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Abstract— While widely studied in robotics for decades,
mobile manipulation has recently seen a surge in interest for
industrial applications due to increasing demands on flexibility
and agility alongside productivity, particularly in small and
medium enterprises. However, most mobile manipulation solu-
tions frequently decouple the navigation from the manipulation
problem effectively performing fixed-base manipulation using
a repositionable manipulator. This is not only inefficient, but
moreover limits the range of applications and disregards the
inherent redundancy of a mobile manipulation system.

In this work, we introduce a high-performance omnidirec-
tional mobile manipulation platform with integrated whole-
body control, real-time collision-free whole-body motion plan-
ning, and perception. We demonstrate its capability along with
application scenarios on technical demonstrators involving mov-
ing manipulation targets as well as whole-body manipulation in
simulation and hardware experiments. Finally, we deploy and
evaluate our solution in field trials on an industrial oil and gas
training facility on a sensor placement and manipulation task.

I. INTRODUCTION

Traditional industrial automation achieves productivity

gains through fast and precisely repeated pre-programmed

motions in controlled environments. Here, the robots are

firmly mounted to the ground allowing high-speed movement,

enclosed with security fencing, and attached to unlimited

shore power. These systems are custom designed at the

beginning of a product life cycle and amortize costs over a

large production volume with low individual variability (mass

manufacturing). The recent trend for customization, however,

is dominated by small batch sizes and short cycle times with

frequent reconfiguration of work cells. This requires flexibility

and agility to respond quickly to changes in demand, and are

a particular challenge for the competitiveness of small and

medium enterprises (SMEs).

As a solution, the integration of light-weight, collaborative

robots (cobots) into shared human-robot-assembly lines is

now widely being adopted. Cobots are safe to operate

near humans without extensive safety systems and can be

programmed/taught by demonstration [1]. However, as they

are mounted with a fixed base they are limited in their
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Fig. 1: Continuous manipulation using whole-body control: an industrial IoT
monitoring device is placed using live sensor feedback.

workspace reachability often requiring a large number of

cobots per plant and posing a challenge for redeployability

and versatility.

This motivates the use of mobile collaborative robots,

which, while opening up versatile deployment opportuni-

ties, require new considerations. While some manufactur-

ers propose mobile manipulation as the repositioning of

flexible workstations that automatically plug themselves to

shore power (e.g., FANUC Robotics1), many integrators

have combined autonomous ground vehicles (AGVs) with

differential or omnidirectional drive and collaborative robots

into commercially available mobile manipulators. This is of

interest to both traditional workshops looking to automate

tasks, e.g., machine tending in existing factory floors, as well

as in the development of flexible manufacturing concepts

such as matrix production.

While some of the recent developments are spurred by

the confluence of the maturity of the open source robotics

ecosystem (ROS) and the availability of mature, standardized

hardware platforms and software systems (e.g., ROS-Control

for hardware abstraction and MoveIt! for motion planning),

there is an increasing demand for industrial applications. At

present, mobile robots are widely deployed for logistics and

warehousing tasks such as moving shelves (e.g., Amazon/Kiva

Robotics) and in-facility logistics (e.g., in hospitals and on

factory floors). Manipulation tasks, on the other hand, are

often limited to demonstrations of pick-and-place and material

transport and are generally only applied to highly-specialized

scenarios due to limitations of workspace interoperability,

autonomy, battery runtime, and cost.

A. Related work

Autonomous mobile manipulation recently received a

renewed focus in research, with a number of high-profile

international competitions centered on service robotics (e.g.,

1Cf. https://youtu.be/rQBnZuby05s.



World Robot Challenge, RoboCup@Home, etc.), disaster

recovery (e.g., DARPA Robotics Challenge), or coordinated

manipulation tasks (e.g., Mohammed Bin Zayed International

Robotics Competition).

However, due to the complexity of planning locomanipula-

tion in real-time, locomotion/navigation and manipulation are

often treated as separate problems and joined and coordinated

by a high-level state machine [2], sequence planner, or

shared autonomy control interface [3], [4]. In this case, the

problems of optimal base placement [5], navigation to the

base placement, and fixed-base manipulation [6], [7] are

treated separately, limiting the applicability to static targets

and obstacles and disregarding the inherent redundancy of

high degree of freedom (DoF) systems. Yet, to achieve time-

and energy-optimal solutions, locomotion and manipulation

need to be considered jointly.

Early work to coordinate locomotion and manipulation

introduced the Mobile Manipulator Jacobian Transpose

(MMJT) [8] and demonstrated the ability to compensate

vehicle motion from passive suspension to stabilize end-

effector motions. [9] considered joint motion to maximize

manipulability of the end-effector while following a desired or

guided operational space trajectory. Similarly, [10] considered

both manipulation and locomotion during motion planning in

a joint optimization problem maximizing a directional manip-

ulability metric. However, while planning jointly, in order to

avoid errors from a lower-precision mobile base, the authors

enforced discrete repositioning and fixed-base manipulation.

[11] considered humanoid locomanipulation by planning in

task-space introducing virtual joints for footsteps and an

adaptive procedure to vary the number of foot placements.

Recent advances in semi- and fully-constrained collision-

free whole-body motion planning in time-configuration space

using sampling-[12] and optimization-based [13] approaches

allow synthesis of highly complex motion manipulating

moving targets in dynamic environments. [14] used a Hi-

erarchical Quadratic Programming (HQP)/Stack-of-Tasks

(SoT) approach on a holonomic mobile manipulator with

continuous task transition. In summary, [8], [9], [14] focused

on instantaneous whole-body control to coordinate and

compensate end-effector motion, while [10]–[13] focused on

locomanipulation planning over longer horizons as an input

into the former. In this work, we combine locomanipulation

planning with coordinated whole-body control for continuous

manipulation in complex environments.

Constrained optimization is a common tool for planning

and controlling motion of humanoid [3] and quadruped

robots [15], e.g., using trajectory optimization and task-

space inverse dynamics, respectively. The task is formally

described by constraints on controls, end-effector positions,

and other properties such as static balance derived from

inverted pendulum dynamics while control effort or other

cost terms are minimized. A variety of efficient quadratic

programming and nonlinear programming (NLP) solvers have

been developed to solve these problems. These formulations

are generic so that they can handle complex problem settings

required for optimizing the motion of highly dynamical

system, however, they can also be used to define tasks for

non-legged robots and for trajectory optimization in complex

environments instead.

B. Contribution

In this work, we introduce a high-performance manip-

ulation system using whole-body control for continuous

locomanipulation. We build on concepts and formulations

for operational space and whole-body control widely used

in legged robots and humanoid control and leverage it

for efficient, continuous mobile manipulation which also

allows whole-body visual servoing. We evaluate our pro-

posed system by demoing a chicken-head task showcasing

the decoupling of operational space manipulator motion

from base motion. We highlight planning and locomanip-

ulation capabilities in a simulated automotive fitting task

and demonstrate a sensor placement task for certification

of assets on an outdoor test site. Accompanying videos

are available at http://www.wolfgangmerkt.com/

continuous-manipulation.

II. SYSTEM OVERVIEW

Our system consists out of a high-performance (1.5m s−1)

and high-payload (500 kg to 800 kg) omnidirectional mobile

platform with a 6 degrees of freedom (DoF) collaborative

robot for a total of 9 DoF (Adabotics Ada500). The system

features a built-in 1 kHz whole-body control layer based

on ROS-Control, with the individual system components

shown in Figure 2. The platform uses two horizontal laser

rangefinders as well as an Intel Realsense D-435 RGB-

D sensor mounted on the wrist. It further contains two

on-board computers with one dedicated to control, motion

planning, and safety features and the other performing

perception tasks such as mapping and object identification and

tracking. The system further comes with a remote control user

interface available from any phone or tablet computer and is

equipped with battery capacity for a full-shift autonomous

operation (8 h to 10 h). In order to maximize operation with

limited on-board power, we consider energy efficiency in

our motion optimization and target continuous, non-stop

manipulation through execution of whole-body trajectories

using coordinated, whole-body control. We continuously

monitor the environment for conflicting changes and respond

using a combination of real-time planning and reverting to

operator input via shared autonomy.

III. PROBLEM FORMULATION

The configuration for a robot manipulator with N DoF

is commonly defined as qmanipulator ∈ R
N . The state

xt = (qt, q̇t) is directly and accurately measured, and it can

be directly controlled via position control, velocity control,

admittance control, impedance control, or torque control.

Furthermore, the state and the controls ut are usually bounded

(e.g., by joint position, velocity, acceleration, current, or

torque limits) which limits the scope of motion planning

and the working envelope in which we may want to avoid

collisions or seek contacts. On the other hand, the state of
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Fig. 2: Overview of the deployed system: All components are modular and
can be replaced due to the specification of commonly adopted interfaces,
e.g., ROS-Control. In this work, we heavily rely on the whole-body control
and perception systems.

a mobile platform moving on a surface is often defined

as xbase ∈ SE(2). This space has the topology of the

Special Euclidean group and it is unbounded, i.e., it has

no translation and rotation limits. Additionally, some mobile

platform designs are non-holonomic, which means that the

state cannot be directly controlled in all directions. However,

we will not address this issue in this paper and utilize a

holonomic hardware platform instead.

Despite these differences, our goal is to express the state

of the whole robot as x = [xbase;xmanipulator], where x

describes the state of a system with 3 +N DoF. This choice

has significant impact on the design of the controller. We

will now formulate the combined locomanipulation problem

as a whole-body control problem.

A. Whole-body control

We formulate the whole-body control problem as the one-

step look-ahead minimization of an optimization problem

subject to all bound, linear and nonlinear inequality and

equality constraints and account for modeled actuation delays:

arg min
x,u

f(x,u) (1)

s.t.: h(x,u) = 0 (2)

g(x,u) ≤ 0 (3)

clb ≤ Ax+Bu ≤ cub (4)

Here, the upper and lower bounds of the decision variables

are updated based on current state, timestep, and proximity

to higher-order limits through integration similar to [16]. The

equality constraints h(x,u) = 0 and inequality constraints

g(x,u) ≤ 0 are a set of nonlinear functions of state and/or

the control. Linear equality, inequality, and bound constraints

(e.g., joint position and velocity limit) are encoded using A

and B. We use a different set of constraints for each control

mode. For example, we use general equality constraints on the

end-effector position to trace a path with the tool, and we use

general inequality constraints for limiting the tool speed. We

can formalize a large variety of control modes using the same

generic framework by combining different sets of constraints.

We do the same with the optimality criteria f(x,u), which

often takes the form a weighted sum of squared error terms.

As we are solving a limited size problem initialized from

the present state, we obtain fast convergence for control

using a nonlinear optimization problem. While traditionally

quadratic programming-based formulations are chosen for

whole-body control in legged platforms, e.g. in [17], the

comparatively small size of a mobile manipulation problem

(9-17 DoF) allows us to leverage nonlinear optimization to

include much more expressive cost and constraint terms.

An overview of how this solver is embedded into the full

framework is shown in Figure 3.

B. State estimation

The state estimation module is based on sensor fusion

of the wheel odometry, the on-board inertial measurement

unit (IMU), and exteroceptive sensors (e.g., visual odome-

try/SLAM from monocular, stereo vision, or RGB-D sensors,

laser localization, GPS, etc.). Here, we use the Unscented

Kalman Filter (UKF) with the sensing modalities configured

in two stages: local odometry frame and global frame. The

odometry frame is a smooth signal updated at a high frequency

and with high accuracy over short periods of time. However,

this state estimate accumulates error over time. The global

frame stays consistent over long periods of time but its updates

are less frequent, often more costly, they are less accurate,

and the global frame states are not smooth over time.

We use the the odometry frame estimates for control due

to its smoothness and local consistency. We then use the

global frame estimate for planning and for slow corrections

of trajectories over time.

C. Whole-body locomanipulation planning

In order to achieve fast motion synthesis for longer horizon

planning which includes locomotion and manipulation in the

presence of moving targets and obstacles, we formulate a

trajectory optimization problem in time-configuration space.

Each timestep hereby preserves the same formulation and

expressiveness in cost and constraints as described in Sec-

tion III-A for the one timestep look-ahead control, with further

constraints introduced for dynamic consistency and smooth

transition between states, similar to [18], [19]. However,

due to the inherent non-convexity of nonlinear optimization,

solvers are not guaranteed to converge to a valid solution

in a given time budget – or at all – unless provided with

a suitable initialization seed. This is especially the case

when considering collision avoidance in complex, unknown

environments. In known environments, suitable warm-start

solutions can be encoded in a trajectory library [20]. In order

to operate in unseen environments, we employ fast, global

sampling-based planners to provide a feasible initialization to

the trajectory optimization. Random sampling-based planners,

however, are not suited to satisfy general constraints.2 As

thus, we use constraint relaxation as well as a framework

to solve constrained time-configuration space problems by

decomposition [12] for initialization. We formulate both

the real-time control optimization as well as the nonlinear

locomanipulation problem in the open source Extensible

Optimization Toolset EXOTica [22].

2Readers are referred to [21] for a review of approaches for sampling-based
planning in presence of constraints.
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Fig. 3: Overview of the nonlinear optimization-based whole-body control framework: Commands can be issued either as whole-body trajectories or from
operational space targets in a streaming mode, where individual commands/targets are sent to the controller at every time step. The controller satisfies all
applicable bound constraints as well as general nonlinear safety constraints (e.g., self-collision avoidance).

IV. EVALUATION

A. Whole-body control evaluation on chicken-head task

We evaluate the performance of the implemented whole-

body control scheme by maintaining an operational space

target for the end-effector while commanding a desired

target for the base controller (commonly referred to as the

chicken-head problem). In a laboratory setting, we increase

the velocity of the base command (to track a circle on

the ground) while tracking ground truth using a VICON

camera system. We have formulated the tracking problem as

unconstrained minimization of the end-effector position in the

global frame over the base position and the arm configuration

and used the Levenberg-Marquardt [23] algorithm to solve

this problem. Note, this is a relaxation of Equations (1)-(4)

as the manipulator may pass through singular configurations

resulting in a violation of real-time requirements. The results

are depicted in Figure 4 validating the relaxation to be

suitable, and snapshots of an applicable real-world task

experiment depicted in Figure 6. We show the end-effector

error against ground truth from a VICON motion capture

system in Figure 5. This task is very simplistic but this

formulation enables us to handle tracking moving targets in

arbitrary frames of reference, which opens up our framework

to a multitude of practical applications.
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Fig. 4: Visualization of the robot internal state and ground truth for both the
end-effector and base frames while carrying out the chicken-head task: This
experiments demonstrates the ability of the whole-body control scheme to
decouple the end-effector from the base motion and coordinate both at the
same time.
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Fig. 5: Visualization of the task space error of the end-effector while the
base is following a circular motion using solely odometry (no sensor fusion
with IMU): both x and y drift, where the error in z is due to stiff suspension
on an uneven floor.

B. Automotive assembly fitting simulation

A frequent task for the deployment of collaborative robots

is the fitting of insulation, adhesives, and subassemblies in

automotive manufacturing (e.g., sealants on doors). These

tasks are correlated with a high risk for repetitive strain injury.

In this scenario, a mobile collaborative robot carries

out manipulation tasks on a moving assembly part by

coordinating whole-body motion. We formulate a whole-

body constrained nonlinear optimization problem to minimize

control effort in the presence of moving targets and solve it

using the commercial solver SNOPT [24]. In particular, the

manipulation motions (e.g., drilling and fitting trajectories)

are encoded as semi-constrained end-effector paths (3-DoF

position, 2-DoF axis alignment) with further constraints on

continuous collision avoidance using the approach from [13].

We have used the whole-body controller in the trajectory

mode for executing the motion. This is sufficient in simulation

(cf. Figure 7), however, a real-world deployment requires

active sensing, tracking of the assembly, and other steps

correcting the synchronization of the robot motion with the

environment. We address these issues in our next experiment.

C. Sensor placement

Off-shore assets such as oil and gas platforms are structures

that are designed to operate for decades in harsh environments.

Sea water, wind, and temperature changes cause material



Fig. 6: The chicken-head task on a rough outdoor surface carrying out a proposed scenario: manipulation of a static end-effector affordance while responding
to disturbance with the redundancy of the omnidirectional base following a high velocity figure-eight target.

Fig. 7: Assembly tasks on a car body structure using a mobile manipulator: While the assembly line is moving at 0.5m s
−1, the manipulator carries out

two collision-free manipulation actions for 4 s each while following the moving target.

deterioration and failure that can be prevented by regular

maintenance and monitoring. Our industrial partners3 have

identified the need for automating these tasks. They are

currently executed by humans, which is both costly and

potentially dangerous for the workers. A large amount of

monitoring can be done remotely, as long as the moni-

tored structure can be equipped with sensors. The Limpet

sensor [25] was designed for these applications in harsh

environments, limited power, remote operation with long

distance communication, and real-time monitoring capability.

We have applied our whole-body control framework to

place these sensors semi-autonomously. The user remotely

specifies the sensor location while the planning and control

framework ensures accurate placement of the sensor. This

process requires minimal data bandwidth and it is therefore

suitable for applications where teleoperation is not possible

due to communication quality.

In our experiment, we placed a container with the Limpet

sensors on top of the robot. The user then specifies the target

location. For repeatability and easy visual confirmation, we

mark and track the target locations with AprilTag [26] fiducial

markers. However, the target detection and tracking can be

done using any combination of visual and depth features, such

as in [27]. The execution then used a finite state machine to

switch between sensor pick-up, sensor placement using visual

servoing, and arm parking motion. The sensor placement was

triggered by the sensing module detecting the target marker.

In the first phase, we have constructed a motion planning

problem for computing a collision-free pick-up trajectory for

the robot arm using the RRT-Connect [28]. The trajectory

was executed using our controller in the trajectory mode.

Once the target was detected the tracker provides updates

of the target position. These were fed into the controller

in the streaming mode. The controller solves the inverse

kinematics formulated as an unconstrained NLP problem (see

Section III-A) using the Levenberg-Marquardt [23] algorithm.

The solution was then used to command the arm position in

real-time to compensate for the relative target motion. We have

also superimposed a short place, hold, and release trajectory

3Through the ORCA Hub, we engage with a variety of industrial partners
such as Total, BP, and their sub-contractors, cf. https://orcahub.org.

over the target position. This ensures that the gripper has

enough time open. The parking motion is then planned using

RRT-Connect and executed in the trajectory mode, same as

the sensor pick-up motion in the first phase.

This experiment was executed both in the lab environment

(see Fig. 8) and in an outdoors mock oil rig designed for

fire fighter training (see Fig. 1). The task can be easily

modified for similar scenarios by modifying the state machine

or changing any of the sub-problems to fit the needs.

The advantage of using the whole-body controller in this

scenario is that the framework can handle all the different

operation modes, which allowed us to execute the whole task

continuously, without stopping. This is possible due to the

inherent synchronization of the base and arm movement.

V. DISCUSSION

We have presented an architecture for whole-body control

and planning of collaborative mobile manipulators. This

system exploits a generic formulation of the task as a

constrained nonlinear program and it integrates inputs from

state estimation, perception, and the user to generate complex

collision-free motion plans. The control architecture then

minimizes the tracking error while satisfying the task specific

constraints. The formulation of the problem allows us to

formulate a wide variety of motion planning tasks and match

them with customized controllers.

Our evaluation on the chicken-head task validates the

architecture. The tracking results then show the overall

performance of the system on our hardware platform. The

results demonstrate the performance of the controller and of

the platform itself in a controlled environment as well as

in an outdoors trial. Using the controller implementation in

EXOTica, we achieve a 100Hz control rate on an Intel i7-

7567U CPU with peak performance at 500Hz. The bottleneck

of the controller is the state estimation. The accuracy of

the end-effector tracking depends largely on the quality of

the state estimate that is used for closing the control loop.

Drift, delays, and position error all contribute to this issue.

Delays can be computed and accounted for, e.g., using model

predictive control (MPC), as for instance in [29]. Drift can be

eliminated by exploiting exteroceptive sensors and computing

the global reference as described in Section III-B.



Fig. 8: Sensor deployment trials in a laboratory: The robot proceeds to the next placement task in the stack and after acquiring the target carries out a
whole-body visual servoing task without stopping the navigation/base motion. The accuracy of the sensor placement task with respect to the target can be
seen from the over-head camera.

We have also used the generic problem formulation for

solving a motion planning problem in the automotive industry.

The versatility of this formulation allowed us to do trajectory

optimization with collision avoidance. This is a notoriously

difficult problem due to the non-convexity and nonlinearity of

the collision constraint. We have exploited the state-of-the-art

collision term formulation presented in [13]. The whole-body

paradigm then allowed us to use a relatively small robot and

extend its range without sacrificing the optimality of the task.

This experiment did not consider any control errors nor any

control delays since a simulator was used.

In our last experiment, we deployed our system on the real

robot to perform a non-stop pick-and-place task. While we

used a visual marker to track the target location, the perception

method can be easily swapped for a more advanced technique

that does not require any fiducial information. We have also

relied on the soft housing of the sensor when making contact

during the placement. If the sensor did not provide a soft

interface between the robot and the solid wall structure, we

would consider using compliant control using a force torque

sensor at the end-effector.

Each industrial application requires a specific set of sensing,

planning, and control solutions. The architecture we proposed

opens possibilities for designing these techniques using

well defined building blocks. Such an approach can rapidly

accelerate the development and deployment of robotic systems

in automotive manufacturing, off-shore asset maintenance,

and many other fields.
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