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Abstract— This work presents a novel RGB-D SLAM ap-
proach to simultaneously segment, track and reconstruct the
static background and large dynamic rigid objects that can
occlude major portions of the camera view. Previous approaches
treat dynamic parts of a scene as outliers and are thus limited
to a small amount of changes in the scene, or rely on prior
information for all objects in the scene to enable robust camera
tracking. Here, we propose to treat all dynamic parts as one
rigid body and simultaneously segment and track both static
and dynamic components. We, therefore, enable simultaneous
localisation and reconstruction of both the static background
and rigid dynamic components in environments where dynamic
objects cause large occlusion.

We evaluate our approach on multiple challenging scenes
with large dynamic occlusion. The evaluation demonstrates that
our approach achieves better motion segmentation, localisation
and mapping without requiring prior knowledge of the dynamic
object’s shape and appearance.

I. INTRODUCTION

Mobile manipulation tasks, such as handling and trans-

porting objects in an unmanned warehouse or collaborative

manipulation [1], require a robot to localise against the

static environment in which it moves while being robust to

distractions from dynamic objects; as well as track the object

which they manipulate. While these two problems have been

previously addressed separately, only a few strands of work

[2], [3] have attempted to solve these two problems together

and track the camera and multiple objects at once.

In this work, we argue that localisation against the en-

vironment and tracking of objects are fundamentally the

same problem, and that solving them simultaneously reduces

ambiguity about the scene and improves localisation in cases

of large dynamic occlusions.

The core problem – separating the scene into segments

of transformations induced by ego-motion and/or moving

objects – is challenging due to several factors:

1) Unknown environments: Robots may not have prior

information about the semantic meaning, 3D model

or appearance of the dynamic objects and static back-

ground.

2) Large occlusion: Dynamic parts of images are often

discarded for robust visual odometry; but in many sce-

narios, they can occlude the majority of a camera view,
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Fig. 1: Top: Segmentation of a scene with one moving

box into static (blue) and dynamic (red) segments. Indirect

methods, such as StaticFusion (SF) [4], neglect dynamic

parts or incorrectly treat them as static environment while our

method, RigidFusion (RF), correctly segments the moving

box as dynamic (red). Bottom: The reconstruction of the

static map in SF contains the dynamic object (red circle)

and multiple instances of the same static object (red ellipses),

while RF correctly incorporates all static segments.

such as for large moving objects or when manipulated

objects are close to the camera. This ambiguity leads to

tracking failures where a dynamic object is classified

as part of the static environment. This is in contrast to

driving/flying, where ego-motion effects dominate.

3) Mutual static and dynamic transition: Manipulated

objects can transition between static and dynamic with

respect to the world at any time during manipulation.

Maintaining these state transitions purely with visual

odometry can be difficult.

To address all three aspects concurrently, we treat locali-

sation and object tracking as an integrated problem and for-

malise both as modelling and tracking any rigid movement.

Consequently, we achieve improved motion segmentation,

localisation and mapping in dynamic environments with large

occlusion (Figure 1). For this, we assume that the motions

of both static and dynamic components are rigid transforma-



tions. These motions can be identified using tightly coupled

motion priors from odometry and kinematics.

In summary, this work contributes:

1) a new pipeline to simultaneously segment, track and re-

construct the static background and one dynamic rigid

body from RGB-D sequences, using motion priors with

potential drift,

2) a dense SLAM method that is robust to large occlu-

sions in the visual input (over 65%) without relying

on an initialisation of the static and dynamic models,

3) a new RGB-D SLAM dataset1 with dynamic objects

that cause large occlusion in the scenes and ground

truth trajectories.

II. RELATED WORK

Dynamic visual SLAM or visual odometry methods can be

categorised into direct, indirect or multi-motion odometry

methods. Robot proprioception can also be used to support

localisation in dynamic environments.

Direct methods rely on prior information of static back-

ground or dynamic objects to distinguish between them.

For certain dynamic objects, such as humans, PoseFusion

[5] used OpenPose [6] to segment them against the envi-

ronment. In addition, multi-object segmentation methods,

such as Mask-RCNN [7], can provide accurate semantic

segmentation, therefore supporting robot localisation when

dynamic objects are included in the training set [8], [9].

Given object segmentation, different objects can be further

assigned with different scores to indicate their probability

to be dynamic [10]. However, a trained network can only

recognise objects from the training set, and even if an object

is recognised as static, the object can become dynamic if

it is manipulated. Another strand of research distinguishes

the static background through geometric properties, such as

assuming all planes are static [11]. This would fail when

objects that consist of planes, like boxes, are manipulated.

Indirect methods track the main rigid component of

the visual input and discard the remaining components as

outliers. Sun et al. [12] applied a RANSAC approach to

sparse feature points of two consecutive images, and dynamic

objects are removed as outliers. This work was later extended

to scenarios with multi-cluster dynamics [11] and served as

a pre-processing step for the input of SLAM algorithms. Li

et al. [13] proposed a static pixel/point weighting method to

represent the probability of a point being static, instead of

classifying each point as either absolutely static or dynamic.

Both StaticFusion (SF) [4] and Joint-VO-SF (JF) [14] applied

a K-Means clustering method to separate the visual input into

clusters and similarly assigned static pixel/point weights to

each cluster. The dynamic clusters are detected as outliers

and SF requires that dynamic components are less than

20-30% at the initial frame [4]. Rather than removing all

outliers, Co-Fusion (CF) [2] treated outliers as an additional

object and maintained the model of this object if the outliers

are connected and occupy more than 3% of an image. While

1http://conferences.inf.ed.ac.uk/rigidfusion/

it maintains multiple objects, it is prone to over-segment the

image, thus treating different parts of an object with the same

transformation as different entities.

Multi-motion odometry methods, such as multi-body

structure from motion (MBSfM) [15] and multimotion visual

odometry (MVO) [3], directly separate and track multiple

rigid bodies with distinct motions in the visual input. MBSfM

requires all images in advance and cannot be processed on-

line. MVO can also estimate the number of multiple moving

objects online based on sparse feature points. However, it

cannot provide dense mapping, and the rigid body with the

largest number of feature points is treated as static. This

means that a dynamic object could be recognised as static

if it has a richer texture or occupies a larger part than static

background in the visual input.

Robot proprioception can be combined with visual odom-

etry to support localisation. Visual inertial odometry (VIO)

methods [16], [17] fused IMUs and visual sensors. Wheel

[18] or leg [19] odometry can be further combined with VIO

to increase the accuracy of localisation. However, they are

limited to static environments. Kim et al. [20] used an IMU to

estimate and, thus, compensate camera ego-motion, therefore

removing dynamic objects before camera tracking. However,

this method relies on accurate robot proprioception.

In summary, state-of-the-art visual SLAM methods either

1) require full knowledge of objects in the scene (direct

methods) and fail if the dynamic objects are not detected,

or 2) cannot handle when dynamic objects become the

predominant part of an image (indirect methods).

III. OVERVIEW

We propose a pipeline that treats the dynamic component

as a single rigid body and uses motion priors to segment the

static and dynamic components. The segmentation is used

to track the camera, and to reconstruct the background and

object models.

The overview of our pipeline is illustrated in Figure 2.

Our approach takes two consecutive RGB-D frames A and

B, static and dynamic motion priors, ξ̃s, ξ̃d ∈ se(3), and the

previous segmentation of frame A, Γ̃A ∈ R
W×H .

Similar to [4], each new intensity and depth image pair

(I,D) ∈ R
W×H is over-segmented into K geometric clusters

V = {Vi | i = 1, · · · ,K} by applying K-Means clustering [14].

We hypothesise that each cluster is as rigid as possible, and

each rigid body can be approximated by the combination of

clusters. We also assign each cluster a score γi ∈ [0,1] which

represents the probability that a cluster belongs to the static

rigid body: γi = 0 stands for dynamic clusters while γi = 1

means static clusters. For an RGB-D frame A, we denote the

overall scores as γγγA ∈ R
K .

If the difference between two motion priors ||ξ̃s − ξ̃d ||2 is

less than a threshold d̂, we treat all clusters in the image as

static and skip motion segmentation. Otherwise, we jointly

optimise the scores γγγB of the current frame and relative

motions ξs and ξd of the static and dynamic rigid bodies

(Section IV).

The pixel-wise segmentation ΓB ∈R
W×H is then computed
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Fig. 2: Our method processes two consecutive RGB-D frames (A, B), motion priors (ξ̃s, ξ̃d), and the previous segmentation

(Γ̃A). We first detect whether the object is dynamic based on motion priors. We then jointly estimate the segmentation ΓB

and the rigid body motions ξs and ξd based on frame-to-frame alignment when the object moves. The segments are used to

reconstruct the static environment and the dynamic object, and to localise camera using frame-to-model alignment.

from clusters and scores. Similar to StaticFusion, we com-

pute the weighted RGB-D images of both static and dynamic

rigid bodies from the segmentation ΓB. These weighted

images are used to reconstruct models of the background

and dynamic object and to refine the estimated camera pose

using frame-to-model alignment (Section V).

We denote world-, camera-, and object-frames as FW ,

FC, FO respectively (Figure 3). Similar to [18], we use

TXY ∈ SE(3) to transform homogeneous coordinates of a

point in coordinate frame FY to FX . In an image frame A,

the camera and object poses are TWCA
and TWOA

respectively.

Considering two image frames A and B, the relation between

ξs and camera poses is: T (ξs) = T−1
WCA

TWCB
= TCACB

, and the

relation between ξd , camera and object poses is: T (ξd) =
T−1

WCA
TWOA

T−1
WOB

TWCB
= TCAOA

T−1
CBOB

. The motion priors ξ̃s and

ξ̃d can be provided by proprioceptive sensors, such as wheel

odometry and arm forward kinematics.

In this paper, the static motion prior ξ̃s is computed either

from wheel odometry or by adding simulated drift on camera

ground truth trajectories. We generate ξ̃d by simulating drift

on object ground truth trajectories.

IV. RIGID MOTION SEGMENTATION AND ESTIMATION

At the arrival of each RGB-D pair, we jointly segment and

track both static and dynamic rigid bodies by minimising a

combined cost that consists of four energy terms:

min
ξs,ξd ,γγγ

R(ξs,γγγ)+R(ξd ,1− γγγ)+S(ξd ,γγγ)+P(ξs,ξd)

s.t. γi ∈ [0,1] ∀ i ,
(1)

where γγγ represents the scores of all clusters. Specifically,

the first two terms align the static and dynamic rigid bodies

respectively. The third term S(ξd ,γγγ) adds regularisation on

both the spatial and time distribution of scores γγγ to maintain

the smoothness of segmentation. The last term P(ξs,ξd)
applies constraints on transformations ξs,ξd using motion

priors ξ̃s, ξ̃d .

Frame	A

Frame	B

(a) (b)

Fig. 3: Relation between coordinate frames (FW , FC, FO)

and motions (ξs, ξd). (a) External camera view. A mobile

manipulator simultaneously moves its base and manipulates

an object (red box). The camera is fixed on the base. (b)

Image view. For the static motion ξs, we can compute

the prior ξ̃s from TWC, which can be acquired from wheel

odometry. The dynamic motion prior ξ̃s can be computed

from TCO, which can be acquired from arm kinematics.

A. Rigid Body Motion Estimation

Following previous RGB-D SLAM methods [21], [4], in

static environments, the relative camera pose between two

image frames A and B is estimated by minimising the

intensity and depth residuals between the RGB-D image pairs

(IA,DA) and (IB,DB). At a pixel p in frame A, the intensity

residuals r
p
I and depth residuals r

p
D with respect to frame B

are defined as:

r
p
I = IB(W (xp

A,T (ξ ),DA))− IA(x
p
A) (2)

r
p
D = DB(W (xp

A,T (ξ ),DA))−|T (ξ )π−1(xp
A,DA(x

p
A))|z , (3)

where the image warping function W is given by:

W (xp
,T,D) = π(T π−1(xp

,D(xp))) . (4)

xp represents the coordinate of pixel p in the 2D image, | · |z
indicates the z-coordinate of a 3D point and D(xp) is the

depth of pixel p. The homogeneous transformation matrix

T (ξ ) ∈ SE(3) is computed from its Lie algebra ξ ∈ se(3).
The projection function π : R3 →R

2 projects 3D points onto

the image plane using the camera intrinsic matrix.



According to StaticFusion, given the scores γγγ of a rigid

body, we can estimate the relative motion of this rigid body

by applying the scores to weight residuals. Consequently,

only pixels that belong to the rigid body have a high

contribution:

R(ξ ,γγγ) =
N

∑
p=1

γi(p)[C(αIw
p
I r

p
I (ξ ))+C(wp

Dr
p
D(ξ ))] , (5)

where N is the number of images pixels with valid depth

reading in one image. i(p) indicates the index of the cluster

that contains the pixel p, and γi(p) represents the probability

that this cluster belongs to the rigid body. αI is a scale

parameter to weight photometric residuals so that they are

comparable to depth residuals. The parameters wI and wD

are computed according to the photometric and depth mea-

surement noise. As in [4], we use the Cauchy robust penalty

C(r) =
c2

2
log(1+(

r

c

2
)) (6)

to robustly control the minimisation of residuals, where c is

the inflection point of C(r).
The novelty of our approach is that in equation 1, we treat

the dynamic component as another rigid body with a different

motion, where γγγ and 1 − γγγ represents the scores of the

static and dynamic rigid body respectively. To simultaneously

segment and track the two rigid bodies, we further encourage

segmentation smoothness and use tightly coupled motion

priors.

B. Segmentation Smoothness

First, to maintain spatial smoothness, we use the regu-

larisation term used in StaticFusion to penalise the score

difference between adjacent clusters:

SR(γγγ) =
K

∑
i=1

K

∑
j=i+1

Ei j(γi − γ j)
2
, (7)

where Ei j is the adjacent map for the cluster set V. Ei j = 1

if clusters i and j are adjacent in space, otherwise Ei j = 0.

Furthermore, we consider the physical constraint that

pixels that belong to the dynamic rigid body at the previous

frame are likely to be dynamic at the current frame. There-

fore, we use the segmentation result from the previous frame

as segmentation prior to encourage segmentation smoothness

over time:

ST (ξd ,γγγ) =
K

∑
i=1

(γi − γ̃i(ξd))
2
, (8)

where γ̃i(ξd) denotes the projection of γ̃i from the previous

frame B to the current frame A via ξd :

γ̃i(ξd) = ∑
x

p
B∈Vi

Γ̃A(W (xp
B,T (ξd)

−1,DB))

|Vi|
. (9)

Here, Vi is the i-th cluster of the current frame B, and Γ̃A is

the per-pixel segmentation from the previous frame A. The

warping function W (equation 4) transforms a pixel p ∈ Vi

according to its coordinate in the current image x
p
B and the

estimated motion of rigid body ξd . |Vi| denotes the number

of pixels in Vi.

The spatial and time smoothness (equation 7 and 8) are

combined and weighted by λr:

S(ξd ,γγγ) = λr(SR(γγγ)+ST (ξd ,γγγ)) , (10)

to represent the smoothness term S(ξd ,γγγ) in equation 1.

C. Tightly Coupled Motion Prior

Given the motion priors of both static and dynamic rigid

bodies ξ̃s and ξ̃d , we add a regularisation term on the motion

of each rigid body:

P(ξs,ξd) = λs||ξs − ξ̃s||
2
2 +λd ||ξd − ξ̃d ||

2
2 , (11)

where parameters λs and λd weight the regularisation terms.

|| · ||22 represents the square of the L2 norm. Because potential

drift and noise in the motion prior could bias the solution,

the prior information is neglected if the current estimated

state is closer to the prior than a noise-related threshold.

To achieve this, λs and λd are independently adapted online.

Specifically, λs,d = 1 if ||ξs,d − ξ̃s,d ||2 > n̂, otherwise, λs,d = 0.

n̂ is a threshold we choose and is related to the noise level

of motion priors.

D. Solver

The solver is based on StaticFusion. Since we directly

align images in equation 1, the minimisation problem is

solved via a coarse-to-fine scheme. We create an image

pyramid for each image frame by iteratively down-sampling

each image, which reduces the impact of depth noise. The

optimisation starts from the coarsest level. The results of

intermediate levels are used to initialise the following level.

For each level of the image pyramid, we decouple motions

ξs and ξd from segmentation γγγ . Specifically, at each iteration,

we first fix γγγ and optimise R(ξs,γγγ)+R(ξd ,1−γγγ)+P(ξs,ξd)
over ξs and ξd . Then ξs and ξd are fixed, and we optimise

R(ξs,γγγ)+R(ξd ,1− γγγ)+S(ξd ,γγγ) over γγγ .

V. MAPPING AND FRAME-TO-MODEL ALIGNMENT

After the minimisation of equation 1, we use the optimal

scores γγγ and 1−γγγ to compute the weighted images for static

and dynamic rigid bodies respectively. The weighted images

are fused to the model of rigid bodies, and the estimated

motions ξs and ξd are used to initialise the frame-to-model

alignment. We use ElasticFusion without loop closure [21]

to build the model and conduct frame-to-model alignment.

VI. EVALUATION

A. Setup

The proposed method is evaluated on RGB-D sequences

that are collected with an Asus Xtion PRO Live in plane-

parallel movement (2 DoF translation. 1 DoF rotation) show-

ing different characteristic object movements. The camera

is either hand-held or mounted on an omnidirectional robot

base (Figure 4a). The object is a remote controlled KUKA

youBot with stacked boxes (Figure 4b). The camera and

the object are equipped with Vicon markers for ground

truth comparisons and to simulate motion prior drift for



(a) Mobile manipulator Ada (b) KUKA youBot

Fig. 4: Omnidirectional platforms for moving (a) camera and

(b) stacked boxes (0.4×0.6×1 m) with Vicon markers.

sequence frame motion difficulty

camera object

straight straight orthogonal crossing low
orbit orbit rotation to camera medium
overtake straight rotation + parallel to camera medium
sideway lateral orthogonal zig-zag crossing high

TABLE I: Camera sequence description.

camera-only sequences. The motion estimation performance

is quantitatively evaluated via the absolute trajectory error

(ATE) and the relative pose error (RPE) [22] against the

Vicon ground truth for the optical frame. The visualised

trajectories are aligned by the initial camera pose.

In the implementation of RF, we set λr = 2, and the

thresholds d̂ and n̂ are both chosen as 0.01. We extend

StaticFusion to use motion priors by appending the regular-

isation term λs||ξs − ξ̃s||
2
2 to the loss function. The method

that StaticFusion with ground truth camera motion prior is

denoted as SF true. We control the impact of adding camera

motion prior by choosing the same n̂ = 0.01 for SF true.

For camera-only sequences, the average simulated drift on

camera trajectories is 6 cm/s (trans.) and 0.4 rad/s (rot.),

while the average drift on object trajectories is 1.5 cm/s

(trans.) and 0.1 rad/s (rot.). The camera and object speed

is less than 60 cm/s. In robot experiments, we use wheel

odometry as camera motion priors and keep the object

motion prior with simulated drift.

B. Synthetic Experiments

We hypothesise that the proposed objective with motion

priors improves the estimation for dynamic objects that

occupy more than 50% of valid image pixels. To study this

effect in a controlled environment, we synthesised a simple

scene with an object of varying size moving across the image

from left to right. The relation of trajectory error to drift

magnitude (Figure 5) supports this hypothesis.

C. Camera Experiments

We collected four sequences involving plane-parallel

movement of the camera and the object within the camera

frame. These sequences have different characteristics of

camera and object motion (Table I). Figure 6 (top) shows

the 2D plane projection of the true trajectories.

Our approach RigidFusion (RF) is compared against Joint-

VO-SF (JF, [14]), StaticFusion (SF, [4]), StaticFusion with

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
dynamic proportion

0.00
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1.00

AT
E 

RM
SE

 [m
]

Co-Fusion baseline
StaticFusion baseline
StaticFusion with true camera motion prior
RigidFusion (ours) with motion prior drift

Fig. 5: ATE of estimated camera trajectories on a synthetic

sequence with different object sizes relative to the amount of

valid image pixels. Co-Fusion and StaticFusion break around

a dynamic ratio of 0.5 or less. Using the true motion priors

in StaticFusion allows larger objects up to a ratio of 0.6,

while our method with drift on the motion priors can track

up to 0.75.

RGB-D Motion prior Method
sequence (drift) JF SF SF true CF RF (ours)

straight 17.6 48.4 34.8 14.5 3.84 7.57

orbit 44.2 52.0 87.7 19.9 14.2 5.74

overtake 8.93 59.6 52.6 23.6 23.0 5.39

sideway 51.1 55.3 70.1 38.1 48.2 13.1

(a) Trans. Absolute Trajectory Error RMSE (cm)

RGB-D Motion prior Method
sequence (drift) JF SF SF true CF RF (ours)

straight 6.02 18.5 24.3 12.9 5.54 6.05

orbit 6.03 13.4 25.2 5.78 8.47 5.1

overtake 6.34 19.1 27.4 11.3 18.9 4.78

sideway 6.01 21.7 42.3 9.87 17.0 8.03

(b) Trans. Relative Pose Error RMSE (cm/s)

TABLE II: ATE and RPE for camera-only sequences. Motion

prior represents the trajectory computed from prior motion

with simulated drift to indicate the performance of simple

kinematic odometry. Our method with motion prior drift

outperforms the state-of-the-art on difficult sequences, in-

cluding SF with true motion prior (SF true), while Co-Fusion

performs best on the easiest sequence.

true motion priors (SF true) and Co-Fusion (CF, [2]). The

quantitative evaluation in Table II shows that our method

outperforms the state-of-the-art on more difficult sequences.

Although Co-Fusion achieves best results on the easier

straight sequence, it tends to over-segment dynamic objects

and treats parts of the static background as dynamic. This

effect is more dominant in the more difficult sequences,

leading to worsen performance of CF.

The visualisation of the estimated trajectories in Figure 6

(bottom) confirms that our method outperforms the state-

of-the-art in dynamic scenes. The improved localisation

performance stems from a better segmentation of dynamic

parts in the image (Figure 7). In our frame-to-frame odom-

etry setting, the improved motion segmentation performance

directly affects the estimation performance and additionally

leads to better a reconstruction of the static environment.

D. Robot Experiments

In four additional robotic experiments, we use the camera

on the floating base of an omnidirectional robot and replace

the simulated drift with wheel odometry. The true trajectories
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Fig. 6: True and estimated trajectories (units in meter). Top: Top-down view of true camera and object trajectories in

evaluation sequences. The green trajectory represents the true object position in the Vicon reference frame. The red/blue

trajectory segments represent the camera trajectory and if the object is static (blue) or dynamic (red) within the image. Black

arrows point in the camera view direction. Bottom: True and estimated trajectories for our RigidFusion (with and without

drift on motion priors), the baselines StaticFusion [4] (with and without true motion priors) and Co-Fusion [2]. Trajectories

start at the origin (black solid dot) and end at the circle-cross marker. Our proposed method is closer to the ground truth

trajectory even with drift on the motion priors (red, dashed), while StaticFusion fails even with true prior (blue, solid).

RGB-D Wheel Method
sequence odometry JF SF SF true CF RF (ours)

sideway1 2.27 37.7 62.8 36.8 32.1 7.58

overtake 3.16 23.8 79.1 24.7 16.5 14.0

straight 3.64 51.9 86.3 21.9 12.3 7.98

sideway2 3.21 53.8 54.2 34.1 32.9 10.7

(a) Trans. Absolute Trajectory Error RMSE (cm)

RGB-D Wheel Method
sequence odometry JF SF SF true CF RF (ours)

sideway1 0.77 19.4 34.7 15.9 18.6 3.66

overtake 0.74 18.7 41.7 10.4 6.78 2.06

straight 1.13 39.8 84.2 13.7 10.8 8.67

sideway2 1.14 22.2 57.5 18.2 12.9 6.68

(b) Trans. Relative Pose Error RMSE (cm/s)

TABLE III: ATE and RPE for sequences collected with Ada.

The camera motion prior is estimated from the wheel odom-

etry. Our method (RF) outperforms all compared dynamic

SLAM methods when using real wheel odometry.

of two of these sequences are shown in Figure 8 (top).

The quantitative results in Table III show that using real

wheel odometry as motion priors, RF outperforms all other

four methods in terms of both ATE and RPE on all four

sequences. The estimated trajectories for sequences sideway1

and overtake are shown in Figure 8 (bottom).

E. Object Reconstruction

We compare the reconstructed dynamic object for CF and

RF in Figure 9. Since CF tends to over-segment objects, we

only show the first detected model. Results show that RF

generates a more complete dynamic model than CF. This

suggests that the segmentation estimated by RF is consistent

over time and more accurate than CF.

F. Impact of Odometry Drift on Trajectory Estimation

We amplify the wheel odometry drift to test RF’s robust-

ness against different levels of camera motion prior drift. We

also test RF’s performance without the object motion prior

(fix λd = 0). The relation between the RPE of the estimated

trajectories and the drift over all robot sequences is shown

in Figure 10. Even without the object motion prior, RF still

achieves better performance than CF for up to 17 cm/s drift

in terms of average RPE. Using both motion priors, RF

performs even better and is more robust to large odometry

drift. This demonstrates that our method can handle large

odometry drift and the absence of an object motion prior.

G. Impact of Multiple Dynamic Objects

RF assumes that the dynamic motion can be explained

by a single rigid transformation. To test RF’s performance

when this assumption is violated, we conduct qualitative

experiments on two OMD sequences [23] where multiple

dynamic objects are present (Figure 11).

For sequence occlusion 2 translational, which contains

one large and one small dynamic object, the motion prior

for the larger object is provided. For sequence swing-

ing 4 translational, which contains four dynamic objects, the
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Fig. 7: Segmentation and 3D reconstructed background for our proposed algorithm RigidFusion (RF), StaticFusion (SF) [4]

(with and without true motion priors), Joint-VO-SF (JF) [14] and Co-Fusion (CF) [2] on camera-only sequence sideway.

Our proposed method is the only one that can consistently segment the large rigid dynamic object (compare first row

with highlighted boxes against red dynamic segmentation) and reconstruct the background even the motion priors have a

significant drift.

motion prior for the top-left object is provided. Despite this

under-representation of the dynamic motion, RF outperforms

SF and is able to correctly segment the static environment

against all the dynamic objects. However, similar to SF, RF

cannot independently track multiple dynamic objects with

different motions.

VII. CONCLUSION

We have presented a robot localisation and mapping

approach in environments where dynamic components can

occupy the major portions of the visual input. To address

this problem, we assume that the dynamic component is

rigid, and jointly segment and track the static and dynamic

rigid bodies. Detailed evaluation shows that our method

RigidFusion outperforms state-of-the-art when a dynamic

rigid object occludes more than 65% of the camera view.

We demonstrate its robustness to odometry drift up to 17

cm/s and the absence of object motion priors.

Our method treats the whole dynamic component as a

single rigid body and is thus unable to track multiple

dynamic objects independently in the scene. Our future

research direction involves extending the current pipeline

to enable multiple rigid objects segmentation, tracking and

reconstruction in dynamic environments. To handle dynamic

objects that are not in contact with the manipulator, and thus

have no kinematic prior, we intent to estimate motion priors

using visual correspondences.
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