
Robotica
http://journals.cambridge.org/ROB

Additional services for Robotica:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

A novel approach for representing and generalising periodic gaits

Hsiu-Chin Lin, Matthew Howard and Sethu Vijayakumar

Robotica / Volume 32 / Special Issue 08 / December 2014, pp 1225 - 1244
DOI: 10.1017/S026357471400188X, Published online: 13 August 2014

Link to this article: http://journals.cambridge.org/abstract_S026357471400188X

How to cite this article:
Hsiu-Chin Lin, Matthew Howard and Sethu Vijayakumar (2014). A novel approach for representing and generalising periodic
gaits. Robotica, 32, pp 1225-1244 doi:10.1017/S026357471400188X

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/ROB, IP address: 129.215.91.5 on 19 Dec 2014



http://journals.cambridge.org Downloaded: 19 Dec 2014 IP address: 129.215.91.5

Robotica (2014) volume 32, pp. 1225–1244. © Cambridge University Press 2014
doi:10.1017/S026357471400188X

A novel approach for representing and generalising
periodic gaits
Hsiu-Chin Lin†∗, Matthew Howard‡
and Sethu Vijayakumar†
†Institute of Perception Action and Behaviour, School of Informatics, University of Edinburgh,
Edinburgh, UK
‡Department of Informatics, King’s College London, London, UK

(Accepted June 19, 2014. First published online: August 13, 2014)

SUMMARY
Our goal is to introduce a more appropriate method of representing, generalising and comparing
gaits; particularly, walking gait. Human walking gaits are a result of complex, interdependent factors
that include variations resulting from embodiments, environment and tasks, making techniques that
use average template frameworks suboptimal for systematic analysis or corrective interventions. The
proposed work aims to devise methodologies for being able to represent gaits and gait transitions
such that optimal policies that eliminate the inter-personal variations from tasks and embodiments
may be recovered. Our approach is built upon (i) work in the domain of nullspace policy recovery and
(ii) previous work in generalisation for point-to-point movements. The problem is formalised using
a walking-phase model, and the nullspace learning method is used to generalise a consistent policy
from multiple observations with rich variations. Once recovered, the underlying policies (mapped
to different gait phases) can serve as reference guideline to quantify and identify pathological gaits
while being robust against interpersonal and task variations. To validate our methods, we have
demonstrated robustness of our method with simulated sagittal two-link gait data with multiple
ground truth constraints and policies. Pathological gait identification was then tested on real-world
human gait data with induced gait abnormality, with the proposed method showing significant
robustness to variations in speed and embodiment compared to template-based methods. Future
work will extend this to kinetic features and higher dimensional features.

KEYWORDS: Rehabilitation; Human biomechanics; Robots for clinical assessment; Imitation;
Bipeds.

1. Introduction
Many everyday human skills can be considered as a form of periodic movement. For example,
locomotion can be considered as a periodic motion of the legs, and wiping a table can be a kind of
periodic motion of the arms. The form of these movements is influenced by many factors, namely,
(i) the embodiment of the subject (e.g., limb lengths, mass properties, etc.), (ii) the environment in
which the behaviour is performed (e.g., is the subject walking on flat or uneven terrain?) and (iii)
task contextual factors (e.g., is the subject hurrying to a meeting or just taking a walk in the park?).
Nevertheless, despite these variations, some consistency appears that causes us to identify behaviours,
such as walking, as belonging to the same class.

The fact that such variations exist within a single class of behaviour, such as walking, indicates the
presence of redundancy in the system. That is, the presence of additional degrees of freedom allows
the constraints induced by these various factors to be satisfied, while at the same time satisfying some
underlying consistent behavioural goal. The latter could be to minimise effort, maintain comfort,
or other such criteria. This dependence on the various factors makes modelling human gait hard in
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Fig. 1. We hypothesise that the behaviours that we observe are the combinations of some consistent characteristics
and variations in embodiment and task factors. Our approach is based on examining various behaviours to see
if such consistency can be found.

general,1, 2 especially given the fact that the precise influence of different factors on the movement
can be hard to assess (e.g., how is the foot placement strategy affected by differences in terrain3, 4).

Examples in modelling/comparing human gaits can be found in exoskeleton systems such as the
Lokomat, the Skywalker and the Lower Extremity Powered Exoskeleton (LOPES).5–7 Although these
devices are cleverly designed, much work is needed to personalise gait correction. One current issue
is that existing systems normally restrict the patients to follow some predefined walking patterns, such
that the patients are required to walk at a certain speed, slope or step-size. However, clinical results
show that motivating the patients to walk more proactively at a preferred pace promotes the overall
results of rehabilitation.8 Also, the pre-defined walking patterns are normally derived by taking an
average gait template from healthy subjects, but it seems inadequate. For instance, this approach
would consider faster or slower walks as deviations from a normal gait.

Some existing devices have a more flexible approach by incorporating impedance control and/or
tolerating small deviation from the reference gait.9–11 However, taking the average template framework
as the reference policy is still problematic. Instead of restricting the patients to follow these predefined
rules of training, a more appropriate way is to let the patients walk the way they prefer and correct
them only if needed. Our approach is different from the previous work in that we aim to extract the
consistent aspect of normal gaits and separate those from the natural variations (from embodiments,
environments and behaviours).

Our assumption is built upon previous research in gait analysis. Studies have shown very small
variations in human kinematics when performing the same gait. For example, Stokes et al.12 evaluated
the repeatability of kinematic data of 40 subjects. Although there was variance in the range of
motion, the kinematic patterns in the saggital plane were highly predictable. Ivanenko et al.13 applied
dimensional reduction analysis to determine whether the pattern of muscle activities can be described
by some underlying manifold. Their work showed that while the EMG (electromyography) signals
varied significantly when walking at different speeds, using Principle Component Analysis,14 just the
first five principle components of these EMGs could account for the main features of the signals.

In recent years, a number of new tools have become available in the learning and robotics
community that allow data from constrained and/or redundant systems15, 16 to be used to uncover
underlying consistent behaviours that may be otherwise masked by the constraints. Our approach is
based on examining behaviours in the light of such methods, to see if certain underlying characteristics
of gait can be found in the face of variations (see Fig. 1). These may be interpersonal (e.g., one person
walks with a particular style that maintains that person’s most comfortable posture) or intrapersonal
(e.g., it is likely that all people walk to minimise some measure of effort).

In this paper, we narrowed down our problem to a single class of human locomotion and analyse
walking gaits on even terrain. We examine various walking behaviours within this class and see if any
consistency can be found across persons. Potential applications of our work include rehabilitation, for
example, through use of robotic support systems, and gait abnormality detection and diagnosis.5, 6, 17

2. Background and Related Work

2.1. Phase-based decomposition of walking
A common approach in the gait analysis literature,18 and one that we will follow in this paper, is to
decompose walking into a series of cycles where one walking cycle is defined as the time between
two consecutive occurrences of an event.

As an example in Fig. 2, the instant at which one heel strikes the ground can be used to demark the
beginning of a cycle, that continues until the same heel strikes the ground again. Within a cycle, the
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Fig. 2. Classical definition of gait phase and the phase division in our experiment (extracted and modified
from18).

Fig. 3. Correspondence between leg and two-link system.

gait can be further divided into a series of walking phases based on a series of events. The dynamics
of each walking phase is different from one another. In order to deal with these variations in different
phases along with inherent variations in embodiment and task-related factors, a sufficiently flexible
model is required that can be used to decompose the movement. In Section 3, we outline such a model
based on task/nullspace decomposition of behaviour, and describe how it may be used to capture
these variations in a unified way.

2.2. Kinematic representations of human gait
A simple model of the human leg can be described by a planar two-link system (Fig. 3). In this model,
L1, L2 are the lengths of femur and tibia, respectively, angles q1, q2 represent the hip and knee angles,
respectively, and r1, r2 represent the horizontal and vertical positions of the foot.

For kinematic control, the state of the system can be represented by the joint angles x = (q1, q2) �,
and the controls can be the joint velocities u = (q̇1, q̇2) �. In addition to working with purely kinematic
representations, several previous publications have focused on using Zero Moment Point (ZMP)
to model humanoid locomotion.19–21 Also popular are dynamical-system-based representations of
periodic movements, since they have significant merits over time-indexed representations.22 The
work of Morimoto and Atkeson23 is based on a periodic pattern generator and a coupled oscillator
model to modulate the phase of sinusoidal patterns, in addition to representations that are derived from
central pattern generators (CPGs).24, 25 In this paper, we will focus on the kinematics representations
(see Fig. 3) with the aim to explore more degrees of freedom as well as kinetic features in subsequent
investigations.

3. Decomposed Walking Model
In this section, we describe a constrained tracking control scheme in which behaviour is decomposed
into task/nullspace components. We then describe our interpretation of walking gait and how to
determine the control variables in this control scheme. To aid the explanation, we use the two-link
system in Fig. 3 as an illustrative example.
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3.1. Walking-phase models
We assume that movements within each walking phase are the result of a composition of components
handling the phase-critical components of motion (i.e., those that must be controlled for successful
completion of a given phase), and redundant components that control consistent aspects of motion.
In order to satisfy the phase-critical components, it is assumed the set of constraints

Ak(x, t) u(x, t) = bk(x, t) (1)

is maintained, where x ∈ R
n represents state, u ∈ R

m represents the action, t is time and k indexes the
phase. Here, the task-space policy bk(x, t) ∈ R

p (p < m) describes a task-dependent control policy.
The constraint matrix Ak(x, t) ∈ R

p×m is a matrix projecting the task-space policy onto the relevant
part of the control space. Inverting Eq. (1) results in the relation

u(x, t) = Ak(x, t)† bk(x, t) + Nk(x, t) π(x), (2)

where A† is the Moore–Penrose pseudo-inverse of A, and we define Nk(x, t) :=
(I − Ak(x, t)† Ak(x, t)) ∈ R

m×m where I ∈ R
m×m is the identity matrix. In Eq. (2), the second term

arises due to the redundancy (since p < m), and allows secondary control objectives to be realised
through the control policy π (x) ∈ R

m.
We assume that Ak and bk are not explicitly known, but the quantities vary across walking phases

to handle different phase-critical components. We assume that the nullspace policy π is independent
of the phase, however, the observed effects of control toward these objectives (i.e., the nullspace
component of motion Nk π) may be influenced by the phase. This is because the nullspace policy π

is subject to the higher priority constraints imposed by Ak and bk .

3.2. Decomposition of walking gait with a two-link system
We assume that the walking gait is a combination of characteristics of the gait and variations
resulting from different embodiments and behaviours. In this section, we describe how to formulate
the characteristics and variations with our walking-phase model.

3.2.1. Consistent characteristics of gaits. As previously stated, we hypothesise that there exists some
consistent characteristics within a single class of human locomotion. In walking, such consistency
may include energy minimisation, or maintenance of a comfort posture.

The consistent characteristics of walking is captured in our model as the underlying nullspace
policy π . An example of such a policy can be a limit cycle policy ṙ = r(ρ − r2), where r and θ are
the polar representations of the state such that x = (r cos(θ), r sin(θ)), ρ is the radius of the attractor
and θ̇ is the angular velocity.

3.2.2. Variations in embodiments. The variations in embodiments arise from inter-personal
differences in factors such as body size, body type and physical limits. In our model, we assume that
such variations will result in modifications of the constraint matrix A. (Hence, A varies across phases
and subjects.)

In Eq. (1), we define the constraint matrix A ∈ R
p×m as a set of p task constraints, and each task

constraint refers to restrictions on the freedom of some subspace of the system. The task constraints
can be imposed in different representations (i.e., joint-space, end-effector space or other sophisticated
transformation).

A simple case is to restrict some sub-space of the joint-space. For example, if the state of the
system is defined as x = (q1, q2) �, and the constraint matrix is set as A = [0, 1], the knee angle is
restricted to follow various task-space policy b while the hip angle is free to move with the nullspace
policy π .

Another example of a constraint is to restrict the end-effector position r = [r1, r2]. For instance,
by observing the hip position in the sagittal plane when walking at various speeds, the horizontal
dimension has a monotonic motion forward at various velocities, while the vertical dimension
consistently moves up and down, regardless of the speeds. One way of characterising such motion

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 19 Dec 2014 IP address: 129.215.91.5

A novel approach for representing and generalising periodic gaits 1229

Table I. Correspondence between variations in walking gaits
and the variables in our proposed model.

Controlled variables Affected variables

Variation Example b A

behaviour speed, cadence �
embodiments leg-length �
environment slopes �
phase �

 

f

Fig. 4. (Colour online) Correspondence between walking gaits and walking-phase model.

would be to define task constraints, the Jacobian and the constraint matrix as

n̂ = [
1 0

]
, J =

⎡
⎢⎣

∂r1

∂q1

∂r1

∂q2
∂r2

∂q1

∂r2

∂q2

⎤
⎥⎦ , A = n̂ J =

[
∂r1

∂q1

∂r1

∂q2

]
.

This would allow motion in the vertical space to follow the consistent nullspace policy provided that
the horizontal dimension moves as required by the tasks.

3.2.3. Variations in environments. Another variation of walking gait comes from factors such walking
terrain and slope, collectively aggregated in our model as variation in the environment. In our model,
they are also captured by variation of the constraint matrix A.

3.2.4. Variations in behaviours. The variations in behaviours are caused by other contextual factors
such as the need to hurry for a meeting, and result in variations in, for example, step-sizes and speeds.
In our model, these variations are captured by changes to the task-space policy b, and we assume that
b may vary across gait cycles to handle different behaviours.

In Eq. (1), we define the task-space policy b ∈ R
p outputs the task-space velocity, in order to

accomplish some operations. Depending on which dimension is constrained (i.e., defined by A), the
constrained dimensions are restricted to move to a specific target along that dimension.

For instance, in the terminal swing phase, the foot is placed on the ground at the end of the phase.
A may be defined such that the foot position is controlled, while b may describe a point attractor
driving the foot to a desired placement. An example of b could be a point-attractor in task space
b(ρ) = ω(ρ∗ − ρ), where ω is a parameter that controls the speed, ρ∗ is the task-space target, and
ρ is the task-space state. The position of heel strike depends on the step-length of that cycle; in this
case, ρ∗ can vary to handle different step lengths.

Table I summarises how the variations in embodiments and behaviours correspond to the control
parameters, and how these parameters affect the variables in the model.

Figure 4 shows the correspondence between walking gaits and the walking-phase model. The
observed behaviours u are the result of some consistent policy π modulated by various A, b. With
this formulation, we examine various u and see if π can be recovered.

Figure 5 illustrates examples of behaviours produced from three different task constraints. We
set up a simple system consisting of a nullspace policy π (t) = [cos(t), sin(t)] and a task-space
policy b(t) = α × sin(0.25t + α), where α was drawn from α ∼ U [.4, 1]. If the constraint is set to
A = [0, 0] (fully unconstrained, Fig. 5(a)), the movements are simply the output of the nullspace
policy π . If the constraint is set to A = [0, 1] (Fig. 5(b)), the hip angle is unconstrained, and the knee
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Fig. 5. (Colour online) Examples of three different task constraints.

angle is constrained to follow the task-space policy b, resulting in variations driven by the task. If the
constraint is set to A ≈ [0.7, 0.7] (Fig. 5(c)), the observations are the combination of the nullspace
policy π and the task-space policy b, and both hip and knee show variance in behaviours consistent
with the task.

3.3. An example of modelling walking phases
Here, we describe an example of modelling the phase-critical components of three walking phases in
Fig. 2. We utilise the interpretation and results from ref. [26] to choose A and b for each phase.

Note that using three phases is not conventional and not necessarily optimal. Our method works
when Ak are consistent within a phase, and the least number of subsets is more preferable. We are
interested in analysing these three phases since they seem to be more different from one another.

3.3.1. Phase 1: stance phase. The hip flexes to rotate backward and then reverse the rotation right
before the end of stance phase. The leg is almost straight so that the stance leg is able to support the
body weight.

This condition seems required for all kinds of walking behaviours. We consider that there is
some level of redundancy/consistency in both hip and knee angles, so we set the constraint as
A = [−0.6, 0.8]. The task-space target is set to ρ∗ = (−130 °, −10 °) since this is a reasonable
approximation of the posture at the end of stance phase.

This phase ends when the horizontal displacement between the heel and the torso is approximately
80% of the step-size. We utilise the initial horizontal position of the feet r0

1 and terminate the phase
when r1 < −0.8r0

1.

3.3.2. Phase 2: pre-swing to mid-swing point. Our second phase combines pre-swing and initial-
swing phases. During these two phases, the foot lifts off from the ground as the hip joint extends and
the knee joint flexes.

How fast the knee angle rises is dependant on the speed of walking, so we define the constraint
as A = [−0.4, 0.9]. At the end of phase 2, the hip joint is almost at its maximum extension and the
knee joint is at its maximum flexion, so we set task-space target as ρ∗ = (−60 °, −120 °).

The knee angle should reach its maximum flexion at the end of this phase, so the phase terminates
when x2 < xmin

2 .

3.3.3. Phase 3: mid-swing point to end of cycle. The thigh is rotating forward and the knee is once
again straightened.

The movement of the knee is highly dependent on both speed and step-size. (In addition to the
speeds, where the heel strikes on the ground would also depend on the step-sizes.) Therefore, the
constraint is set to A = [0.1, 0.99]. We assume that maximum hip extension is approximately −40 °,
and the maximum knee extension is 0 °, so the task-space target is set to ρ∗ = (−40 °, 0 °).

At the end of this phase, the foot is set back on the ground. We define the height of the left feet as
r2 and the initial height of the left feet as r0

2, and the terminal condition is set to r2 < r0
2.
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Table II. An example of modelling phase-critical components by defining parameters
A and ρ∗ for each phase.

Phase Constraint A Task-space target ρ∗ End condition

1 [−0.6, 0.8] (−130 °,−10 °) r1 < −0.8r0
1

2 [−0.4, 0.9] (−60 °,−120 °) x2 < xmin
2

3 [0.1, 0.99] (−40 °, 0 °) r2 < r0
2

Under our constraint model, the constraint matrix A, the task-space target ρ∗ and the terminal
condition for each phase are summarised in Table II.

4. Generalising Periodic Gaits
In this section, we describe our approach to generalising the characteristics of walking gaits by
reconstructing the unconstrained policy.

Our method works on data given as N pairs of observed states x and observed actions u. We
assume that (i) the observations can be decomposed as u = A† b + N π , (ii) u are generated using
the same nullspace policy π , (iii) each observation might have been constrained to accomplish some
tasks (that is, A u = b for some constraint matrix A �= 0 and task-space policy b �= 0) and (iv) b and
A (and N) are not explicitly known for any given observation. The goal of learning is to approximate
the policy π , that characterises the gait, and is independent of task and embodiment.

4.1. Naive (average template) approach
Given the observations x, u, a simple but naive approach to modelling the data is to apply direct
regression to estimate the policy function. Note that this corresponds to the default average template
solution used in many gait and rehabilitation analyses. Specifically, one may minimise the error

EDPL =
N∑

n=1

‖un − π̃n‖2 , (3)

where π̃ is some suitable estimator of the policy function. The estimator could be a linear estimator
(such as linear regression) or a non-linear estimator (such as a network of radial basis functions
(RBFs)27).

Such an approach ignores the variations in constraints A and task-space policy b, and yields the
average motion from different observations. However, this is unrealistic in everyday behaviour, so
minimising Eq. (3) is unlikely to result in a good model of the gait.

4.2. Nullspace policy learning for periodic gaits
Considering the analysis in Section 3, in this paper we take an alternative approach, in which the
constraint and task-space variations are explicitly considered. The proposed approach builds on
previous research on policy recovery16 for point-to-point movements, and adapts it to generalise the
characteristics of gaits. The key additional challenges in walking tasks are (i) the differences across
subjects due to interpersonal variations and (ii) the temporal switching of constraints between phases.

In the proposed approach, the policy π is estimated using two separate steps. The first step is to
decompose the observations u into two orthogonal components: the task-space component uts ≡ A† b
and the nullspace component uns ≡ N π such that u = uts + uns. The second step is to reconstruct the
nullspace policy π from the estimated uns. The following describes the two steps in detail.

4.2.1. Step 1—Learning nullspace component. The first step is to extract the nullspace component
uns from the raw observations x, u. As discussed in ref. [16], a requirement on this step is that the data
are grouped into multiple subsets such that the constraint matrix A is consistent within each subset.
In the present setting, this separation arises naturally from consideration of the different phases of the
gait.

Specifically, since the task constraints might be different across different persons and phases, each
phase of each subject is considered an independent subset for the purposes of Step 1. Given input data
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as pairs of states and actions D = {x, u}, the data-set is divided into i subsets such that subset Di is the
set of observations from subject i. Then, each Di is further divided into k subsets Di,k = {xi,k, ui,k},
where k = {1, 2, 3, ...} denotes the phase number.

For the (i, k)th data subset, we seek a model that minimises the inconsistency between the true
nullspace component uns

i,k and the estimated nullspace component ũns
i,k .

E
[
uns

i,k, ũns
i,k

] =
Ni,k∑
n=1

∥∥uns
i,k,n − ũns

i,k,n

∥∥2
. (4)

Since we do not have access to the true nullspace component uns , Eq. (4) cannot be directly optimised.
Instead, we attempt to eliminate the components of motion that are due to the task constraints, and
learn a model that is consistent with the observations. To achieve this, we seek a projection matrix

Pi,k = ũns
i,k ũns�

i,k

‖ũns
i,k‖2 , which projects ui,k onto the learnt nullspace component and satisfies Pi,k ui,k ≡

Pi,k(uts
i,k + uns

i,k) = ũns
i,k . The objective function Eq. (4) can be rewritten in terms of this projection as

E1[ũns
i,k] =

Ni,k∑
n=1

∥∥∥∥∥
ũns

i,k,n

(
ũns

i,k,n

)ᵀ

∥∥ũns
i,k,n

∥∥2 ui,k,n − ũns
i,k,n

∥∥∥∥∥
2

. (5)

Figure 6(a) illustrates an example of this idea. Assuming there are two observations u1, u2 from the
same x within a subset. Since the constraint is consistent, u1, u2 must have the same uns . We seek a
uns such that when u1 and u2 are projected onto uns , the error is minimised.

In this paper, each uns
i,k is modelled through iterative optimisation of Eq. (5) using Gaussian radial

basis functions. More precisely, ũns
i,k = Wi,k β(xi,k), where Wi,k ∈ R

d×M is a matrix of weights, and

β(xi,k) = K(xi,k −cm)∑M
m=1 K(x −cm)

∈ R
M is a vector of basis functions, M is the number of basis functions and

cm for m = 1, ..., M are the centres. The optimisation is initialised using direct regression to find the
initial approximation W0

i,k = arg min
∑ ‖ ui,k − ũns

i,k ‖2.

4.2.2. Step 2 — Learning nullspace policies. The output of Step 1 is a set of i×k intermediate models
for the nullspace component ũns

i,k ≈ Ni,k π . The goal of the second step is to generalise from these to
find an approximate policy π̃ that is consistent with all of the estimated nullspace component ũns

i,k .
Ideally, the approximation should minimise the error between the true policy and the learnt policy:

E[π , π̃] =
N∑

n=1

‖πn − π̃n‖2. (6)

Unfortunately, since the true policy π is not observed, Eq. (6) cannot be minimised directly.
Instead, we proceed by noting that, on completion of Step 1 we have the equivalent to a set of i×k

systems that satisfy Ai,k ũns
i,k = 0. As a result we can adapt the work in ref. [15] to find a policy that

is maximally consistent with the observations.
More precisely, the i×k intermediate models are combined into a single data-set (x, ũns), and the

approximation is made by minimising the inconsistency error

E2[π̃] =
N∑

n=1

∥∥∥∥∥
ũns

n ũns �
n∥∥ũns

n

∥∥2 π̃(xn) − ũns
n

∥∥∥∥∥
2

. (7)

An example is illustrated in Fig. 6(b). Given two (or more) nullspace components uns
1 and uns

2 , the
inconsistency error favours models for which there is minimal discrepancy between uns

1 and uns
2 and

the model, projected onto these observations.
In this paper, the nullspace policy π̃ is modelled with Gaussian radial basis functions, through

minimisation of Eq. (7). The entire process of estimating π for periodic gaits is summarised in
Algorithm 1.
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Algorithm 1 Nullspace Policy Learning
Input: D = {x, u}: data-set of states x and action u
Output: π̃ : learnt null-space policy

1: Split D into Di where Di is the input from subject i

2: Split Di into Di,k where k denotes the phase number
3: for all Di,k do
4: Learn ũns

i,k by minimising Eq. (5)
5: end for
6: Combine {xi,k, ũns

i,k} into a single data-set {x, ũns}
7: Learn π̃ by minimising Eq. (7)

Fig. 6. (Colour online) A schematic of (a) Step 1 and (b) Step 2 of the proposed learning algorithm.

Fig. 7. (Colour online) Example of different variations in tasks: (a) if only u1 is observed, there are more than
one way to decompose uts and uns . (b) By observing u1 and u2, uns can be determined.

4.3. Feasibility of learning consistent policy
In this section, we discuss the requirements and feasibility of learning a consistent policy across
subjects.

4.3.1. Consistent projection matrix in Step 1. The goal of Step 1 is to learn the nullspace components
uns for estimation of π in Step 2. For this to be effective, uns must be consistent within the data-
set used for estimation. This implies that π and the projection matrix (I − A† A) should both be
consistent. Since π is expected to capture the characteristics of walking that are consistent across
tasks and embodiments, the main variation in observations is expected to come from variations in the
constraints A.

Variations in A may arise due to variations in embodiments and phases. Consistency of A is
ensured, then by breaking the data into independent subsets according to subject and phase.

4.3.2. Variation of tasks in Step 1. The second requirement of Step 1 is that multiple u are observed
at (or near) the same x. This is because if only one state-action pair (x, u) is observed, there is
more than one way to decompose u into orthogonal components. ũns can be anything that satisfies
ũns ≈ ũns ũns �

|| ũns || u.

For example, consider the situation in Fig. 7. In Fig. 7(a), since only u = [1, 1] � is observed, uns

can be either [0, 1] � or [1, 0] �. In Fig. 7(b), if both observations u1 and u2 are observed, uns can be
determined.
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Table III. Requirements of nullspace policy learning.

Step Requirement Parameters Gait

1 Consistent N Consistent A Consistent subject
Consistent phase

1 Various b Various x0 Various step-sizes
Various ω Various speed

2 Various uns Various A Various subjects
Various phases

Fig. 8. (Colour online) In (a), if only one uns is observed, there are more than one solution for π . In (b), observing
multiple uns determines an unique π . (Figures were modified from ref. [15]).

If the constraint A and the policy π are consistent within each subset, the variation of u depends on
task-space policy b. This suggests that, in order to determine a consistent π , data should be collected
containing a sufficient variation in tasks, for example by asking subjects to walk at different speeds
or with different step-sizes.

4.3.3. Variation of projection in Step 2. The goal of Step 2 is to learn a consistent π given uns . A
requirement for this is that multiple uns are observed at (or near) the same x.

For example, consider the scenarios depicted in Fig. 8. In Fig. 8(a), if we only have one observation
uns , there is more than one way to estimate π . In fact, any vector orthogonal to uns can be a solution
(e.g., π ′). In contrast, if multiple uns are observed (Fig. 8(b)), π can be determined.28

In the setting considered in this paper, variations in the projection matrix N arise both from
variations in the constraint matrix A across phases, as well as differences in the embodiment of
subjects.

The requirements of nullspace policy learning and the ways in which they are fulfilled are
summarised in Table III.

4.4. Evaluation
The quality of a policy is evaluated by the following criteria:

4.4.1. Unconstrained policy error. Our primary evaluation criteria is the normalised unconstrained
policy error (UPE), which directly compares the true and the learnt policies:

UPE = 1

Nσ 2
π

N∑
n

‖πn − π̃n‖2 , (8)

where σπ is the standard deviation (S.D.) of the true policy.

4.4.2. Constrained policy error. In some cases, it may be that the variation in constraints is insufficient
to fully uncover the true policy π . However, in such cases, where the constraints exhibit little
variation, there may be no need to uncover the hidden components of the fully unconstrained policy
(since those components are anyway eliminated by the constraints in normal circumstances). In such
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Fig. 9. Decomposition of simulation data.

circumstances, an alternative quality measure is the normalised constrained policy error (CPE).

CPE = 1

Nσ 2
π

N∑
n

∥∥uns
n − Nn π̃n

∥∥2
. (9)

It measures the difference between the data and the estimated policy, when the latter is projected by
the same constraints as in the training data.

4.5. Validation on simulated data
To illustrate the application of the nullspace policy learning approach just described to gait analysis,
here we briefly present some numerical results validating its performance. The parameters for these
tests (i.e., embodiments, speed, step-size) are chosen so that they are similar to our human data
(details will be provided in Section 6.1).

4.5.1. Data. To simulate recordings of walking data from multiple, healthy subjects, data were
collected from a set of simulated two-link systems. The subjects were assumed to (i) have different
embodiments and (ii) perform different tasks.

Specifically, three two-link systems with different link-lengths were employed, to represent three
subjects with different embodiments and each subject (two-link system) was recorded walking at
three different speeds ω to represent slow, normal and fast walking. The phase divisions and task
constraints were chosen based on the example described in Section 3.2.2. The initial joint-angle x0 of
each cycle was chosen to match our human data (see Section 6), hence, each gait cycle had a slightly
different task b. As ground truth nullspace policies, we considered:

1. a linear policy: π = βns(x − x∗) where x∗ = (−90 °, −25 °) was chosen as a ‘comfort’ position to
which the system tends to track.

2. a limit-cycle policy: ṙ = r(ρ − r2) with radius ρ = 0.1, angular velocity θ̇ = −2 rad/s, where r

and θ were the polar representations of the state (i.e., x = (r cos(θ), r sin(θ))).
3. the same linear policy as (a), but the constraints were imposed in the end-effector space. The

constraints were slightly modified to simulate walking on various slopes.

4.5.2. Learning. Figure 9 shows the generative model of the data. The inputs are pairs of x, u, and
the goal is to recover the policy π .

The nullspace component uns
i,k was learnt for each phase of each two-link system by minimising

Eq. (5), which yields nine different models. Each uns
i,k was modelled using a set of Gaussian RBFs,

where the number of RBFs, N , was obtained through cross-validation for N ∈ [10, 50]. The centres
were chosen according to k-means, and the widths σ 2 were the mean distance between centres.

After Step 1, all (xi,k, ũns
i,k) were combined as the input for Step 2. The nullspace policy was

modelled separately with another 50 Gaussian RBFs.
In the following, the 10-fold cross-validation results were reported when using 90% of the data-set

for training the models and reserving 10% for testing. The performance of our proposed method was
evaluated based on the criteria discussed in Section 4.4. We compared our approach with (i) linear
regression and (ii) RBF network.

4.5.3. Results. Figure 10 summarises the results of recovering (a) the linear policy, (b) the limit-cycle
policy and (c) the linear policy with various slopes.

In all sub-figures, the measurements on the left are the root-mean squared error in joint space
(nMSE) and the measurements on the right are the UPE. The error bars are mean±S.D. in log scale
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Linear regression RBF network Proposed method
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Fig. 10. (Colour online) Errors (mean ± 3 S.D.) of recovering (a) a linear policy, (b) a limit-cycle policy and
(c) a linear policy under various environments.

Fig. 11. (Colour online) Motion generated from (a) the true limit-cycle policy, (b) the learnt policy using RBF
network and (c) the learnt policy using our proposed method.

over 10 experiments on a hold-out data-set. (Note that S.D. looks larger at the points lower in the plot
due to the log scale.)

From this evaluation, we can see that the proposed method is more accurate in predicting the
policy both in terms of the nMSE and UPE. Furthermore, since UPE is a direct comparison between
the true and the learnt policies, the proposed method is expected to be more accurate under different
task constraints and behaviours.

Figure 11 is a visualisation of the true and recovered limit-cycle behaviours over multiple gait
cycles. Each gait cycle takes a different speed and step-size. (In the following figures, higher speeds
are represented by darker colours and vice versa.) These two rows show the hip angle and the knee
angle, respectively. Figure 11(a) shows the motion using the true limit-cycle policy. RBF network
(Fig. 11(b)) fails to generate smooth motion, while our method (Fig. 11(c)) reproduces motion that
has excellent consistency with the ground truth. Linear regression is worse even than RBF network,
so it is omitted from this visualisation.

5. Identifying Pathological Gaits
One of our objectives is to quantify the difference between gaits, and a potential application is gait
abnormality detection. The principle is to compare an unknown gait with a reference gait which is
expected to be normal and use their difference as the classification criteria.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 19 Dec 2014 IP address: 129.215.91.5

A novel approach for representing and generalising periodic gaits 1237

π

π

π π
p

p

p
p

Fig. 12. Gait abnormality detection by measuring the difference in nullspace policies.

5.1. Quantifying difference between gaits
With our walking-phase model, comparing two gaits is equivalent to comparing two nullspace policies.
A general framework is illustrated in Fig. 12; ideally, we want to extract the nullspace policy from
the gait of healthy subjects (as the reference policy π ref) and compare to the nullspace policy from a
new subject (πnew). A difference above a certain threshold would signify a pathological gait.

However, in order to estimate πnew and compute this difference, observations from various
embodiments are required, which is infeasible for the new subject. Nevertheless, it is still possible
to detect abnormalities in gait by comparing the policies under constraints. Specifically, instead of
measuring the difference between πnew and π ref, we can instead evaluate the difference between
Nnew πnew and Nnew π ref, where Nnew is a projection matrix derived from the constraints of the new
subject.

5.1.1. Projection matrix estimation. The projection matrix of the new person Nnew is unavailable by
assumption, but it is possible to estimate it. The key to our approach comes from the property of a
projection matrix. By definition, uns = N π , where N is the projection matrix which projects a vector
onto the image space of N. Since uns is already in the image space of N, we must have N uns = uns .

Based on this insight, an estimate of the projection matrix can be found by searching over the
range of possible projections. Recall that N = I − A† A; hence, we need to find an A that matches
the direction of the constraint as closely as possible. In this paper, we have constraints A ∈ R

1×2, so
we can model the constraint as a unit vector Ã = [cos(θ) sin(θ)], where θ ∈ [0, π] covers all possible
cases of N.

To estimate a projection matrix for the kth phase of a new person, we seek a θk such that the
difference between Ñ

new
k uns,new

k and uns,new
k is minimised. Note that the true nullspace component of

the new subject uns,new
k is also unknown, so we use the estimate of the nullspace component, instead.

Namely, after learning the nullspace component ũns,new
k for the kth phase, we obtained Nk pairs

of (xk, ũns,new
k ). For each possible value of θk ∈ [0, π], we can calculate the difference between

Ñ
new
k ũns,new

k and ũns,new
k :

Eθ

[
Ñ

new
k

] =
Nk∑
n

∥∥Ñ
new
k ũns,new

k,n − ũns,new
k,n

∥∥2
. (10)

The optimal θk ∈ [0, π] minimises Eq. (10).

5.1.2. Approximate policy difference. Given the estimated reference policy π ref from the healthy
subjects and measurements of the behaviour of the new person, we can now quantify the difference of
the new person’s policy through a measure that we call the approximate constrained policy difference
(APD).

Specifically, given pairs of state/action observations of the new person xnew, unew, we first divide
their data into K walking phases and learn a model of the nullspace components ũns,new

k for each
phase. Then, we take ũns,new

k and estimate the projection matrix Ñ
new
k using Eq. (10). The APD is

computed as

APD = 1

Nσ 2
π ref

K∑
k=1

Nk∑
n

∥∥ũns,new
k,n −Ñ

new
k π ref

k,n

∥∥2
, (11)
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Table IV. New systems for testing. The reference is the policy learnt
from the linear data-set in Section 4.5.

System Nullspace policy Task constraints

S1 Linear Same as reference
S2 Linear Different from reference
S3 Sinusoid Same as reference
S4 Sinusoid Different from reference

where σ 2
π ref is the variance of the reference policy. The APD measures the difference between the

reference policy and the new person in the constrained space, normalised by the variance of the
reference policy. Algorithm 2 summarises the process.

Algorithm 2 Approximate difference between two gaits
Input: D = {xnew, unew}: data-set of a new person

π ref: reference policy
Output: APD: approximated policy difference

1: Split D into Dk where k denotes the phase number
2: for all Dk do
3: Learn ũns,new

k by minimising Eq. (5)
4: Learn Ñ

new
k by minimising Eq. (10)

5: end for
6: Approximate the difference using Eq. (11)

One way to interpret the quantity in Eq. (11) is, this is the difference between a person and the
reference in an abstract policy space, where the distance resulting from various walking behaviours
(speeds, step-sizes) is eliminated. Therefore, this measurement can be thought of as the quantification
of how much we should correct a gait without interfering with his/her speed or step-length.
Additionally, the APD can also be used for monitoring a program of rehabilitation by looking at
the evolution of the APD with training.

5.2. Experiments
In this section, we demonstrate this idea using artificial data. Imagine a scenario in which there are
four previously unseen persons, two of whom have healthy gait and the other two have pathological
gait. The goal is to assess the use of the APD in quantifying the difference between the behaviour of
each person and healthy walking, as captured by the learnt reference policy.

5.2.1. Linear policy as reference policy. In our first evaluation, we used the learnt linear policy from
Section 4.5 as the reference policy (i.e., π ref in Fig. 12), and compared this against data from four
additional two-link systems representing four previously unseen subjects (we will refer to them as
S1, S2, S3, S4).

Among these four subjects, we used S1 and S2 to represent the normal gait, i.e., followed the
same linear policy as the reference. We used S3 and S4 to represent the abnormal gait; namely, they
followed a different (sinusoidal) policy π sin(x) = − sin(x∗ − x), where x∗ = (−90 °, −25 °) was the
nullspace target.

The new subjects took the same phase divisions and task-space policies as described in Section 3.3.
To explore the effect of different task constraints, S1 and S3 had the same task constraints with one
of subjects in the reference data, while S2 and S4 had a totally different one. Note that the nullspace
policy is independent of the task constraints, and therefore, the results are expected to be consistent
even when the task constraints change. The setup of these four systems are listed in Table IV.

Algorithm 2 was applied on each new system separately. More specifically, we learnt the uns,new

and Nnew for each phase of each person. The differences between each system and the reference were
calculated using APD (Eq. (11)). We also tested linear regression and RBF network for comparison.
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Table V. New systems for testing. The reference is the policy learnt
from the limit-cycle data-set in Section 4.5.

System Nullspace policy Task constraints

S1 Limit-cycle Same as reference
S2 Limit-cycle Different from reference
S3 Sinusoid Same as reference
S4 Sinusoid Different from reference

Linear regression RBF network Proposed methodGround truth
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Fig. 13. (Colour online) Average difference between the testing systems and the reference, where the reference is
(a) a linear policy and (b) a limit-cycle policy. The error-bars are mean ±S.D. in log-scale over 10 experiments.
The results were grouped into normal (N) and abnormal (A), where N is the average of S1 and S2, and A is the
average of S3 and S4.

We took the learnt model in Section 4.5, and measured the difference in joint-space between the
reference policy and each new system.

Figure 13 summarises the results of comparing the reference policy to S1–S4 using three different
methods. The y-axis shows the average differences in joint-space for the regression methods and
the average APD for the proposed method. (Note that the proposed method attempts to eliminate
the difference resulting from various walking behaviours; therefore, our method does not directly
compare joint-angles, which is influenced by various behaviours.) The error bars are the mean ±S.D.
in log scale over 10 experiments.

In Fig. 13(a), the horizontal line is the true differences between the reference (linear) and S3–S4
(sinusoidal), which is the true difference between N π sin and N π ref. Note that S1 and S2 adapt the
same linear policy as the reference, and the true differences between S1, S2 and the reference are 0.

In Fig. 13(a), the yellow and green colours denote the results of standard methods. We can see
that linear regression fails to differentiate linear and sinusoidal policies. Although RBF network
predicts relatively higher difference for abnormal (A), the predicted difference for normal (N) is also
unreasonably high. The red colour denotes the results of our approach. Our method yields lower
error for normal (N), and the result confirms with the fact that S1 and S2 use the same linear policy.
The error for abnormal (A) is relatively higher, which is also expected since S3 and S4 adopt the
sinusoidal policy.

5.2.2. Limit-cycle policy as reference policy. After validating with a linear policy, we also tested our
method on a non-linear policy. We took the limit-cycle policy learnt in Section 4.5 as the reference
policy. S1 and S2 were generated using the same limit-cycle policy as the reference (see Table V).

In Fig. 13(b), the horizontal line shows the true difference between the reference policy (limit-cycle)
and S3–S4 (sinusoidal), which is the true distance between N π sin and N π ref.

Similar to the last experiment, the standard methods (yellow and green) fail to make reasonable
predictions. Our method (red), again, produces results relatively similar to the ground truth. Our
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Table VI. Leg lengths of the subjects.

Subject Upper leg (cm) Lower leg (cm)

S1 37.7 38.9
S2 41.6 41.1
S3 42.6 40.5
S4 44.2 43.3
S5 45.1 44.2
S6 42.5 41.5
S7 45.8 44.8

Fig. 14. (Colour online) (a) Xsens motion capture system. (b) 3.5-kg weight was attached to the subject’s leg to
create ‘abnormal’ gaits.

experiment demonstrates good assessments on quantifying the difference between policies, even if
the true policy, the constraints and the tasks are unknown.

6. Experiment on Human Data
After validating our approach on simulated data, in this section, we explored the utility of our approach
on a more realistic setting. We collected human kinematic data using motion-capture system and tested
how well we can employ the learnt policy for gait abnormality detection.

6.1. Data collection
The kinematics data were collected using Xsens MVN BIOMECH system.29 The sensor units were
attached to the subjects according to Xsens configuration (Fig. 14(a)). The update frequency is set to
120 FPS.

6.1.1. Variations. The data were collected from seven males, aged between 20–29 years (referred
as S1–S7). These seven subjects have different body types and they were chosen to ensure our data
contain some variations in embodiments. The leg-lengths of subjects are summarised in Table VI.

Data were recorded for five walking speeds: 93, 106, 119, 129, 140 steps per minute, which were
taken from the speed range reported in ref. [30]. The walking speeds were controlled through the use
of a metronome. The subjects were asked to walk such that heel strike coincided with the tick of the
metronome. For each speed, 10 walking trials were collected.

6.1.2. Pathological gait. To create ‘pathological’ gait, 3.5-kg bags of sand were strapped to the
subjects’ left leg (see Fig. 14(b)). We used the same setup (speed, number of trails, etc.) to collect
kinematic data of abnormal gait from each subject.

6.1.3. Pre-processing. The captured motion was processed using MVN Studio 3.0 (a graphical
interface provided by Xsens). The data were exported in MVNX format, which is an XML format
with full kinematics of each segment, including position, velocity, acceleration, orientation, angular
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Fig. 15. (Colour online) The normal gait (red) and the abnormal gait (black) from one subject.

velocity and angular acceleration. The desired parameters were calculated and preprocessed using
MATLAB.

We used heel-strike of the left leg to demark the beginning of a walking cycle and extracted as
many cycles as possible from all walking trails we collected. We obtained roughly 200 gait cycles
from each subject, and 100 gait cycles were selected for analysis. In this experiment, we tested our
approach with three walking phases according to the descriptions in Section 3.3.

Figure 15 shows the hip and knee angles from one of the subjects. One trajectory from each
walking speed was selected. Note that normal gaits (red) and abnormal gaits (black) look very similar
from direct observation.

6.2. Setup
6.2.1. Learning reference policy. We selected five subjects, S1, S2, S3, S4, S5 for learning the
reference policy (Algorithm 2). For each walking phase of each subject, we learnt a model for
nullspace component ũns,ref

i,k , which yielded 15 models. Each ũns,ref
i,k was consisted of M Gaussian

RBFs where M varied from 16 to 100. The nullspace policy π ref was also modelled as parametric
model with Gaussian RBFs. We used this learnt policy as the reference policy for gait abnormality
detection.

6.2.2. Identify pathological gaits. Five subjects (S1–S5) were used to collect five normal and five
pathological gaits (using the leg loading). To investigate how well the learnt policy can generalise
across subjects, we also performed the same experiment on the subjects whose data had not been
used for training the reference policy (S6–S7)—we collected normal and pathological gaits for each
of these.

6.2.3. Baseline. For comparison, we also trained models using (i) linear regression and (ii) RBF
network on raw observations (x, u) from the normal gaits, and tested if we can see a difference
between normal and abnormal gaits in joint space.

6.3. Results
Figure 16 shows the average results over all subjects. The yellow and green colours denote the results
using standard methods, and the red colour denotes the results using our method. The error bars are
the mean ± S.D. in log scale over 10 experiments.

Figure 16(a) shows the average results over S1–S5. We can see that the standard methods cannot
differentiate normal and abnormal gait. Our approach achieved relatively lower difference when
comparing with normal gaits and higher difference when comparing with abnormal gaits. Even if
we have no access to the true policy, constraints, nor tasks, our reference policy is more effective in
differentiating normal from abnormal.

Figure 16(b) shows the average results over S6 and S7. In this case, RBF network predicts that
the abnormal gait is more similar to the reference gait. This outcome reflects the problem of using
average template, where the reference gait fails to adapt to the new subjects. Our proposed method,
on the other hand, can still show some difference between normal and abnormal, even if S6 and S7
are different from the subjects used to train the reference policy.
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Fig. 16. (Colour online) Average difference between the testing subjects and the reference policy, where the
testing subjects are (a) S1–S5 and (b) S6–S7. The error-bars are mean ± S.D. in log scale over ten experiments
and over subjects. The results are grouped into normal (N) and abnormal (A).
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Fig. 17. (Colour online) Average difference between the new subjects (S6 and S7) and the reference gait (learnt
from S1–S5). The testing data were divided by three different speeds: (a) slow, (b) average and (c) fast.

6.3.1. Apply the learnt policies on various behaviours. We also evaluated how well the learnt policies
can generalise across various walking behaviours. In this experiment, we tested slow, average and
fast walks separately, and see how the results might be affected by various speeds.

Similar to the last experiment, we used the normal and abnormal gaits from S6 and S7 to represent
two normal and two abnormal persons, and compare them with the reference policy learnt from S1,
S2, S3, S4 and S5. Figure 17 shows the results of predicted difference between the new subjects and
the reference policy, where the data were divided by three different speeds: (a) slow, (b) average and
(c) fast.

From Fig. 17, we can see that, by using RBF network (green), the predicted difference between
the normal gait and the reference increases as the walking speed increases. This is equivalent to
considering those faster walks are deviations from the normal gait.

In contrast, our proposed method (red) yields consistent results regardless of walking speeds, and
this outcome confirms the fact that our method attempts to eliminate the difference coming from
various walking speeds. Implication in real world application is that our quantification method deals
with different walking behaviours consistently, and the patients can choose to walk faster or slower.
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7. Conclusion
We explore the problem of representing, generalising and comparing gaits. We consider that
locomotion can be described as a combination of characteristics of the gait and variations from
embodiments and behaviours. We assume that there exist some consistent characteristics across
different embodiments and walking phases, and we aim to generalise them.

Our approach is built upon the work in the domain of nullspace policy recovery and gait analysis.
We formulate our problem into a walking-phase model, and we adapt the nullspace policy learning
method to generalise a policy that can capture the consistent characteristics of walking gait. Our
experiment has shown that our method is effective in reconstructing the policy, even if the true policy,
the constraints and the variations in behaviours are unknown. After recovering the policy, we can
utilise this policy for gait abnormality detection.

For simplicity, we focus on the kinematics of movement; however, with some modification the
model may also be extended to the case of redundancy in dynamics. Future work will focus on
exploring different representations and higher degrees of freedom on human data.

One of the current issues in robot-assisted rehabilitation is that the existing systems normally
restrict the patients to walk with some pre-defined reference trajectories such that the patients are
required to walk at a certain speed, slope or step-size. Our approach is different from the previous
work in that we aim to extract the important aspect of normal gaits and separate those from variations.
In the future, we would like to use the reconstructed policy to produce the reference trajectory for
gait rehabilitation. With our method, the system will be able to correct the patient only if there is a
mismatch in the characteristics of walking without interfering his/her personal preferences such as
speeds or step-lengths.
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