results demonstrated that three
metrics: step width, medial-lateral centre of pressure displace-
ment, and medial-lateral margin of stability were the most
invariant. This result suggests dynamic stability metrics are
optimised in human gait and therefore are potentially suitable
metrics for optimising in an exoskeleton control paradigm.

I. INTRODUCTION

In recent years, a large number of lower-limb exoskeletons
have been developed to provide assistance to users with
lower-limb pathologies [1]. Current exoskeletons are largely
used in supervised clinical settings and are not being used
to enhance independance in daily life [2]. If exoskeletons
are to become widely used devices outside of a clinical
setting it is important that a suitable control paradigm is
developed that applies the correct assistance that is task and
environment specific. Current control paradigms frequently
use normalised kinematic trajectories [3], muscle amplifica-
tion [4], or finite state controllers [5]. The respective issues
with these paradigms are that the kinematic trajectory might
not be appropriate for the user’s task or their environment,
the muscle firing patterns may be abnormal, and there are a
large number of parameters to tune. There remains a need
to develop a control paradigm that works effectively for
different tasks and in different enviornments. It is known that
the human neuromuscular system optimises energy efficiency
and stability [6]. By studying the effect of different walking
contexts and constant perturbations (applied via an exoskele-
ton) on healthy walking, it is posited that there will be an
underlying invariant metric that reflects the optimisation of
energy efficiency and stability of human gait. This metric can
then be optimised as part of an exoskeleton control paradigm
enabling asistance to be applied without compromising the
stability and energy efficiency of the human gait. Previous
work has been carried out to determine what effect walking
speed [7]–[9], the environment [10], [11], and exoskeleton
forces have [12]–[14] on a user’s gait but these are con-
strained by using limited metrics and for the work done on
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exoskeletons, limited walking contexts.
In this study, a neuromuscular human and exoskeleton

model is presented. Experimental data was collected using a
unique setup, combining kinematic, kinetic, and exoskeleton
angular and torque data. Using this data, metrics were
compared between three walking scenarios: walking without
an exoskeleton, walking with an exoskeleton in transparent
mode, and walking with an exoskeleton in assistive mode.
For each of these scenarios five different walking contexts
were investigated: walking at baseline speed, walking up an
incline, walking down an incline, fast walking, and slow
walking. To carry out the analysis a number of metrics
were selected including spatial and temporal parameters,
kinematic, kinetic, centre of pressure (CoP), centre of mass
(CoM), and other novel dynamic stability metrics. These
metrics were then compared to identify the metrics which
demonstrated the most invariance and therefore would be
suitable for optimising in an exoskeleton control paradigm.

II. METHODS

A. Model development

The exoskeleton which we use to provide assistance is
the Active Pelvis Orthosis (APO) [15] (see Figure 1(a))
developed by IUVO. The APO provides a force applied to
the thighs of the user transmitted via two carbon fibre lateral
arms which are actuated by series elastic actuation units.

The APO developers adapted work by Ronsse et al. [16]
to construct a high-level assistive controller, which generates
a zero-delay estimate of the hip angles during gait and
calculates a desired torque which is proportional to the
estimated change in hip angle. A constant virtual stiffness
parameter is used to calculate the torque necessary to drive
the user’s joint positions towards their expected future values.
The APO can also be operated in ‘transparent mode’, where
the system provides no assistance to the user and the joints
are free of resistance.

Our unique model was developed in OpenSIM [17] (see
Figure 1(b)) and consists of a human system and the APO.
We took a pre-exisiting OpenSIM human model with 92
muscles and 23 DOF [18]–[21] and constrained the APO to
it with three weld constraints, located between the backpack
and the pelvis and between the two links and the femur. The
APO mass and inertia properties were imported from a CAD
model.

B. Experimental protocol

To carry out the experiments approval from the School
of Informatic’s Ethics Panel was received. Eight participant
were recruited to undertake data collection who all gave
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Fig. 1: (a) The Active Pelvis Orthosis (APO) (b) Overview of the APO OpenSIM model’s constraints, bodies, and degrees of freedoms (1) APO
backpack (2) Weld constraint between APO backpack and pelvis (3) APO group (right) (houses the actuators) (4) APO free joint (6 DOF) (5) APO link

(R) (6) Weld constraint between APO right link and right femur (c) the experimental setup

informed consent. Kinematics were collected using a six
camera motion capture system (Vicon, Oxford, UK) and
ground reaction forces and moments were collected using a
six axis, split belt instrumented treadmill (Motekforce Link,
Amsterdam, Netherlands) (see Figure 2). The marker set used
was adapted from the Cleveland marker set and consisted of
33 markers, 8 of which were solely used for the purpose of
scaling the model. Figure 1(c) demonstrates the experimental
set up.

To capture data in different contexts we set up a script
in the Motek D-Flow software that allowed the subject
to walk in 5 different contexts: at baseline walking speed
with no incline (BW), at baseline walking speed with an
incline of 5°(UW) and with an incline of -5°(DW), at a fast
walking speed (FW), and at a slow walking speed (SW). BW
was calculated using the principle of dynamic similarity as
described by the Froude number [22]:

v =
√
Fr · g · L (1)

where v is the baseline speed, Fr is the Froude number
(chosen to be 0.1), g is gravitational acceleration (9.81m/s2),
and L is leg length (as measured from the greater trochanter
to the medial malleolus). The speeds for FW and SW were
calculated by adding and subtracting 20% to the baseline
speed respectively. Each context was timed to last 135
seconds, with data collection triggered to happen after 120
seconds to allow for the participant to become accustomed
to the context. For time synchronisation, the D-flow script
sent a command to a relay box to trigger the Vicon data
capture and the APO to record data whilst simultaneously

starting to record the kinetic data. The kinematics, ground
reaction forces and moments, and APO data were captured
at 100Hz, 600Hz, and 100Hz respectively. The contexts were
repeated for 3 different assistance scenarios: one without the
APO (NE), one with the APO set in transparent mode (ET)
and one with the APO set in assistive mode (EA) with the
virtual stiffness set to 15Nm/rad.

C. Post-processing

Before the data could be analysed, several post-processing
steps had to be undertaken (see Figure 2). For the kinematic
data the MoNMS toolbox [23] was used for the majority
of the processing. For the ground reaction forces and mo-
ments custom scripts were written in MATLAB. The motion
capture data gap filling was undertaken in Vicon’s software
Nexus. A combination of the built in algorithms were used
including the spline fill, the pattern fill, and the cyclic fill.

The kinematic data was then low-pass filtered with a zero-
lag 4th order Butterworth filter and transformed from the
Vicon axis system into the OpenSIM axis system.

For the ground reaction forces, the first step was to
compensate for data collected when the treadmill was tilted
and therefore causing gravity to work in a different direction
to the forceplate sensors. The ground reaction forces were
then filtered using a zero-lag 4th order Butterworth filter with
a 6Hz cut-off. For the next step a threshold filter was applied
to the ground reaction forces and moments that set all values
equal to zero when the vertical force was less than 40N.
This was implemented because CoP values are unstable when
the vertical ground reaction forces are low. Additionally, it



Fig. 2: A schematic demonstrating the data collection and analysis pipeline

Metric Dim. Notation Unit

Step width 1 - cm
Step frequency 1 - steps/min
Sagittal hip angles RoM 1 θhip-RoM ∈ R1 °
Sagittal peak to peak hip torques 1 τhip-pp ∈ R1 Nm/kg
CoM displacement 2 CoMdisp ∈ R2 mm
CoP displacement 2 CoPdisp ∈ R2 mm
Margins of stability 2 MoS ∈ R2 mm

TABLE I: The metrics’ dimensions, notations, and units.

Subject Height (m) Weight (kg) Walking velocity (m/s)

BW FW SW

S1 1.84 76.4 0.95 1.14 0.76
S2 1.79 67.1 0.95 1.14 0.76
S3 1.74 58.8 0.94 1.13 0.75
S4 1.76 77.2 0.94 1.13 0.75
S5 1.88 83.0 0.97 1.18 0.78
S6 1.80 61.4 0.96 1.15 0.77
S7 1.77 66.6 0.97 1.16 0.78
S8 1.80 75.8 0.95 1.14 0.76

TABLE II: The subjects’ anthropometric features and walking
velocities.

filtered out any noise during the swing phase of the gait
cycle when there should be no forces applied to the foot.
After applying the threshold, the CoPs were calculated and
the global forceplate moments were required to be converted
into free moments around the foot. Finally, the D-flow axis
system was transformed to the OpenSim axis system.

Data analysis

The developed human/APO model was scaled for each
subject using 3D marker data at bony landmarks captured
during a static pose. The processed data for each subject were
divided into 10 gait cycles (5 right and 5 left). Using this
processed data in conjunction with the human/APO model
and various OpenSIM tools, joint angles were calculated via
inverse kinematics and joint torques calculated via inverse
dynamics. CoM positions and velocities were calculated via
the Analysis tool and the dynamically consistent joint angles
via RRA [17] (see Figure 2)). Using these outputs 10 metrics
were then calculated (see Table I).

Step width was determined as the medial-lateral distance
between the lateral malleolus markers at the heel strikes of
consecutive steps.

Step frequency was calculated as the inverse of the time
between the heel strikes of consecutive steps.

The hip range of motion (θhip-RoM), hip peak to peak
torques (τhip-pp), and CoM displacements (CoMdisp) were
calculated by subtracting their respective maximum values
from their minimum values over the gait cycle. For the CoP
displacement ( CoPdisp), this was calculated as the maximum
value minus the minimum value over the stance phase period.

The margins of stability MoS were calculated as specified
by Hof [24]:

MoS =

∣∣∣∣umax − (x+
v

ω0
)

∣∣∣∣ (2)

where umax is the boundary of the base of support, x is the
centre of mass position, v is the centre of mass velocity, and
ω0 is equal to:

ω0 =

√
g

l
(3)

where g is the acceleration of gravity and l is the distance
from the pelvis ASIS to the lateral malleolus.

D. Statistical analysis

To investigate the effects of the exoskeleton assistance
and the walking context on the metrics, a two-way ANOVA
was used. For the post-hoc analysis, the MATLAB mul-
tiple comparison procedure ’multcompare’ was used with
the comparison type based on Tukey’s honestly significant
difference criterion. The statistical significance level was set
at α = 0.05.

For pairs of context and assistance scenarios which
demonstrated a significant difference in the mean of a metric,
the effect size was measured by computing the absolute
value1 of Cohen’s d. These values were then averaged to
produce a quantitative measure of invariance for each metric

1The decision to take the absolute value was motivated by an interest in
the magnitude of an effect rather than it’s direction.



Quantity Value OpenSIM Benchmark

RMS Residual force (N) 7.1± 3.4 < 10
Peak Residual force (N) 17.9± 7.6 < 25
RMS Residual moment (N) 7.3± 4.0 < 50
Peak Residual moment (N) 16.9± 8.7 < 75

TABLE III: RRA residuals in OpenSim.

(a)

(b)

Fig. 3: (a) Step width and (b) step frequency percentage difference from
baseline, categorised by walking context and assistance scenario. Black

lines represent significant differences.

relative to changes in assistance level, changes in walking
context, and overall.

III. RESULTS

The anthropometric measurements and calculated walking
velocities for each subject are presented in Table II.

Running the RRA tool for all the data sets generated RMS
and peak residuals for FX, FY, FZ, MX, MY, and MZ. All
the average forces were less than the thresholds specified by
the OpenSIM developers (see Table III).

For each metric and for every context and assistance sce-
nario the percentage difference from the baseline condition
(no exoskeleton assistance and walking at baseline speed)
is demonstrated in Figures 3-7. Additionally, the mean and
standard deviation values for every context and assistance
scenario combination are detailed in the Table IV.

(a)

(b)

Fig. 4: (a) θhip-RoM and (b) τhip-pp percentage difference from baseline,
categorised by walking context and assistance scenario. Black lines

represent significant differences

Invariance over contexts

By undertaking ANOVA for each metric, the pairs of
contexts with significant different means were calculated
and are displayed in Figures 3-7. By comparing between
metrics, it is demonstrated that step width, CoP-MLdisp, and
MoS-MLdisp are the most invariant in terms of the numbers of
significant differences. When considering the effect sizes (see
Figure 8), the same three metrics also demonstrate Cohen’s
d values that indicate between small (d = 0.2) and medium
(d = 0.5) effect sizes. All of the other metrics show effect
sizes of greater than medium.

Invariance over assistance scenarios

Similarly to the contexts, the pairs of assistance scenarios
with significant different means were calculated (see Figures
3-7). The metrics with the most invariance by number of
significant differences are the CoP-APdisp and similarly to
the context results, the MoS-ML. After factoring in the effect
sizes (see Figure 9) the same two metrics and in addition the
CoM-MLdisp and MoS-AP metrics demonstrate Cohen’s d
values that indicate between very small (d = 0.1) and small
effect sizes. The other metrics demonstrate effect sizes of
between small and medium.



(a)

(b)

Fig. 5: (a) CoP-APdisp and (b) CoP-MLdisp percentage difference from
baseline, categorised by walking context and assistance scenario. Black

lines represent significant differences.

Summary

Figures 3-7 demonstrate that step width and MoS-ML are
the most overall invariant metrics with 3 and 4 significant
different pairs of means respectively. In Figure 10 are the
average effect sizes for each of the metrics. For step width,
CoP-MLdisp, and MoS-ML the Cohen’s d values were be-
tween 0.2 and 0.5, which is an effect sizes of small to
medium. The small effect size for the CoP-MLdisp significant
differences suggest that it is also an invariant metric.

IV. DISCUSSION AND FURTHER WORK
It is well known that walking speed is a cause of gait

variability for kinematic, kinetic, and CoMdisp metrics [7]–
[9] and the results from this study also demonstrate the
same findings. This study demonstrates that step frequency
increases due to speed and anecdotally suggests that step
length increases as well (step length was not included in
the analysis due to unavailability of complete consecutive
step data for some of the participants due to cross-talk on
the force plates). The step width was demonstrated to be
invariant with only one significant difference with a small
effect size between walking downhill and walking at a fast
speed. Walking speed causes variation for the CoP-APdisp
and the CoP-MLdisp metrics, however, the effect on the
CoP-MLdisp is small and only between the fast and baseline

(a)

(b)

Fig. 6: (a) CoM-Vdisp and (b) CoM-MLdisp percentage difference from
baseline, categorised by walking context and assistance scenario. Black

lines represent significant differences.

walking speed contexts. In addition, walking speed affects
the MoS-AP and MoS-ML, similarly to the CoPdisp there is
only a small effect in the medial lateral direction between
the slow and baseline walking speed contexts. It is a logical
result that walking speed has a greater effect on the metrics
measured in the anterior posterior direction compared to the
medial lateral direction because walking speed is a change
of direction mainly in the anterior posterior direction.

The effect of walking up and down an incline, similarly to
speed has previously been demonstrated to have significant
kinematic and kinetic changes [10] and the results from
this study support this result. In additional to the effects on
kinematics and kinetics the results from this study indicate
that walking on an incline affects the CoM-Vdisp and that
walking down an incline affects the step frequency, the
CoM-Vdisp, the CoM-MLdisp, and the MoS-AP. The increase
in step frequency is expected due to a shorter step length
being taken. The effects on the CoM vertical displacement
are also expected due to the change in height caused by the
slope. The effect on the MoS-AP are expected because this
measures the stability in the backwards direction and it is
clear that when the torso is tilted forwards then the MoS-AP
values will increase. Neither walking up or down an incline
had any effect on the MoS-ML.

This study demonstrates there are significant differences



AS Step width (cm) Step frequency (steps/min)

BW UW DW FW SW BW UW DW FW SW

NE 17 ± 4 17 ± 3 18 ± 5 17 ± 4 16 ± 4 103.4 ± 8.7 103.5 ± 9.8 109.4 ± 9.0 108.8 ± 8.5 88.3 ± 6.7
ET 16 ± 4 16 ± 2 16 ± 3 15 ± 4 16 ± 3 98.7 ± 14.8 101.3 ± 6.9 105.7 ± 6.5 104.9 ± 12.3 83.9 ± 8.8
EA 16 ± 3 16 ± 3 16 ± 3 15 ± 4 16 ± 4 104.3 ± 5.3 105.4 ± 6.7 110.1 ± 6.9 109.2 ± 12.9 93.7 ± 7.5

AS θhip-RoM(Sagittal hip angles RoM (°)) τhip-pp(Sagittal peak to peak hip torques (Nm/kg))

BW UW DW FW SW BW UW DW FW SW

NE 36.0 ± 3.0 47.2 ± 3.8 30.4 ± 3.6 40.0 ± 3.2 34.7 ± 3.7 0.98 ± 0.2 1.24 ± 0.2 0.91 ± 0.2 1.23 ± 0.2 0.76 ± 0.2
ET 38.4 ± 2.7 50.3 ± 2.7 33.3 ± 3.8 42.7 ± 2.8 37.6 ± 3.5 1.02 ± 0.2 1.23 ± 0.2 0.97 ± 0.1 1.27 ± 0.1 0.80 ± 0.2
EA 39.6 ± 3.6 49.0 ± 3.0 32.0 ± 3.2 42.2 ± 3.1 36.0 ± 5.2 1.12 ± 0.1 1.33 ± 0.1 1.08 ± 0.2 1.44 ± 0.3 0.91 ± 0.2

AS CoP-APdisp(CoP anterior posterior displacement (mm)) CoP-MLdisp(CoP medial lateral displacement (mm))

BW UW DW FW SW BW UW DW FW SW

NE 419.1 ± 52.2 420.2 ± 56.8 413.4 ± 57.7 484.9 ± 83.7 403.3 ± 50.3 32.2 ± 14.6 31.3 ± 9.6 28.1 ± 13.6 36.8 ± 16.8 37.5 ± 20.3
ET 434.7 ± 45.8 431.3 ± 46.7 439.6 ± 81.8 508.0 ± 51.6 427.5 ± 49.2 37.0 ± 16.5 37.2 ± 13.8 31.5 ± 14.9 41.2 ± 16.9 40.7 ± 28.5
EA 444.9 ± 65.4 419.2 ± 55.1 418.1 ± 79.9 519.9 ± 101.5 390.5 ± 51.4 40.1 ± 18.2 40.2 ± 14.8 42.1 ± 18.2 48.4 ± 24.2 41.5 ± 18.4

AS CoM-Vdisp(CoM vertical displacement (mm)) CoM-MLdisp(CoM medial lateral displacement (mm))

BW UW DW FW SW BW UW DW FW SW

NE 30.0 ± 4.9 36.0 ± 6.0 35.0 ± 6.0 34.4 ± 4.0 26.6 ± 4.1 58.5 ± 19.7 55.0 ± 13.6 53.2 ± 19.3 49.8 ± 17.6 68.0 ± 23.2
ET 30.7 ± 4.8 37.6 ± 4.7 34.5 ± 5.9 38.4 ± 5.8 28.9 ± 5.1 55.0 ± 18.8 54.0 ± 12.2 51.6 ± 16.7 51.6 ± 16.0 72.1 ± 18.5
EA 31.7 ± 4.1 37.8 ± 5.0 33.4 ± 4.6 38.6 ± 5.7 28.9 ± 4.0 52.0 ± 13.7 51.1 ± 12.2 45.4 ± 14.3 45.4 ± 12.6 64.2 ± 18.7

AS MoS-AP (Margins of stability - anterior posterior (mm)) MOS-ML (Margins of stability - medial lateral (mm))

BW UW DW FW SW BW UW DW FW SW

NE 104.0 ± 36.1 101.8 ± 46.9 157.8 ± 45.4 120.8 ± 46.1 59.3 ± 36.3 68.8 ± 16.9 70.2 ± 18.6 72.05 ± 17.4 69.5 ± 20.6 63.3 ± 21.7
ET 90.2 ± 34.8 102.3 ± 39.6 135.6 ± 32.6 112.3 ± 25.6 39.8 ± 30.8 71.8 ± 17.3 70.1 ± 17.2 66.16 ± 15.3 71.75 ± 18.6 62.2 ± 18.6
EA 97.5 ± 25.7 112.5 ± 40.8 144.5 ± 41.9 125.5 ± 36.5 64.4 ± 30.1 68.7 ± 18.7 69.4 ± 15.8 70.0 ± 21.4 70.3 ± 18.5 66.8 ± 16.2

TABLE IV: mean ±SD of metrics categorised by walking context and assistance scenario.

(a)

(b)

Fig. 7: (a) MoS-AP and (b) MoS-ML percentage difference from baseline,
categorised by walking context and assistance scenario. Black lines

represent significant differences.

Fig. 8: The context average effect sizes.

between the θhip-RoM caused by context and assistance sce-
nario changes. This result aligns with the work by d’Elia et
al. [25], and similarly their claim that the differences between
the assistance scenario θhip-RoMs are within natural varation of
gait is also applicable. There was a significant increase in the
τhip-pp from the ET to the EA scenario. This result suggests
a disagreement with a study by Lewis and Ferris [14],
which found that the net torques did not change between
walking with an exoskeleton in passive mode and with it
in assistive mode. The result from our study suggests that
torque from the exoskeleton is not entirely being transferred
to the individual, which is quite probable due to the non-
rigid attachments of the exoskeleton. There is a significant
increase in the CoP-MLdisp from the NE and the ET and
EA scenarios, which can be attributed to the extra weight
of the exoskeleton laterally located to the participant. One
consideration for the above findings is that the effect sizes
for all the metrics for the assistance scenarios were between
small and medium, which suggests the differences are small
between the assistance scenarios. This is in contrast to the



Fig. 9: The assistance scenario average effect sizes.

Fig. 10: The overall average effect sizes.

context effect sizes, where 6 out of the 10 metrics had large
or greater effect sizes.

All the metrics demonstrated some significant differences
due to the changes in walking context and assistance sce-
nario. After factoring in the effect sizes the most invariant
metrics were shown to be the step width, the CoP-MLdisp,
and the MoS-ML. All three metrics have been demonstrated
to be associated with stability [6], [24], and [26] therefore it
is intuitive that they remain fairly constant despite changes
in walking context and the application of small constant
perturbations. The CoP and MoS metrics are more suitable
for use in a control paradigm because they can be calculated
at any given time during a gait cycle and therefore enable a
significantly more responsive controller. To determine which
metric should be implemented in a control paradigm it is
important to study the invariance of the metrics over a
gait cycle and the changes in the metric between healthy
individuals and those with gait pathologies.
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