
  

 

Abstract— Recent work on myoelectric prosthetic control 

has shown that the incorporation of accelerometry information 

along with surface electromyography (sEMG) has the potential 

of improving the performance and robustness of a prosthetic 

device by increasing the classification accuracy. In this study, 

we investigated whether myoelectric control could further 

benefit from the use of additional sensory modalities such as 

gyroscopes and magnetometers. We trained a multiclass linear 

discriminant analysis (LDA) classifier to discriminate between 

six hand grip patterns and used predictions to control a robotic 

prosthetic hand in real-time. We recorded initial training data 

by using a total number of 12 sEMG sensors, each of which 

integrated a 9 degree-of-freedom inertial measurement unit 

(IMU). For classification, four different decoding schemes were 

used; 1) sEMG and IMU from all sensors 2) sEMG from all 

sensors, 3) IMU from all sensors and, finally, 4) sEMG and 

IMU from a nearly optimal subset of sensors. These schemes 

were evaluated based on offline classification accuracy on the 

training data, as well as with taskrelated metrics such as 

completion rates and times for a pickandplace real-time 

experiment. We found that the classifier trained with all the 

sensory modalities and sensors (condition 1) attained the best 

decoding performance by achieving a 90.4% completion rate 

with an average completion time of 41.9 sec in real-time 

experiments. We also found that classifiers incorporating 

sEMG and IMU information outperformed on average the ones 

that only used sEMG signals, even when the amount of sensors 

used was less than half in the former case. These results suggest 

that using extra modalities along with sEMG might be more 

beneficial than including additional sEMG sensors. 

 

I. INTRODUCTION 

The majority of  state-of-the-art robotic prosthetic hands 
are controlled by using surface electromyography (sEMG), 
that is electrical activity recorded non-invasively on the skin 
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surface, which when pre-processed can be utilized to 
command the prosthetic hand [1,2]. Currently, amputees 
using prosthetic hands are trained to memorize and execute 
specific motion sequences which are then mapped to pre-
defined grasp types. These correspond to a general family of 
human hand formations that we naturally employ whilst 
approaching to grasp an object. Different approaches have 
been proposed in the literature for grasp categorization, 
mainly based on observations of the way humans naturally 
grasp objects [3,4]. Research has identified the most 
commonly used grasp types [5], as well as hand synergy 
models that are deployed for performing grasps [6]. This 
information has been used to successfully control under-
actuated prosthetic hands such as the Touch Bionics i-Limb

1
, 

Bebionic
2
, Vincent hand

3
, and Ottobock Michelangelo

4
 in a 

natural looking way. 

Commercial prosthetic devices mostly employ on-off 
control strategies. Although such methods are 
computationally simple and perform robustly, they 
dramatically increase the mental effort required by the user. 
Furthermore, the number of different grasps that can be 
executed by the prosthesis is limited by the users' ability to 
memorize and perform the distinct motions required. 
Machine learning techniques have been used to analyze and 
map recorded sEMG activity to grasp types in a more 
intuitive way. A variety of classifiers have been evaluated in 
the literature with promising performance, often achieving 
offline classification accuracy higher than 97% [7-11]. 
Recently, pattern recognition has been employed in a 
commercial myoelectric control application

5
 allowing the 

decoding of wrist pronation/supination, wrist 
flexion/extension and hand opening/close in real-time. 

A limiting factor of pattern recognition-based myoelectric 
control is the lack of stability and predictability of the 
prosthesis performance. Biddiss et al. [12] investigated the 
reasons of abandonment of the use of upper-extremity 
prostheses, including myoelectric controlled ones, and 
reported that 88% of patients chose to stop using prosthetic 
hands because they found them “too tiring and difficult to 
use”. Therefore, to incorporate classification methods in 
prosthetic hand control, prostheses have to perform robustly 
and predictably.  

One way of achieving more robust pattern recognition-
based control is by improving the decoder's classification 
accuracy. Recently, the impact of incorporating additional 
sensor signals in the decoding process other than sEMG has 

 
1 http://www.touchbionics.com 
2 http://bebionic.com/the hand 
3 http://vincentsystems.de/en 
4 http://www.living-with-michelangelo.com/gb/home 
5 https://www.coaptengineering.com 

Real-Time Classification of Multi-Modal Sensory Data for 

Prosthetic Hand Control 

Iris Kyranou, Agamemnon Krasoulis, Mustafa Suphi Erden, Kianoush Nazarpour, Sethu Vijayakumar 

6th IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob)
June 26-29, 2016. UTown, Singapore

978-1-5090-3287-7/16/$31.00 ©2016 IEEE 536



  

been investigated in terms of classification accuracy. 
Gijsberts et al. [13] and Fougner et al. [14] have observed 
higher offline classification performance when acceleration 
information measured on the users' forearm was taken into 
consideration. Based on that evidence, Fougner et al. 
suggested that in any two-site EMG system it is preferable to 
add an accelerometer affixed to the forearm, rather than 
including a third electrode. These findings naturally raise the 
question of whether the use of additional sensory 
information, such as angular velocity and orientation could 
further enhance the performance of pattern recognition-based 
myoelectric control. To the best of our knowledge 
gyroscopes and magnetometers have not been previously 
used in the context of upper extremity myoelectric control. 
Moreover, the previously mentioned studies [13,14] 
performed only an offline analysis, rendering essential the 
investigation of whether the inclusion of extra sensory 
modalities can prove beneficial for myoelectric control 
during online experiments. 

In this study, we simultaneously record sEMG activity 
along with acceleration, rotational velocity and orientation by 
using inertial measurement unit (IMU) sensors. Each IMU 
sensor integrates a three-dimensional (3D) accelerometer, a 
3D gyroscope and a 3D magnetometer measuring 
acceleration, angular velocity and orientation, respectively. 
We compared the performance of a multiclass linear 
discriminant analysis (LDA) classifier using solely sEMG 
activity, IMU information or a combination thereof. For the 
latter case, we also investigated the effect of using a smaller 
number of sEMG/IMU sensors as compared to the other three 
cases. The decoding performance was assessed by comparing 
offline classification accuracy on the initial training data, as 
well as real-time control performance considering task-
related metrics, such as completion rates and times for a pick-
and-place experiment by controlling a robotic prosthetic hand 
in real-time. 

II. MATERIALS AND METHODS 

For the purposes of this study, a real-time pick-and-place 
experiment was designed.  A full pipeline for recording  

sEMG and IMU activity, data pre-processing, motion 
classification and prosthetic control was developed and 
implemented using the Robot Operating System (ROS) and 
custom-written software in C++. The pipeline is summarized 
in Fig. 1 and explained in detail in the following sections. 

A. Signal Acquisition 

Muscular activity and IMU information (3D acceleration, 
3D angular velocity and 3D orientation) were recorded with 
12 wireless Trigno™ IM sensors

6
. An example of the raw 

input data as recorded from the first sensor while one of the 
subjects grasped three different objects is depicted in Fig. 2. 
For sensor placement, we followed the NinaPro protocol 
[15]; eight of the twelve sensors used were placed equally 
spaced around the subjects' forearm, two were targeted to the 
flexor digitorum superficialis (FDS) and extensor digitorum 
superficialis (EDS) muscles and the remaining two were 
placed on the biceps and triceps brachii muscles over the 
skin. Sensors were securely fixed with elastic bandage. 

 
6 http://www.delsys.com/products/wireless-emg/ 

 
Fig. 1. Pipeline for data recording and pre-processing, grasp 

classification and control of the prosthetic hand. 

 

TABLE I. EXTRACTED FEATURES FOR SEMG AND IMU DATA 

Feature Definition (per channel) 

Mean Average Value (MAV)     
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Where N is the number of samples, p  the order of the autoregressive model (p=4),    the     

autoregressive coefficient,    the     sample of the signal. 

 

 

 

  

 

Fig. 2. The raw sEMG, accelerometer (ACC), gyroscope (GYR) and 
magnetometer (MAG) readings from one sensor while one subject 

grasps different objects (from left to right: bottle, credit card, key). 
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The acquisition sampling rate was 2 kHz for EMG and 
128 Hz for IMU signals. A unique timestamp was associated 
with each data sample and the two time-series were post-
synchronized by up-sampling the IMU signals to 2 kHz (i.e. 
interpolation). 

B. Signal pre-processing and feature extraction 

To remove the artifact noise, muscular signals were band-
pass filtered in the range 20 Hz to 500 Hz using a 4th order 
digital Butterworth filter. Subsequently, features were 
extracted from sEMG and IMU signals by using a sliding 
window approach. The length of the window was set to 256 
ms with 200 ms overlap, yielding a feature sample every 56 
ms. 

Following the results of Scheme et al. [16], Hahne et al 
[17] and our previous work [18], a combination of four time-
domain features were extracted from each sEMG signal, 
namely the mean absolute value (MAV), waveform length 
(WL), log-variance (lVar) and 4th-order auto-regressive 
model (AR) yielding four coefficients as features, hence 
providing a total of seven features per EMG channel (Table 
I). For IMU signals, we computed the mean value (MV) 
within the processing window, therefore each sensor 
contributed a total of nine features; one MV feature for each 
dimension of the 3D accelerometer, 3D magnetometer and 
3D gyroscope. All features were mean subtracted and 
normalized to unit standard deviation.  

The dimensionality of the feature space was defined by 
the input modality and the amount of sensors used in each 
condition (Section 2C).  For instance, in the case of using 
solely IMU information from all 12 sensors, the input feature 
vector was 108-dimensional (9 features/channel × 12 
channels). 

C. Classifier 

To build a mapping from sEMG/IMU activity to grasp 
types a multi-class linear discriminant analysis (LDA) 
classifier was implemented. Some of the advantages of using 
an LDA classifier are its computational simplicity and, 
perhaps more importantly, its probabilistic nature. At each 
step, the classifier estimates a multinomial distribution over 
the predicted motion. The class with the highest posterior 
probability is then predicted and the uncertainty about the 
prediction is encoded in the posterior probability distribution. 
The number of decoded classes in our experiment was     
(see Section 2D).  

Four classifiers were trained and tested in each 
experimental session, which corresponded to four distinct 
decoding schemes according to the input modality/modalities 
and number of sensors used in each case. The four conditions 
are summarized in Table II.  

For condition 4, a subset of sensors was identified via a 
greedy sensor selection algorithm and used for prediction. 
The method was developed by extending the classic 
sequential forward feature selection algorithm [19]. Briefly, 
the algorithm was initialized with an empty sensor set and a 
pool of available sensors that included all 12 electrodes. In 
each iteration, the sensor which yielded the highest 
classification accuracy was added to the set and removed 
from the pool of available sensors. This procedure was 
repeated until all sensors were added to the set, and thus 
provided a ranking for all 12 electrodes. The number of 
selected sensors was defined by using the “elbow method”, 
that is by choosing the first n sensors such that the inclusion 
of additional ones would yield an accuracy improvement of 
less than     . The number of sensors, n, in our experiments 
was always in the range 4-6. This procedure was performed 
during training only. At execution time, only the input signals 
(both sEMG and IMU) from the selected sensors were used 
for decoding. 

D. Experimental Protocol 

Eight able-bodied male subjects participated in the study. 
All subjects were right-handed and had no known 
neurological problem. Each subject participated in a single 
experiment that lasted on average 1.5 hours. Prior to the 
experimental sessions, the subjects were asked to sign an 
informed consent participation form. All experiments were 
approved by the local Ethics Committee of the School of 
Informatics, University of Edinburgh. 

Following sEMG/IMU sensor placement (Section 2A), 
the subjects’ fingers were constrained in a fist formation by 
using elastic bandage and, finally, a prosthetic hand was 
mounted on the subjects’ forearms by using a custom made 
socket for this purpose. For this experiment, we used the 

TABLE II. DECODING CONDITIONS FOR ONLINE MYOELECTRIC 

CONTROL EXPERIMENT 

Condition Sensory Input 
Number 

of 
sensors 

Input feature 
dimensionality 

1 sEMG & IMU 12 192 

2 sEMG 12 84 

3 IMU 12 108 

4 sEMG & IMU 4-6 48-96 

 

 

Fig. 3. Twelve electrodes were placed on the subject’s forearm and 

securely fixed with an elastic bandage. The subject’s fingers were 
constrained with bandage as well and the prosthetic forearm was 

mounted on the hand using a specially designed socket for this 

purpose. 
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Touch Bionics Robo-limb prosthetic hand which offers the 
potential of individual control of 6 degrees-of-freedom 
(DOFs); flexion/extension of the five fingers and thumb 
rotation. The hand was operated by a laptop via a CAN bus 
connection. The full setup including the sEMG/IMU sensors 
and the prosthetic hand mounted on a subject's forearm is 
shown in Fig. 3. 

The experimental environment is depicted in Fig. 4. 
Participants sat on a chair in front of a computer desk. They 
were asked to use the prosthetic hand to grasp the objects 
which were located on the desk and relocate them by 50 cm 
in the right direction.  Each trial consisted of relocating three 
objects and finally pressing the “space” key on a computer 
keyboard. Each object was labeled with a unique number (1-
4) and was also associated with a specific grip type. The 
objects used in the experiment along with the corresponding 
grips are presented in Table III. The total number of classes 
predicted by the decoders was six, including four grips, the 
“open hand” motion and the “rest position”. The latter class 
corresponded to keeping the joints of the prosthesis fixed at 
their current angles (i.e. no action taken). 

The experimental sessions consisted of three phases, a 
short preparatory phase, the training phase and, finally, the 
testing (i.e. real-time classification) phase.  

1) Preparatory Phase 

As mentioned above, the participants' hands were 
constrained during the experiments to refrain participants 
from moving their fingers and in this way to mimic an 
amputee scenario as closely as possible. During the training 
phase, the participants were asked to perform imagery grasps 
of a series of objects by activating their muscles, though not 
being able to move their fingers. This activity might feel 
unnatural, thus a short preparatory phase consisting of two 
full trials was introduced to allow the subjects to familiarize 
with the experiment. During this stage no data were recorded. 

2) Training Phase 

 During the training phase, labeled training data were 
collected to be used for the supervised training of decoders. 
At this stage, subjects performed five consecutive trials of 

imagery movements whilst data were collected from the 
sEMG/IMU sensors. Participants were instructed to reach the 
objects with their right hand and apply forces as they would 
normally, should their hands not be constrained. 
Simultaneously, they were asked to indicate the executed 
movement (class 1-5 in Table III) by pressing the 
corresponding number on a computer keyboard with their left 
hand. When no key was pressed (i.e. in between movements), 
the “rest pose” class was assumed. During the training phase, 
the prosthetic hand was switched off maintaining the rest 
position that is shown in Fig. 3. 

3) Testing Phase 

 During the testing phase, participants controlled the 
prosthetic hand by using sEMG and/or IMU signals. 
Participants performed five trials for each experimental 
condition, as explained in Section 2C and in Table II. All 
trials were initiated by a “Go” cue and finished when the 
“space” key was pressed on the computer keyboard. The time 
taken to accomplish each trial was measured by the 
experimenter and a trial was considered successful when it 
was accomplished within 60 sec. This amount of time was 
long enough to allow for the correction of a small number of 
misclassifications. As misclassification we consider a 
pregrasp which is not the intended one that corresponds to the 
object the subject wants to grasp (pregrasps that correspond 
to different objects are listed in Table III). 

The classifier yielded a grip prediction and a 
corresponding posterior probability every 56ms. A 
classification prediction led to a control action only when the 
posterior probability of the most probable class exceeded a 
pre-defined threshold. The threshold was set empirically to 
       . The controller was implemented as a state 
machine, which means that a new action was taken only 
when the execution of the previous action was over. When 
the performed pregrasp was different to the intended one, 
participants were instructed to open the hand (class 5 of 
Table III) and try performing the movement again. 

During the design of the experiment, care was taken into 
creating a process that would not favor one configuration 
over another. To account for the effect of the learning 
mechanisms that take place during real-time myoelectric 
control [20], the decoding condition order was counter-
balanced across participants. The possible combinations of 
four conditions are 24, but we only had 8 subjects. Thus, we 
randomized the sequence of the conditions in every 

TABLE III. OBJECTS USED IN EXPERIMENTS AND CORRESPONDING 

GRIPS 

Class Object Grip 

0 - Rest pose 

1 Bottle Cylindrical 

2 Card Lateral 

3 CD Tripod 

4 Keyboard key Index point 

5 - Open pose 

 

 
Fig. 4. Experimental environment. The three objects; the bottle, 

the card and the CD (numbered ‘1’, ‘2’ and ‘3’ respectively) are 

moved from their original position to the ‘X’ spot and the trial 

finishes.  
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experiment in a controlled way, so as none of the previous 
sequence was repeated and every condition appeared exactly 
twice in the same position across all the experiments. 

III. RESULTS 

The performance of the four types of decoders examined 
in this study was evaluated in terms of offline classification 
accuracy on the collected training data, as well as in terms of 
completion rates and times in the real-time control 
experiment. 

A. Offline Evaluation 

The mean classification accuracies of all four conditions 
averaged across participants are presented in Table IV. The 
classification accuracy metric is defined as the ratio of correct 
predictions over the total number of classified instances.  

The decoder that incorporated both sEMG and IMU 
information from all 12 electrodes (condition 1) achieved the 
highest training accuracy, followed by the decoder that only 
used IMU information (condition 3). The decoder that 
combined sEMG and IMU information from a reduced 
number of sensors (condition 4) achieved slightly lower 
average classification accuracy outperforming the sEMG-
only based classifier (condition 2). 

B. Real-Time Control Evaluation 

To assess online myoelectric performance we employed 
two task-related metrics widely used in the literature [21, 22], 
namely the completion rate (CR) and completion time (CT).  
The completion rate is defined as the percentage of 
successful trials, whereas completion time refers to the time 
required to accomplish a successful trial. 

Mean completion rates and times for all conditions are 
presented in Fig. 5. In line with offline decoding results, the 
highest performance was achieved by the decoder that 
incorporated sEMG and IMU information from all available 
sensors. Nevertheless, contrary to the trend observed for 
offline classification accuracy, the next best performance was 
achieved by the decoder that combined sEMG and IMU 
information from a selected subset of sensors.  This was 
achieved using on average 5.38±0.92 (mean±std) selected 
sensors across participants, which corresponds to less than 
half of the initial number of sensors. 

The EMG-only condition performs faster than the IMU-
only condition, but presents a lower success rate than the 
latter. This indicates that subjects were more successful in 
accomplishing the tasks using information only from IMU 

compared to the EMG-only condition, but the tasks took on 
average more time to complete than those using only EMG 
information.  

C. Discussion of Results 

The current study sought to investigate whether 
myoelectric prosthetic control could benefit from the 
inclusion of IMU information measured by accelerometers, 
gyroscopes and magnetometers placed on the users' forearm. 
Our work was motivated by previous studies that reported 
increased offline classification accuracy when accelerometry 
information was incorporated in the decoding process [13, 
14]. Nevertheless, these studies did not validate such findings 
with online myoelectric control experiments. Furthermore, 
information from gyroscopes and magnetometers has not 
been previously employed in upper limb pattern recognition-
based myoelectric control.  

We hypothesized that by including extra sensory 
information recorded with IMUs the real-time performance 
of the prosthetic hand would improve. This hypothesis was 
supported by the results of both offline analysis and the 
online experiments. Interestingly, when sEMG information 
was completely discarded and only IMU features were 
considered, the average completion rate was 79%, which was 
higher than the case where solely EMG information was used 
(70% completion rate). It is worth noting, however, that the 
completion times were higher on average in the former case 
(Fig. 5). The significance of including additional sensory 
information might become more obvious when we consider 
the results for condition 4, where sEMG and IMU 
information were combined but a considerably smaller 
number of sensors was used. These decoders consistently 
outperformed solely sEMGbased decoders, even though the 
number of sensors in the former case was reduced to less than 
half. This finding is extremely important from a clinical 
perspective, since in real-life applications it is essential to use 
a minimal number of sensors.  

In accordance with previous studies [21, 23], we observed 

that the results obtained via purely offline analysis do not 

TABLE IV. AVERAGE TRAINING CLASSIFICATION ACCURACY 

Condition Sensory Input 
Number 

of 
sensors 

Offline 
classification 

accuracy 
(mean±std) 

1 sEMG & IMU 12 94.5±2.7 

2 sEMG 12 82.8±6.9 

3 IMU 12 92.8±3.8 

4 sEMG & IMU 4-6 91±3.2 

 

 

 

Fig. 5. Top: completion rates (mean + s.e.). Bottom: summary quartile 
plots of completion times. Straight lines, medians; open circles, means; 

solid boxes, interquartile ranges; whiskers, overall ranges of non-outlier 

data; solid circles, outliers. 
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necessarily correlate with the results extracted from online 

experiments. For instance, by looking at offline 

classification accuracies (Table IV), it seems that condition 2 

(inclusion of IMU information only) achieves the second 

highest performance only preceded by condition 1. 

Nevertheless, this pattern was not observed for the online 

experiment where condition 2 yielded the largest completion 

times. The main reason behind such discrepancies might lie 

in the different evaluation metrics used in each case, that is 

classification accuracy for offline analysis as opposed to 

taskspecific metrics (e.g. completion rates and times) for 

online experiments. Therefore the use of different metrics in 

the two cases renders such direct comparisons invalid. 

Additionally it has been demonstrated that differences 

between offline and online performance can be also due to 

the presence of visual feedback in the latter paradigm [24].  

IV. CONCLUSION 

In this study, we investigated the potential benefit of using 

novel sensory modalities for real-time myoelectric control. 

We provide evidence that the inclusion of acceleration, 

angular velocity and orientation information can improve the 

online myoelectric performance, as quantified by task-

related metrics such as mean completion rates and times. We 

also demonstrated that the inclusion of additional sensory 

information might allow reducing the number of required 

sensors without compromising the decoding performance of 

the classifiers. This feature is highly-valuable for clinical 

applications. In our study, we only included able-bodied 

participants. Verification of our results with amputee 

subjects is imperative and currently seen as a future research 

direction. 
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