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Abstract— Our goal is to introduce a more appropriate
method of generalising walking gaits across different subjects
and behaviours. Walking gaits are a result of complex factors
that include variations resulting from embodiments and tasks,
making techniques that use average template frameworks
suboptimal for systematic analysis. The proposed work aims
to devise methodologies for being able to represent gaits and
gait transitions such that optimal policies may be recovered.
The problem is formalised using a walking phase model, and
the nullspace learning method is used to generalise a consistent
policy. This policy can serve as reference guideline to quantify
and identify pathological gaits. We have demonstrated robust-
ness of our method with motion-capture data with induced gait
abnormality. Future work will extend this to kinetic features
and higher dimensional features.

I. INTRODUCTION

Human walking is influenced by many factors, namely, (i)
the embodiment of the subject (e.g., limb lengths), (ii) the
environment in which the behaviour is performed (e.g.,
flat/uneven terrain) and (iii) task contextual factors (e.g.,
speeds). Despite these variations, some consistency appears
that causes us to identify walking as belonging to the same
class.

The fact that such variations exist within a single class of
walking indicates the presence of redundancy in the system.
That is, the presence of additional degrees of freedom
allow the constraints induced by these various factors to
be satisfied, while satisfying some underlying consistent
behavioural goal. The latter could be to minimise effort,
maintain comfort, or other such criteria. This dependence
on the various factors makes modelling human gait hard in
general [1], [2], especially given the fact that the precise
influence of different factors on the movement can be hard
to assess (e.g., how is the foot placement affected by different
terrain [3], [4]).

Examples in modelling human gaits can be found in
exoskeleton systems such as the Lokomat, the Skywalker,
and the LOPES [5]–[7]. Although these devices are cleverly
designed, much work is needed to personalise gait correction.
One current issue is that existing systems normally restrict
the patients to follow some predefined walking patterns, such
that the patients are required to walk at certain speed, slope,
or step size. However, clinical results show that motivating
the patients to walk more proactively at a preferred pace
promotes the overall results of rehabilitation [8]. Also, the
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Fig. 1: Assuming the behaviours are the combination of con-
sistent characteristics and variations in embodiment and task,
we aim to recover the consistency by observing behaviours.

pre-defined walking patterns are normally derived by taking
an average gait template from healthy subjects, but it seems
inadequate. For instance, this approach would consider faster
or slower walks as deviations from a normal gait.

Some existing devices have a more flexible approach
by incorporating impedance control and/or tolerating small
deviation from the reference gait [9]–[11]. However, taking
the average template framework as the reference is still
problematic. Instead of restricting the patients to follow these
predefined rules of training, a more appropriate way is to let
the patients walk the way they prefer and correct them only
if needed. Our approach is different from the previous work
in that we aim to extract the consistent aspect of normal
gaits and separate those from the natural variations (from
embodiments and behaviours).

Our assumption is built upon previous research in gait
analysis. Studies have shown small variations when per-
forming the same gait. For example, [12] evaluated the
repeatability of kinematic data of 40 subjects. Although
there was variance in the range of motion, the kinematic
patterns in the sagittal plane were highly predictable. [13]
showed that, while EMG signals varied significantly when
walking at different speeds, using PCA [14], just the first
five principle components of these EMGs could account for
the main features of the signals.

In recent years, a number of new tools have become
available in the learning and robotics community that allow
data from constrained and/or redundant systems [15], [16]
to be used to uncover underlying consistent behaviours that
may be otherwise masked by the constraints. Our approach is
based on examining behaviours in the light of such methods,
to see if certain underlying characteristics of gait can be
found in the face of variations in embodiment and task
factors (Fig. 1).

In this paper, we narrowed down our problem to a single
class of human locomotion and analyse walking gaits on
even terrain. We examine various walking behaviours across
persons within this class and see if any consistency can be
found. Potential applications of our work include rehabilita-
tion, for example, through use of robotic support systems,
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Fig. 2: Walking cycle and phases (extracted from [18])

and gait abnormality detection and diagnosis [5], [6], [17].

II. WALKING PHASE MODELS

A common approach in the gait analysis literature [18] is
to decompose walking into a series of cycles, and a cycle
can be further divided into a series of phases (Fig. 2). We
assume that movements within each phase are the result of
a composition of components handling the phase critical
components of the motion (i.e., those must be controlled for
successful completion of a given phase), and components
that control the consistent aspects of the motion. In order to
satisfy the phase critical components, it is assumed that a set
of constraints

Ak(x, t)u(x, t) = bk(x, t) (1)

is maintained, where x ∈ Rn represents state, u ∈ Rm
represents action, t is time, and k indexes the phase. Here, the
task-space policy bk(x, t) ∈ Rp (p < m) describes a task-
dependent control policy. The constraint matrix Ak(x, t) ∈
Rp×m is a matrix projecting bk onto the relevant part of the
control space. Inverting Eq. 1 results in the relation

u(x, t) = Ak(x, t)† b(x, t) + Nk(x, t) π(x) (2)

where A† is the Moore-Penrose pseudo-inverse of A, and
we define Nk(x, t) := (I−Ak(x, t)†Ak(x, t)) ∈ Rm×m
where I ∈ Rm×m is the identity matrix. In Eq. 2, the second
term arises due to the redundancy (since p < m), and allows
control objectives to be realised through policy π(x) ∈ Rm,
subject to the constraints.

We assume that Ak and bk are not explicitly known, but
the quantities vary across walking phases to handle different
phase critical components. We assume that π is independent
of the phase; however, the observed effects of control toward
these objectives (i.e., the motion Nk π) may be influenced
by the phase. This is because the policy π is subject to the
constraints imposed by different Ak and bk.

A. Decomposition of walking gait

We assume that the walking is a combination of character-
istics of the gait and variations resulting from embodiments
and behaviours. Here, we describe how to formulate the
characteristics and variations with our walking-phase model.

1) Characteristics of walking: We hypothesise that there
exists some consistent characteristics within a single class
of human locomotion, such consistency may include energy
minimisation, or maintenance of a comfort posture. The
consistent characteristics of walking is captured in our model
as the underlying null-space policy π.

TABLE I: Correspondence between variations in walking
gaits and the variables in our proposed model

Controlled Variables Affected Variables
Variation Example b A
behaviour speed, step-size X
embodiments leg-length X
phase X

An example of such a policy can be a limit cycle policy
ṙ = r(ρ− r2), θ̇ = ω where r and θ are the polar represen-
tation of the state such that x = (r cos(θ), r sin(θ))>, ρ is
the radius of the attractor, and ω is the angular velocity.

2) Variations in embodiments: The variations in embod-
iments arise from inter-personal differences in factors such
as body size, body type, and physical limits. In our model,
such variations will result in modifications of the constraint
matrix A. (Hence, A varies across phases and subjects.)

In Eq. 1, we define the constraint matrix A ∈ Rp×m as
a set of p task-constraints, and each task constraint refers
to restrictions on the freedom of some subspace of the
system. The task-constraints can be imposed in different
representations (i.e., joint-space, end-effector space, etc).

A simple case is to restrict some sub-space of the joint-
space. For example, if the state is defined as x = (q1, q2)>,
and the constraint matrix is set as A = (0, 1), the knee angle
is restricted to follow various task-space policy b while the
hip angle is free to move with the nullspace policy π.

3) Variations in behaviours: The variations in behaviours
are caused by other contextual factors such as the need to
hurry for a meeting, and result in variations in, for example,
step sizes and speeds. In our model, these variations are
captured by the task-space policy b, and we assume that
b may vary across cycles to handle different behaviours.

In Eq. 1, we define the task-space policy b ∈ Rp
outputs the task-space velocity, in order to accomplish some
operations. Depending on which dimension is constrained
(i.e., defined by A), the constrained dimensions are restricted
to move to a specific target along that dimension.

For instance, in the terminal swing phase, the foot is placed
on the ground at the end of the phase. A may be defined such
that the foot position is controlled, while b may describe a
point attractor driving the foot to a desired placement. An
example of b could be a point-attractor b(ξ) = α(ξ∗ − ξ)
where α is a parameter that controls the speed, ξ∗ is the
task-space target, and ξ is the task-space state. The position
of heel strike depends on the step-length of that cycle; in
this case, ξ∗ can vary to handle different step-lengths.

Table I shows how the variations in walking (i.e., embod-
iments, behaviours, phases) affect the variables A and b in
our walking phase model. Fig. 3 shows the correspondence
between walking gaits and the walking-phase model. The ob-
served behaviours u are the result of some consistent policy
π modulated by various A and b. With this formulation, we
examine various u and see if π can be recovered.

B. Representations of human gait
Our walking phase model is generic and can be applied on
different representations. For instance, in many motor control
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Fig. 3: Correspondence between walking gaits and model

problems, the system is typically characterised by joint-space
and end-effector space [19]. For kinematic control, the state
of the system can be represented by the joint-angles, and the
controls can be the joint-velocities.

Aside from kinematic representations, several previous
works have focused on using zero moment point (ZMP)
to model humanoid locomotion [20]–[22]. Also popular
are dynamical systems based representations of periodic
movements [23], which have significant merits over time
indexed representations. [24] is based on a periodic pattern
generator and a coupled oscillator model to modulate the
phase of sinusoidal patterns, in addition to representations
that are derived from central pattern generators [25], [26].

In this paper, we focus on the kinematic representation of
hip and knee joints, with the aim to explore more degrees-of-
freedom and kinetic features in subsequent investigations.

III. GENERALISING PERIODIC GAITS

In this section, we describe our approach to generalising the
characteristics of walking by learning a policy. Our method
works on data given as I pairs of states x and actions u. We
assume that (i) u can be decomposed as u=A† b+Nπ,
(ii) u are generated using the same nullspace policy π, (iii)
Au=b for some A 6=0 and b 6=0, and (iv) A, b, and N are
not explicitly known. The goal is to approximate the policy
π, that characterises the gait.

A. Naive (Average Template) Approach

A naive approach is to apply direct regression to estimate
the policy. Note that, this corresponds to the default aver-
age template solution used in many gait and rehabilitation
analysis. Specifically, one may minimise the error

EDPL =
I∑
i=1

||ui− π̃i||2 (3)

where π̃ is some suitable estimator of the policy function.
Such an approach ignores the variations in constraints A and
task-space policy b, and yields the average motion. However,
this is unrealistic in everyday behaviour, so minimising Eq. 3
is unlikely to result in a good model.

B. Nullspace policy learning for periodic gaits

We take an alternative approach, in which the constraint and
task space variations are explicitly considered. The proposed
approach builds on previous research on policy recovery [16]
for point-to-point movements, and adapts it to generalise the
characteristics of gaits. The additional challenges in walking
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Fig. 4: A schematic of (a) Step-1 and (b) Step-2 of the
proposed learning algorithm

are (i) the differences due to interpersonal variations and (ii)
the temporal switching of constraints between phases.

In the proposed approach, the policy π is estimated
using two separate steps. The first step is to decompose the
observations u into two orthogonal components: the task-
space component uts ≡ A† b and the null-space component
uns ≡ Nπ such that u = uts +uns. The second step is to
reconstruct the nullspace policy π from the estimated uns.
The following describes the two steps in detail.

1) Step-1 - Learning null-space component: The first step
is to extract the null-space component uns from the raw
observations x,u. As discussed in [16], a requirement on
this step is that the data are grouped into multiple subsets
such that the constraint matrix A is consistent within each
subset. In the present setting, this separation arises naturally
from consideration of different subjects and phases.

Specifically, given input as pairs of states and actions
D={x,u}, the data is divided into S subsets such that
subset Ds is the observations from subject s. Then, each Ds

is further divided into K subsets Ds,k ={xs,k,us,k} where
k=1, 2, ...,K is the phase number. For the (s, k)th subset, we
seek a model that minimises the inconsistency between the
true nullspace component unss,k and the estimated nullspace
component ũnss,k.

E[unss,k, ũ
ns
s,k] =

Is,k∑
i=1

∣∣∣∣unss,k,i− ũnss,k,i
∣∣∣∣2 (4)

Since we do not have access to the true null-space com-
ponent unss,k, Eq. 4 cannot be directly optimised. Instead,
we attempt to eliminate the components of motion that
are due to the task constraints, and learn a model that
is consistent with the observations. To achieve this, we
seek a projection matrix Ps,k = ũnss,k ũns

>

s,k /
∣∣∣∣ũnss,k∣∣∣∣2 which

projects us,k onto the learnt nullspace component and sat-
isfies Ps,k us,k ≡Ps,k(utss,k +unss,k) = ũnss,k. The objective
function Eq. 4 can be rewritten as:

E1[ũnss,k] =
Is,k∑
i=1

∣∣∣∣∣
∣∣∣∣∣ ũnss,k,i(ũnss,k,i)ᵀ∣∣∣∣ũnss,k,i∣∣∣∣2 us,k,i − ũnss,k,i

∣∣∣∣∣
∣∣∣∣∣
2

(5)

Fig. 4a illustrates an example of this idea. Assuming there
are two observation u1, u2 from the same x within a subset.
Since the constraint is consistent, u1, u2 must have the same
uns. We seek a uns such that when u1 and u2 are projected
onto uns, the error is minimised.

In this paper, each ũnss,k is modelled through iterative
optimisation of Eq. 5 using Gaussian radial basis functions.



Algorithm 1 Null-space Policy Learning
Input: D = {x,u}: data-set of states x and action u
Output: π̃: learnt null-space policy

1: Split D into Ds where Ds is the input from subject s
2: Split Ds into Ds,k where k denotes the phase number
3: for all Ds,k do
4: Learn ũnss,k by minimising Eq. 5
5: end for
6: Combine {xs,k, ũnss,k} into a single data-set {x, ũns}
7: Learn π̃ by minimising Eq. 7

More precisely, ũnss,k =Ws,k β(xs,k) where Ws,k∈Rm×J is
a matrix of weights, and β(xs,k)=

K(xs,k −cj)∑J
j=1

K(x−cj)
∈ RJ is a

vector of basis functions, J is the number of basis functions,
and cj for j=1, ...,J are the centres. The optimisation is
initialised using direct regression to find the initial approxi-
mation W0

s,k= arg min
∑∣∣∣∣us,k − ũnss,k

∣∣∣∣2.
2) Step-2 - Learning null-space policies: The output of

Step-1 is a set of s×k intermediate models for the nullspace
component ũnss,k ≈Ns,k π. The goal of Step-2 is to approx-
imate policy π̃ that is consistent with all ũnss,k. Ideally, the
approximation should minimise the error between the true
policy and the learnt policy

E[π, π̃] =
I∑
i=1

||πi− π̃i||2. (6)

Unfortunately, since the true policy π is not observed, Eq. 6
cannot be minimised directly. Instead, we proceed by noting
that, on completion of Step-1 we have the equivalent to a
set of s×k systems that satisfy As,k ũnss,k =0. As a result we
can adapt the work in [15] to find a policy that is maximally
consistent with the observations. More precisely, the s×k
intermediate models are combined into a single data set
(x, ũns), and the approximation is made by minimising

E2[π̃] =
I∑
i=1

∣∣∣∣∣
∣∣∣∣∣ ũnsi ũns

>

i

||ũnsi ||
2 π̃(xi)− ũnsi

∣∣∣∣∣
∣∣∣∣∣
2

(7)

An example is illustrated in Fig. 4b. Given two nullspace
components uns1 and uns2 , the inconsistency error favours
models for which there is minimal discrepancy between uns1

and uns2 and the model, projected onto these observations.
The nullspace policy π̃ can be modelled with Gaussian

radial basis functions, through minimisation of Eq. 7. The
entire process of recovering π is summarised in Algorithm 1.

IV. IDENTIFYING PATHOLOGICAL GAITS

One of our objectives is to quantify the difference between
gaits, and a potential application is gait abnormality detec-
tion. The principle is to compare an unknown gait with a
reference gait which is expected to be normal, and use their
difference as the classification criteria.

refExtract Policy

new

Healthy 
Persons

Extract Policy

Abnormal

Normal

Yes

No

New
Person

ref – new > ε?

Fig. 5: Gait abnormality detection by measuring the differ-
ence in nullspace policies

A. Quantifying Difference between Gaits

With our model, comparing two gaits is equivalent to
comparing two nullspace policies. A general framework is
illustrated in Fig. 5; ideally, we want to extract the nullspace
policy from healthy subjects (reference policy πref ) and
compare to the nullspace policy from a new subject (πnew).
A difference above a certain threshold would signify a
pathological gait.

However, in order to estimate πnew, observations from
various embodiments are required, which is infeasible for
the new subject. Nevertheless, it is still possible to detect
abnormalities in gait by comparing the policies under con-
straints. Specifically, instead of measuring the difference
between πnew and πref , we evaluate the difference between
Nnew πnew and Nnew πref , where Nnew is a projection
matrix derived from the constraints of the new subject.

B. Projection Matrix Estimation

The projection matrix of the new person Nnew is unavailable
by assumption, but it is possible to estimate it. By definition,
uns =Nπ where N is the projection matrix which projects
a vector onto the image space of N. Since uns is already in
the image space of N, we must have Nuns =uns.

Based on this insight, an estimate of the projection matrix
can be found by searching over the range of possible projec-
tions. Recall that N= I−A†A; hence, we need to find an
A that matches the direction of the constraint as closely as
possible. In this paper, we have constraints A∈R1×2, so we
can model the constraint as a unit vector Ã= [cos(θ) sin(θ)],
where θ∈[0, π] covers all possible cases of N.

For the kth phase of a new person, we seek a θk such that
the difference between Ñ

new

k uns,newk and uns,newk is min-
imised. Note that the true nullspace component of the new
subject uns,newk is also unknown, so we use the estimated
nullspace component, instead.

Namely, after learning the nullspace component ũns,newk

for the kth phase, we obtained Ik pairs of (xk, ũ
ns,new
k ).

For each possible value of θk ∈ [0, π], we can calculate the
difference between Ñ

new

k ũns,newk and ũns,newk

Eθ[Ñ
new

k ] =
Ik∑
i

∣∣∣∣∣∣Ñnew

k ũns,newk,i − ũns,newk,i

∣∣∣∣∣∣2 . (8)

The optimal θk ∈ [0, π] minimises Eq. 8

C. Approximate policy difference

The difference between the new person and the reference is
quantified through approximate constrained policy difference



Algorithm 2 Approximate difference between two gaits
Input: D = {xnew,unew}: data-set of a new person

πref : reference policy
Output: APD: approximated policy difference

1: Split D into Dk where k denotes the phase number
2: for all Dk do
3: Learn ũns,newk by minimising Eq. 5
4: Learn Ñ

new

k by minimising Eq. 8
5: end for
6: Approximate the difference using Eq. 9

(a) (b) (c) (d)

Fig. 6: Kinematic data was collected using (a) Motion Anal-
ysis Eagle-4 in the University of Tokyo and (b) Xsens MVN
BIOMECH in the University of Edinburgh. In (c) Tokyo Data
and (d) Edinburgh Data, extra weight was attached to the
subjects to create ’abnormal’ gaits.

(APD). Specifically, given pairs of state/action of the new
person xnew,unew, we divide their data into K walking
phases and learn the nullspace components ũns,newk for each
phase. Then, we take ũns,newk to estimate projection matrix
Ñ
new

k using Eq. 8. The APD is computed as

APD =
1

Iσ2
πref

K∑
k=1

Ik∑
i=1

∣∣∣∣∣∣ũns,newk,i −Ñ
new

k πrefk,i

∣∣∣∣∣∣2 (9)

where I =
∑
k Ik and σ2

πref is the variance of the reference
policy. The APD measures the difference between the ref-
erence policy and the new person in the constrained space,
normalised by the variance of the reference policy.

Eq. 9 can be interpreted as the difference between a person
and the reference where the distance resulting from various
behaviours (speeds, step-sizes) is eliminated. Therefore, this
measurement can be thought of as the quantification of
how much we should correct a gait without interfering with
speed or step-length. Additionally, the APD can be used for
monitoring a program of rehabilitation by looking at the
evolution of the APD with training. Algorithm 2 summarises
the process.

V. EXPERIMENT ON HUMAN DATA

In this experiment, we used motion-capture data to test (i)
how well our method can recover the policy and (ii) how
well we can employ the learnt policy for gait abnormality
detection.

TABLE II: Leg lengths of the subjects
Subject Upper Leg (cm) Lower Leg (cm) Data-set

S1 37.7 38.9 Tokyo
S2 41.6 41.1 Tokyo
S3 44.2 43.3 Tokyo
S4 42.6 40.5 Edinburgh
S5 45.1 44.2 Edinburgh
S6 42.5 41.5 Edinburgh
S7 45.8 44.8 Edinburgh

A. Data Collection

Kinematic data was obtained from two separate sources. The
first data-set was collected with a Motion Analysis Eagle-4
system [27] in the University of Tokyo (Tokyo Data). The
system is consisted of 10 cameras recording at a frame rate
of 200fps (Fig. 6a), and the motion capture was performed
with 35 optical markers placed on the subject.

The second data-set was collected using Xsens MVN
BIOMECH system [28] in the University of Edinburgh
(Edinburgh Data). The sensor units were attached to the
subjects according to Xsens configuration (Fig. 6b). The
update frequency is set to 120 FPS.

1) Variations: The data were collected from seven males,
age between 20-29 (referred as S1-S7). Three subjects (S1-
S3) were collected in University of Tokyo, and four subjects
(S4-S7) were collected in the University of Edinburgh.
These seven subjects have different body types, and they
were chosen to ensure our data contains some variations in
embodiments. The leg-lengths of the subjects are summarised
in Table. II.

Data was recorded for five walking speeds: 93, 106,
119, 129, 140 steps per minute, which were taken from
the speed range reported in [29]. The walking speeds were
controlled through use of a metronome. The subjects were
asked to walk such that heel strike coincided with the tick
of the metronome. For each speed, ten walking trials were
collected.

2) Pathological gait: Extra weight was attached to the
subjects to alter their walking patterns. In Tokyo Data, a 1
kg bottle was strapped to the subjects’ left shank (Fig. 6c).
In Edinburgh Data, 3.5 kg bags of sand was strapped to
the subjects’ left ankle (Fig. 6d). We used the same setup
(speeds, trail size, etc) to collect abnormal gait from each
subject.

3) Pre-processing: We used heel-strike of the left leg to
demark the beginning of a gait cycle and extracted as many
cycles as possible from all walking trails we collected. We
obtained roughly 200 gait cycles from each subject, and
100 cycles were selected for analysis. Fig. 7 shows the hip
and knee angle from one of the subjects. One trajectory
from each speed was selected. Note that normal gaits (red)
and abnormal gaits (black) look very similar from direct
observation.

B. Setup

1) Representation: In this experiment, we analysed the
sagittal plane kinematics of the hip and knee joints. For this,
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Fig. 7: The normal gait and abnormal gait from one subject

the state and action spaces were described by the joint-angles
x ∈ R2 and joint-velocities u ∈ R2, respectively.

2) Phase Division: Each walking cycle is divided into
three phases: (i) stance, (ii) pre-swing and initial swing, and
(iii) mid-swing and terminal swing. Note that using three
phases is not conventional or necessarily optimal. However,
this seems to be the smallest sub-divisions of the walking
cycle that guarantees a consistent constraint Ak across the
entire kth phase, which is a condition for our method to be
effective.

3) Learning reference policy: We selected five subjects,
S1-S5, for learning the reference policy (Alg. 1). For each
walking phase of each subject, we learnt the nullspace
component ũns,refs,k , which yielded 15 models. Each ũns,refs,k

consisted of J Gaussian RBFs where J varied from 16
to 100. From the set of ũns,refs,k , we learnt the nullspace
policy πref , which was also modelled with Gaussian RBFs.
We used this learnt policy as the reference policy in all
experiments.

4) Identify pathological gaits: Five subjects (S1-S5) were
used to collect five normal and five pathological gaits (using
the leg loading). To investigate how well the learnt policy
can generalise across subjects, we also performed the same
experiment on the subjects whose data had not been used for
training the reference policy (S6-S7) – we collected normal
and pathological gaits for each of these. Alg. 2 was applied
on each person separately. Namely, we learnt the ũns,newk

for each phase of each person. The differences between each
person and the reference were calculated using APD (Eq. 9).

5) Baseline: For comparison, we also trained models
using (i) linear regression and (ii) RBF network on raw
observations (x,u) from the normal gaits, and tested if we
can see a difference between normal and abnormal gaits in
joint-space.

C. Results

The average results over all subjects are shown in Fig. 8.
The y-axis shows the average differences in joint-space
for the regression methods and the average APD for the
proposed method. (Note that, the proposed method attempts
to eliminate the difference resulting from various walking
behaviours; therefore, our method does not directly compare
joint-angles, which may be influenced by behaviours.)

Fig. 8a shows the average results over S1-S5. We can
see that the standard methods (yellow and green) cannot
differentiate normal and abnormal gait. Our approach (red)
achieved relatively lower difference when comparing with
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Fig. 8: Average difference between the testing subjects and
the reference. The testing subjects are (a) S1-S5 and (b) S6-
S7. The results were grouped into normal (N) and abnormal
(A). The error-bars are mean±std.dev. in log-scale over ten
experiments.

normal gaits and higher difference when comparing with
abnormal gaits. Even if we have no access to the true policy,
constraints, nor tasks, our reference policy is more effective
in differentiating normal and abnormal.

Fig. 8b shows the the average results over S6 and S7. In
this case, the RBF network (green) predicts that the abnormal
gait is more similar to the reference gait. This outcome
reflects the problem of using average templates, where the
reference gait fails to adapt to the new subjects. Our proposed
method (red), on the other hand, shows greater difference for
the abnormal gait, even though S6 and S7 are different from
the subjects used to train the reference policy.

1) Apply the learnt policies on various behaviours: We
also evaluated how well the learnt policies can generalise
across various walking behaviours. In this experiment, we
tested slow, average, and fast walks separately, to see how
the results might be affected by various speeds.

Similar to the last experiment, we used the normal and
abnormal gait from S6 and S7 to represent two normal
and two abnormal persons, and compare them with the
reference policy learnt from S1-S5. Fig. 9 shows the results
of the predicted difference between the new subjects and
the reference, where the data was divided into: (a) slow, (b)
average, and (c) fast.

From Fig. 9, we can see that, by using the RBF network
(green), the predicted difference between the normal gait and
the reference increases as the walking speed increases. This
is equivalent to considering those faster walks are deviations
from the normal gait. In contrast, our method (red) yields
lower difference for normal compared to abnormal walking
regardless of speed. This outcome confirms the fact that
our method eliminates the difference coming from various
walking speeds. The implication in a real world application
is that, our method deals with different walking behaviours
consistently, and the patients can choose to walk faster or
slower.
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Fig. 9: Predicted differences in joint-space between the test-
ing subjects (S6-S7) and the reference (S1-S5). The testing
data was divided into (a) slow, (b) average, and (c) fast

VI. CONCLUSION

We explore the problem of representing, generalising, and
comparing gaits. We consider that locomotion can be de-
scribed as a combination of characteristics of the gait and
variations from embodiments and behaviours. We assume
that characteristics are consistent across embodiments and
behaviours, and we aim to generalise them.

We formulate our problem into a walking phase model,
and we adapt the nullspace policy learning method to gener-
alise a policy that can capture the consistent characteristics
of walking gait. Our experiment has shown that our method
is effective in reconstructing the policy, and we can utilise
this recovered policy for gait abnormality detection.

We analysed the kinematics of movement in this paper, and
future work will focus on exploring different representations
and higher degree-of-freedom. The success of our work is
expected to promote better gait rehabilitation. In the future,
we would like to use the reconstructed policy to produce the
reference trajectory for gait rehabilitation. With our method,
the system will be able to correct the patient only if there is a
mismatch in the characteristics of walking without interfering
his/her personal preferences such as speeds or step-lengths.
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