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Abstract— Motion planning through optimization is largely
based on locally improving the cost of a trajectory until an
optimal solution is found. Choosing the initial trajectory has
therefore a significant effect on the performance of the motion
planner, especially when the cost landscape contains local min-
ima. While multiple heuristics and approximations may be used
to efficiently compute an initialization online, they are based on
generic assumptions that do not always match the task at hand.
In this paper, we exploit the fact that repeated tasks are similar
according to some metric. We store solutions of the problem as a
library of initial seed trajectories offline and employ a problem
encoding to retrieve near-optimal warm-start initializations
on-the-fly. We compare how different initialization strategies
affect the global convergence and runtime of quasi-Newton
and probabilistic inference solvers. Our analysis on the 38-DoF
NASA Valkyrie robot shows that efficient and optimal planning
in high-dimensional state spaces is possible despite the presence
of globally non-smooth and discontinuous constraints, such as
the ones imposed by collisions.

I. INTRODUCTION

Motion synthesis refers to the process of finding a collision-
free trajectory or control policy for moving a robotic system
to accomplish a given task. Expressive motions are composed
of constraints, e.g., reaching a desired end-effector position,
keeping a liquid-filled container level, avoiding obstacles,
or maintaining balance on a bipedal robot, as well as
objectives, e.g., smoothness, minimal energy use, and natural
appearance. These desired properties can be captured in
objective and constraint functions and formulated as an
optimization problem. The solution to this problem can be
a trajectory, i.e., a set of joint or state space keyframes
or functions (trajectory optimization), or time-varying local
feedback control laws (optimal control).

Computing optimal, collision-free motion and control poli-
cies for high-dimensional systems in complex environments
is a time-consuming process, with the solutions often local
to the initial conditions. Real-world environments feature
clutter and come with complex, varied task goals, where
tasks may change based on high-level user or perception
input. Additionally, uncertainty in the perception or control
of a system can lead to a divergence from the initial conditions
present during planning. These changes can render previously

This research is supported by the Engineering and Physical Sciences
Research Council (EPSRC, grant reference EP/L016834/1) and EU H2020
project Memory of Motion (MEMMO, project ID: 780684). The work has
been performed at the University of Edinburgh under the Centre for Doctoral
Training in Robotics and Autonomous Systems program.

All authors are with the Institute for Perception, Action, and Behaviour,
School of Informatics, The University of Edinburgh (Informatics Forum,
10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom). Email:
wolfgang.merkt@ed.ac.uk.

Fig. 1: Pick-and-place scenario in a complex environment with
collision avoidance. A humanoid robot has to retrieve an item
from a shelf, the target of which may change based on perception
information or user input. In order to synthesize optimal motion fast
online, we investigate different warm-start strategies for trajectory
optimization methods.

computed solutions invalid requiring local adaptation or
recomputation from scratch. Especially for complex tasks
involving narrow passages and concave regions, cost functions
often feature multiple local minima which may be time-
consuming to find and hard to escape.

Recently, trajectory optimization has been shown to scale
to high-dimensional systems thanks to new formulations,
more efficient solvers, and higher-performance computing
equipment [1]–[3]. These fast optimization-based approaches
generally require smooth, differentiable cost and objective
functions, can take a long time to converge, and may get stuck
in undesirable local minima—rendering good initialization a
decisive factor for achieving high success rates and short
planning times. Taking into account collision avoidance
is non-trivial and may lead to highly nonlinear objective
functions with many local minima. However, for most real-
world applications such as in households or industrial human-
robot collaboration, we see a rapid sequence of similar tasks
in comparable environments.

In this work, we focus on providing good initialization
seeds for on-the-fly optimal, collision-free motion synthesis
on high-dimensional systems in complex and changing
environments. We hereto introduce a problem encoding
to build a trajectory library offline, into which we can
index online to retrieve a warm-start seed. We detail our
precomputation exploration strategy and explain how solution
subindexing and goal region growing can be incorporated
for efficient solution reuse and to reduce precomputation

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Madrid, Spain, October 1-5, 2018

978-1-5386-8094-0/18/$31.00 ©2018 IEEE 5877



and online memory requirements. The motion synthesis is
formulated as a nonlinear optimization problem with first-
order Markov dynamics. We provide analytic first-order
derivatives approximating the collision avoidance objective
as a local, virtual object penetration cost and compare quasi-
Newton and variational inference optimization methods on the
formulated problem. We then benchmark commonly used ini-
tialization strategies with our proposed method and compare
their performance with regards to convergence, success rates,
and use cases in a random, complex shelf picking scenario on
a high-dimensional humanoid robot. A supplementary video
is available at https://youtu.be/Omg3FhVi_Tk.

II. RELATED WORK

Common trajectory optimization formulations differ in
their use of derivative and environment information as well
initializations. Transcription methods convert the continuous
optimal control problem into a nonlinear program (NLP)
subject to equality and inequality constraints. If a derivative
can be defined or approximated, unconstrained NLPs can
be solved efficiently by Newton or quasi-Newton method
algorithms which use second- and first-order information,
respectively. Similarly, for formulations with hard con-
straints, Augmented Lagrangian, interior point, or sequential
quadratic programming (SQP) methods can be applied. Recent
gradient-based frameworks include CHOMP [4], TrajOpt [1],
KOMO [2], and RieMo [5]. Stochastic, derivative-free algo-
rithms which apply Monte Carlo methods on roll-outs include
STOMP [6] and PI2 [7].

AICO [8] formulates a probabilistic trajectory model and
uses iterative message passing and approximate inference
techniques to solve the nonlinear stochastic optimal control
problem. It has been shown to be highly efficient as the
variational message passing allows to update single states
repeatedly without having to roll-out the entire trajectory.

As discontinuities and non-smooth cost gradients are diffi-
cult to handle, the way collision avoidance is included in the
cost and constraint functions has received additional attention.
TrajOpt [1] uses approximate convex decomposition and
convex-convex collision checking penalizing penetrations with
a hinge loss. CHOMP [4] and STOMP [6] use the Euclidean
Distance Transform and overlapping sphere approximations
for the robot body. As a consequence, these approaches
require online or offline preprocessing of the environment
and robot model. RieMo [5] applies Riemannian geometry
to the workspace in order to plan motion in the presence
of thin or long obstacles which translate into many local
minima. As collision queries are expensive, [9] proposed an
adaptive collision checking density with more checks closer
to obstacles. The collision avoidance terms are still in general
very likely to create local minima. To get around this locality
issue, an initial trajectory should therefore lie in the same
neighborhood as the global minimum.

In practice, motion optimization frameworks commonly
use zero motion initialization (e.g., RieMo [5]), or straight-
line interpolation between start and goal configurations
assuming knowledge of a final configuration for instance

from inverse kinematics (e.g., CHOMP [4], STOMP [6]).
These initializations are often infeasible and a potentially
lengthy stochastic search may be required to find a solution.
Alternatively, two-phase optimization has been proposed
where a first result is obtained using a simplified cost and the
full optimization warm-started using this result [9]. Similar
to model-predictive control, planning and execution can be
interleaved by providing a fixed time budget for planning and
warm-starting subsequent optimizations with the suboptimal
solution from the previous timestep [10].

In order to speed up and ensure convergence of local
optimization solvers, near-optimal initialization has been
proposed. Here, the similarity to previously solved problems
is used instead of planning from scratch [11]–[13]. For
instance, trajectory libraries and function approximation
have been considered to speed up online optimization [11],
[12]. To predict warm-start seeds in cluttered environments,
[13] focussed on learning expressive task and environment
descriptors. Conversely, the work presented in [14] iteratively
approximates the expensive-to-evaluate value and policy
function using a neural network-based regression model
employed as a distance metric and to evaluate transitions
in a kinodynamic probabilistic roadmap (PRM).

On the other hand, sampling-based planners (SBP), such
as Rapidly-Exploring Random Trees (RRT) or Probabilistic
Road Maps (PRM), have been demonstrated to produce
feasible motion plans in less than one second for high-
dimensional systems in cluttered environments [15]. Con-
strained SBP algorithms can for instance take balancing into
account and compute whole-body motion plans on humanoid
robots in the order of seconds [16]. Recently, Hierarchical
Dynamic Roadmaps (HDRM) which use a configuration-to-
workspace-occupation encoding to offload collision checking
to an offline precomputation phase have been shown to
compute feasible trajectories for industrial manipulators in
1–2 ms [17]. These results encourage the use of SBPs
for warm-starting optimization-based methods. However, by
nature, geometric SBP methods produce a set of kinematically
feasible configurations. These are often long, sub-optimal
paths and may contain abrupt changes in velocities and
accelerations. In order to be executable, i.e., dynamically
feasible w.r.t. actuation constraints, post-processing such
as time spacing, short-cutting, and smoothing is required.
This does not, however, take into account optimality such
as smoothness in higher-order terms (velocity, acceleration,
jerk) or the dynamics of the plant (e.g., torque limits). While
kinodynamic and combinations of optimization- and sampling-
based planners (such as RRT∗) have been explored, additional
temporal motion constraints such as balance and end-effector
orientation during the motion are challenging using sampling-
based algorithms alone as the sample adaptation step can
limit exploration. We argue that SBPs may provide a feasible
initialization in a local minimum for an optimization-based
algorithm for one class of problems, but also propose an
alternate method exploiting a database of previous solutions.
To this end, we analyze different initialization strategies.
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III. PROBLEM FORMULATION

We consider a trajectory optimization problem with
first-order Markov dynamics, similar to the unconstrained
KOMO [2]. Here, we use a pseudo-dynamically weighted
state transition cost `x(t) = (xt − xt−1)TW (xt − xt−1)
where W is a relative measure of the mass ratio of the
kinematic chain that is moved by the respective joint: Wj,j =∑N

i=j mi

M . After transcription, the synthesis of an optimal
motion X∗ in an environment Ω is an unconstrained nonlinear
minimization problem over the evolution of system states
X = (x0, · · · ,xT ), where the time horizon is uniformly
discretized into T time steps:

X∗ = arg min
X

T∑
t=1

[`x(t) + `y(t,y∗)] (1)

with `y(t,y∗) = `CoM + `JointLimits + `Position+ (2)
+ `Orientation + `CollisionAvoidance

Each term in (2) is defined as a square cost ρt‖y∗
t −φ(xt)‖2.

Here, φ is a mapping from the configuration space to a task
space with a task space goal y∗ and ρ a mixing weight. The
task space is commonly composed of forward kinematics,
center of mass, or alternate spaces such as distance or
interaction meshes [18], [19]. We use the following four
types of task spaces in our experiments:

1) Center-of-Mass (CoM): To maintain static stability on
flat terrain, the projection of the center-of-mass has to fall
within the convex hull of its contact points (referred to as the
support polygon). For quasi-static motions and to account for
state estimation error, this support polygon is shrunk by a
safety margin γ. Then, in order to favor stable configurations,
a quadratic penalty for the deviation of the CoM-projection
from the center of the support polygon is used.

2) Joint Limit: To avoid joint limits, we add a squared
hinge loss to configurations that are within a set percentage
of the bounds of the joint range.

3) Palm Position and Orientation: The position and
orientation of the end-effector relative to the reaching goal
frame as obtained through a forward kinematic map.

4) Collision Avoidance: In order to obtain a smooth,
differentiable cost for collision avoidance, we compute a
collision proxy PA,B for every pair of collision objects A,B
which contains a) a signed distance dA,B for the closest
distance or deepest penetration between the objects, b) the
closest points between or the deepest penetration point on
either body pA,pB , and c) the normals n̂A = pB−pA, n̂B =
pA − pB between these two virtual points:

PA,B = (dA,B ,pA,pB , n̂A, n̂B) (3)

The concept of using virtual collision proxies is illustrated
in Figure 2 for two spheres as well as the shelf scenario
considered (only external/interaction proxies are visualized).

Using the collision proxies for a pair of collision bodies,
we can now formulate a smooth penalty for when the bodies

𝐩𝐴

𝐩𝐵

𝐴

𝐵𝑑𝐴,𝐵

ෝ𝐧𝑨

ෝ𝐧𝐵

Fig. 2: Collision proxies: the grey line visualizes the normal between
the nearest points on either collision body along which the virtual
separation and penetration will move.

are closer than a threshold ε and 0 otherwise:1

`CollisionAvoidance(x,Ω) =
∑
P

{(
1− d

ε

)2
if d < ε

0 if d ≥ ε
(4)

Suitable values for ε depend on the time discretization,
the velocity limit, the accuracy of the tracking controller,
and the target application. Assuming that moving along the
normal between the contact/nearest points increases/decreases
separation or penetration, we can formulate a derivative of
the cost using the geometric Jacobian of the contact points
on the collision bodies:

JCollisionAvoidance(x,Ω) =∑
P

{
2
ε2nA · JpA

(x)− 2
ε2nB · JpB

(x) if d < ε

0 if d ≥ ε
(5)

Similarly, we derive analytical first derivatives for all other
cost terms using the geometric Jacobian and the chain rule.

Combinations of the first three terms in the objective
function are nonlinear and non-convex but they are smooth,
continuous, and with relatively few local minima. On the
other hand, the collision avoidance cost is highly discon-
tinuous because it depends heavily on the geometry of the
environment. This often gives rise to multiple local minima.
Warm-starting the optimization in the correct part of the space
is therefore crucial.

IV. WARM-START INITIALIZATION

Since most of the complexity arises from the collision cost,
we begin by finding a collision-free trajectory that does not
have to satisfy any other optimality criteria. Hereto, we use
a sampling-based planning algorithm to obtain a sequence of
valid, i.e., collision-free and balanced configurations. In a post-
processing step, smoothing and short-cutting are applied and
timing adjusted so that the velocity limit constraints are met.
Afterwards, the time-spaced sequence of configurations is
sub-sampled using spline interpolation to create a uniformly
spaced trajectory. In order to verify that the interpolated
trajectory continues to be collision-free, further collision-
checking is performed prior to being used as a seed trajectory.
Thus, the feasible seed trajectory time horizon T is determined

1This proxy cost term and its first-order derivative are based on the source
code implementation of AICO as used in [19].
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Fig. 3: Planar reaching task: Given a start state x = (q0, q1) (which
maps to task space y = φ(x)), a robot has to reach a task space
goal y∗ = B while avoiding obstacle Ω. The warm-start solutions
for task space goals A and C are equidistant in y∗ from B. Thus,
given the same x, both trajectories appear to be equally suitable
warm-starts to a simple distance metric.

by the maximum joint space velocity and original feasible
joint space path length. In order to compare costs across
variable length time horizons, we normalize the cost defined
in Equation (1) over the duration of the trajectory. These
initializations can be generated online (at query time) at the
cost of computing a feasible plan from scratch. However, if
a task (or a family of tasks) gets repeated, a similar or same
query has to be computed over and over. An efficient solver
would compute these solutions offline and store them in a
library. We begin creating a library of motion by defining an
indexing scheme and precomputation strategy.

A. Problem Encoding

A task in an environment Ω is fully described by the initial
floating base placement and joint configuration at the start
x0 and task space goals y∗. The relationship between the
task space y and environment Ω can hereby be captured and
encoded through parametrized obstacles, topological [19] or
geodesic coordinates [20], relative distances [18], or learned
descriptors [13]. In this work, we focus on initialization strate-
gies in a known environment leaving considerations regarding
generalization across environments to future work. Start state
x0, task space goals y∗, and environment parametrization Ω
together form a fully specified planning problem (x0,y

∗,Ω)
which maps to an optimal trajectory X∗ = (x0,x1, · · · ,xT )
if it is solvable:

(x0,y
∗,Ω) 7→ (x0, · · · ,xT ) (6)

For a robot with a floating base, we capture the relative
relation between the robot and the environment by expressing
the encoding in an environment frame (e.g., a landmark). In
this case we adjust the notation:

(x0,Ω,y
∗,Ω) 7→ (x0, · · · ,xT ), (7)

where x0,Ω has the floating base frame expressed with respect
to the environment frame.

As the problem encoding captures the relative aspect
between the robot and an encoded environment, we can
augment the dataset by re-using sub-trajectories of the original

Algorithm 1 Create Subindexing in Problem-Solution-Map

Require: Precomputed Library
Ensure: Augmented Library (with subindexing)

for all Sample ∈ Library do
for t = 1 to t = T − 2 do

Problem = (xt,Ω,y
∗,Ω)

Xoptimal = (Xt, · · · , XT )
Start = t
Length = T − t
StoreSubIndex(Problem, Start, Length)

for t = T − 1 to t = 0 do
y∗
t = φ(xt)

for i = 0 to i = t− 2 do
Problem = (TBase,Ω,qi,y

∗
t ,Ω)

Start = i
Length = t− i
StoreSubIndex(Problem, Start, Length)

solutions as any part of an optimal trajectory can form a near-
optimal solution for a similar problem. In particular, we
consider two cases for subindexing:

1) The sub-trajectory starting from state x0<t<T ∈ X to
the original task space goal y∗ forms a near-optimal
solution for a problem described by (xt,Ω,y

∗,Ω).
2) The sub-trajectory from state x0<t<T to the task space

goal defined by a subsequent state y∗
t = φ(xt<i<T ).

Algorithm 1 shows the procedure for creating these subindices.
Together with the goal region growing, this results in a
problem-solution-map.

B. Trajectory Library Precomputation

It is important to note that the task space goals y∗ as a
parameter of (1) may change the landscape of the objective
function significantly and discontinuously. A good warm-
start seed should be local in the value function (have a
similar cost landscape), however, this may not translate to
closeness in the chosen problem encoding space. Consider
the two-link reaching task depicted in Figure 3, where the
end-effector has to repeatedly reach different positions y∗

along the blue line. By solving the problem from varying
start configurations x0 = (q0, q1) for changing task space
goals y∗, we can create a library mapping problem encodings
to optimal trajectories. A key consideration hereby is the
trade-off between precomputation time and storage size and
online retrieval, convergence time, and adaptation success rate.
Exhaustively enumerating the problem encoding (and thus the
value function) is intractable for higher-dimensional problems.
Finding representative sample trajectories and determining a
sufficient sample density is non-trivial as the cost landscape
(value function) of the task is not known a priori.

Random sampling in the space of the problem encoding is
unlikely to achieve sufficient coverage in task-relevant parts
of the space, with many samples prone to being unused and
possibly resulting in a low warm-start success rate. Deter-
ministic sampling in a discretized problem encoding space

5880



After initial 𝑘 exploration 
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Compute optimal 
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2a
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predicted warm-start

2b

Store and create 
Subindexing (Alg. 1)

3

Try optimal solution 
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4

Map nearby descriptor 
to optimal solution

5

Fig. 4: The precomputation procedure for building the trajectory
library: First, a valid problem descriptor is sampled in the space
of the problem encoding and an optimal solution computed offline.
The optimal trajectory is stored and subindexed using Algorithm 1.
Finally, goal region growing is performed by testing the adaptability
to nearby descriptors.

can result in the issue highlighted in Figure 3: Depending on
the resolution of the discretization, two warm-start seeds (A
and C) may appear equidistant to a simple distance metric.
However, this does not necessitate a similarity in the optimal
solutions (e.g., mode changes introduced by the environment,
dynamics, etc.). On the other hand, the Euclidean metric in
the problem encoding space is fast to compute and a scaling
of the distance metric can be used to improve the quality
of the retrieved initial trajectories. Thus, with a focus on a
suitable sampling bias and strategy, efficient look-up can be
performed using inexpensive distance metrics.

Our precomputation and exploration strategy is depicted
in Figure 4. In general, we aim for density in the problem
encoding space while storing only a limited number of solu-
tions as computing new optimal trajectories from scratch is
expensive, while adapting existing solutions is comparatively
cheap. As such, upon obtaining a new optimal solution,
we attempt to explore its region of validity by sampling
in the neighborhood of the problem encoding and running an
adaptation optimization step with a given time and iteration
budget (goal region growing). If the problem converges, we
add a mapping from the new sampled problem descriptor to
the original optimal solution. Thereby, we achieve density in
the problem encoding for a small number of original optimal
trajectories. This can be interpreted as creating a basin of
attraction around the sample trajectory.

In our approach, we use a combination of task space goal
seeds, random exploration, and validity region growing to
build an encoded trajectory library mapping problem encoding
descriptors to variable-length optimal trajectories. At query
time, we predict the best warm-start seed given a problem
encoding by classification.

V. EVALUATION

Having precomputed a library of warm-start trajectories,
we now benchmark the proposed warm-start method against
zero motion, straight-line linear interpolation, and an online
RRT-Connect-based feasible initialization. We also compare
different nonlinear program solvers. For fair comparison, we
use the same forward kinematics, collision checking, objective
and Jacobian computation with the planning prototype and
benchmarking library EXOTica [21]. Performance differences
between solvers thus correspond to the number of evaluations
each algorithm requires and their internal updates. While

Fig. 5: Visualization of the original optimal trajectories in the library.
The class labels (color) have been assigned based on closest task
space goal y∗.

the problem formulation and solvers are implemented in C++,
we use Python for high-level logic and warm-start look-
up. All evaluations are carried out on a computer with
an Intel Core i7-6700K CPU with 4 GHz base frequency
and 32GB 2133 MHz memory in a single thread, with
several independent benchmarks or precomputations running
in parallel. All our evaluations use densely sampled time
horizons with ∆t = 0.05s.

A. Convergence Using Different Solvers

We evaluate the problem formalized in Section III with
a probabilistic inference solver (AICO [8]), quasi-Newton
methods (BFGS and L-BFGS), as well as conjugate gradient
descent for a humanoid shelf picking task. We use our own
implementation of AICO, the open-source quasi-Newton and
nonlinear conjugate gradient solvers from OPT++ [22], as well
as a commercial L-BFGS implementation (SNOPT [23]).

The cost evolution against time and iterations for opti-
mization until convergence from a feasible, RRT-Connect
initialization are shown in Figure 6. AICO is quick to make
progress and achieves the lowest overall cost (as it updates
individual states repeatedly without a full roll-out), however,
it may return invalid trajectories (i.e., those which diverge
from the final target position or have a sample in collision).
Quasi-Newton methods do not achieve a similarly low cost
as AICO as they stay within the originally provided local
optimum. This, however, leads to a higher success rate from
feasible initializations as it would not update individual states
to be in collision in order to satisfy a smoother transition
cost. As expected, full BFGS updates require more function
and gradient evaluations to estimate the Hessian and are thus
slower than their limited-memory variant. In turn, they are
able to use the more accurate Hessian to achieve a lower final
cost. This performance gain of L-BFGS is more pronounced
for longer time horizons. Overall, as AICO and SNOPT have
the highest convergence rates with the lowest costs, we will
focus on them in the following benchmark experiments.

B. Pick-and-Place Benchmark

For the shelf benchmark, we compare different initializa-
tion strategies for use with AICO and SNOPT’s L-BFGS:
Common (zero-motion and straight-line interpolation between
start and goal configurations), feasible (RRT-Connect), and
the proposed trajectory library with problem encoding.
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Fig. 6: Cost evolution for different optimization solvers using the same, feasible initialization seed. Left: Cost vs. iterations. Right: Cost vs.
time. AICO initially improves the fastest and achieves the lowest overall cost. For quasi-Newton solvers, a commercial implementation with
limited memory BFGS updates performs best (SNOPT, orange). For open source quasi-Newton solver implementations, BFGS achieves a
lower cost than its limited memory variant (OPT++, red), however, at the cost of taking more time per step to estimate the full Hessian.

The trajectory library used in the benchmark contains
3, 233 original solutions with 36, 256 problem-encoding-
to-solution-mappings after subindexing and goal region
growing (24 MB, 12.6 h single thread precomputation time).
These original trajectories are shown in Figure 5. For
feasible initializations during offline precomputation, we
use a bidirectional sampling-based planning algorithm (RRT-
Connect [24]) with L-BFGS as the optimization and goal
region growing/adaptation solver. We initialize the exploration
with task space goals to reach into each shelf compartment
from a nominal whole-body posture as well as from within
each compartment to every other compartment. We apply goal
region growing and limit the number of additional random
exploration steps to 500.

For fast indexing, we compare k-Nearest Neighbor (KNN)
with exhaustive search over the problem encoding as retrieval
strategies. In particular, we consider the following settings:

1) KNN with an Euclidean distance metric tested both
with and without scaling by normalizing on the range
(rows 7–10). The normalization is helpful as the problem
encoding can include metric with non-metric information
unknown to the look-up distance metrics.

2) Exhaustive search by retrieving the solution of the
problem descriptor with the minimum norm, i.e., the
closest in the problem encoding. We compare normalized
and unscaled problem encodings (rows 11–14) with a
task-informed distance metric (rows 15–16).

For comparability, all time horizons in a single benchmark
request are equal and determined by the length of the time-
spaced and interpolated RRT-Connect solution. On runtime,
we sample uniformly in the range of the problem encoding
constraining the task space goal y∗ to the task domain with
added Gaussian noise and ensure that each problem is solvable
through the existence of a feasible solution.

C. Analysis of Results

Averaged results over 1, 000 benchmark requests are
presented in Table I. Based on these, we can draw a number
of observations highlighting different properties of the tested
initialization strategies:

a) As expected, feasible, RRT-Connect initialization leads
to convergence in the majority of cases: 96.1% with L-BFGS

(row 6) and 94.8% with AICO (row 5). However, this comes at
a 40−80% higher final cost as the feasible initialization does
not consider the other objectives of the cost function beyond
collision avoidance and reaching the final configuration. The
flexibility of a guaranteed feasible solution thus comes at
the cost of a longer warm-start time as a new solution is
computed from scratch.

b) Zero motion (which consequently has a large distance
to the task space goals) and straight line interpolation (which
may be infeasible and pass through obstacles) rarely succeed
for quasi-Newton methods which require to be initialized
in the basin of attraction of a local minimum (11.6% and
14.8% success rates, respectively). Where they converge on a
solution, the solutions have costs up between 4 and 40 times
higher than the best-performing initialization strategy (row
15). This is expected as if in collision, quasi-Newton methods
are trapped (in fact this is the source of all failures).

c) AICO manages to converge with 33.4% and 14.4%
in these scenarios, although at an up to twice higher cost
compared with being initialized with a feasible solution while
requiring similar time or longer. When optimization fails, it
is largely due to not achieving the final task space goal for
zero motion (74.2%), and almost exclusively due to being
stuck in collision for straight-line initialization (94.4%).

d) An exhaustive exploration of the trajectory library using
a normalized problem encoding yields a 96.0% success rate
along with the lowest overall final cost for an automatic
distance metric suggesting the exploration strategy produced
a library with good coverage on the task domain. Use of a task-
informed, hand-tuned metric can boost success rates to 99.5%
while reducing mean final cost by a further 16.2%. This
suggests that future investigations on automatically learning
distance metrics or generalizing classifiers can ensure a more
efficient use of the generated trajectory library.

e) Among the KNN variants, the one trained on the
normalized problem encoding performed the best—with
similar success rates for both AICO and L-BFGS; rivaling
the success rates of feasible initialization while obtaining a
lower final cost with up to twice quicker convergence. Note,
the results in rows 7–10 equal those in rows 11–14 as the
nearest neighbor algorithm selected the same initial seeds
as the exhaustive search, while being more efficient in the
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Solver Initialization Success Rate Warm-Start Time (ms) Residual Cost Time
to Convergence (s)

Iterations
until Convergence

1 AICO Zero-Motion 33.40% – 1912.60± 2426.13 53.44± 56.03 139.32± 141.72

2 L-BFGS 11.60% 1729.23± 1209.04 34.09± 24.15 292.91± 166.14

3 AICO Straight-Line 14.40% – 1483.56± 3293.76 31.05± 36.02 129.82± 144.10

4 L-BFGS 14.80% 16923.00± 37558.22 17.64± 19.48 180.27± 210.52

5 AICO RRT-Connect 94.80%
619.25± 359.07

927.83± 3203.49 34.62± 35.43 71.55± 70.62

6 L-BFGS 96.10% 909.81± 513.43 27.12± 24.99 166.01± 164.38

7 AICO KNN 64.10%
0.87± 0.11

653.00± 550.46 34.70± 35.51 75.06± 73.68

8 L-BFGS 65.20% 866.54± 510.07 20.95± 17.65 120.63± 136.46

9 AICO KNN
(normalized problem encoding)

96.00%
1.18± 0.20

496.51± 306.24 19.87± 28.06 56.33± 63.18

10 L-BFGS 95.80% 667.50± 409.58 14.17± 15.18 152.49± 158.69

11 AICO Exhaustive search 64.10%
3.72± 0.35

653.00± 550.46 34.60± 35.29 75.06± 73.68

12 L-BFGS 65.20% 866.54± 510.07 20.97± 17.76 120.63± 136.46

13 AICO Exhaustive search
(normalized problem encoding)

96.00%
3.73± 0.37

496.51± 306.24 19.89± 28.08 56.33± 63.18

14 L-BFGS 95.80% 667.50± 409.58 14.18± 15.21 152.49± 158.69

15 AICO Exhaustive search
(task-informed weights)

98.30%
3.71± 0.31

416.02± 286.37 35.37± 37.87 75.99± 69.20

16 L-BFGS 99.50% 741.85± 442.54 15.65± 20.44 110.64± 146.28

17 RRT-Connect – 100.00% – 5163.96± 26328.00 0.62± 0.36 –

TABLE I: Overview of success rate, convergence time and iterations for different optimization solvers and initialization strategies across
1,000 benchmark trials with initial states uniformly sampled within the valid range and task space goals sampled from a normal distribution
centered at the shelf compartments. The zero-motion initialization is e.g. used by RieMO, while the straight-line initialization is used by
CHOMP and STOMP. We use sampling-based initialization during our precomputation stage as a feasible initialization and investigate
different look-up/indexing strategies based on our problem encoding. We ensure that all benchmarking scenarios are solvable by RRT-Connect.
We use our own implementation of AICO and SNOPT’s version of L-BFGS.

look-up due to its data structure. The success rate with L-
BFGS is marginally lower compared to being initialized with
RRT-Connect, however, achieves a lower cost twice as fast.

f) For our trajectory library, KNN is 3.1 times faster to
look up a warm-start than searching the library exhaustively—
this difference is expected to grow with increasing number
of stored problem-solution-mappings. The KNN retrieval
features the fastest warm-start time (within approximately
1.2 ms), and either KNN or exhaustive search are at least two
orders of magnitude faster than running SBP from scratch.

g) Normalizing the problem encoding to account for
different scalings provides better warm-start seeds and higher
convergence independent of the look-up method as it allows
for simple distance metrics to be used successfully (49.8%
and 46.9% increases in success rates, respectively).

Overall, the benchmark results suggest that given a known
environment and the presented precomputation strategy, the
proposed problem encoding can be efficiently used to warm-
start trajectory optimization solvers online using nearest
neighbor look-up with inexpensive distance metrics.

VI. DISCUSSION

This paper considered the problem of providing a warm-
start initialization for trajectory optimization algorithms in
complex environments which result in highly nonlinear
objective functions. We hereto proposed the use of an offline
generated trajectory library with a problem encoding which
can be used for fast online indexing based on inexpensive
nearest neighbor metrics. We detailed strategies for efficient
sample reuse and evaluated our method in a randomized
benchmark on a shelf picking task. Our results demonstrate

that our method achieves similar or higher success rates to
initialization with feasible solutions from sampling-based
planners while converging faster with lower final costs.

While we considered only the closest candidate from
indexing and look-up based on similarity metrics, other work
has focused on training generalizing classifiers for single
or ordered list prediction. [25], e.g., used exhaustive online
training after library generation to obtain a series of classifiers
for list prediction allowing a sequential initialization with the
next best candidate should previous warm-starts fail.

A key challenge for applying regression over warm-starts
are discontinuities, e.g., introduced by dynamics or com-
plex environments. While we focused on high-dimensional,
kinematic planning with discontinuous objective functions
introduced by complex environments, similar precomputation
and initialization approaches have been presented, e.g., for
dynamic lower-DoF optimal control problems in obstacle-
free environments. Here, [14] presented an iterative approx-
imation of the value and policy functions initialized from
and used in building an optimal kinodynamic PRM. While
the nature of the underlying problems differ, we consider
iterative approximation during offline precomputation a highly
interesting avenue for future work. Graph-based approaches,
e.g., HDRM [17], PRM and its variant Experience Graphs [26]
which are based on prior solutions with heuristics guiding
search onto previously explored graphs, are interesting, but
may limit exploration and are only optimal w.r.t. the roadmap.

One of the key limitations of our formulation is the
use of soft constraints, e.g., for collision and joint limit
avoidance as well as task space targets. While high penalties
on these terms often lead to desired behavior, there are no
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guarantees on satisfaction of these constraints (requiring
a collision check of the resulting optimal trajectory) and
different cost terms may act against each other causing
early, sub-optimal, or no convergence. In practice, using
unconstrained optimization is efficient and fast given a good
initialization, e.g., from a trajectory library as considered in
this work. In recent years, efficient solvers for constrained
nonlinear programs have shown impressive results in literature,
e.g. using SQP [1], [23]. In order to reduce failures from
otherwise suitable initializations, future work should explicitly
incorporate equality (e.g., reach targets), inequality (e.g., joint
velocity limit and collision avoidance), and bound (e.g., joint
limit) constraints. Furthermore, using analytic second-order
information where available and exploring a staged cost
function or adaptation of weights in an outer loop can address
poor initialization and speed up convergence.

In our work, we use the signed distance between the robot
and environment as a collision proxy without preprocessing.
Preprocessing, e.g., convex decomposition [1], using signed
distance fields and overlapping sphere approximation of the
robot body itself [4], [6] could speed up collision queries
which currently dominate the cost and prevent failures from
discontinuities, e.g., when initialized in collision. Additionally,
evaluating collisions only at discrete time steps requires a
dense discretization of the trajectory while not guaranteeing
continuous time safety (e.g., as considered in [1]). Further,
dense discretization of the time horizon results in large
optimization problems, with opportunities to speed up conver-
gence by using trajectory parameterizations and embeddings
such as Gaussian Processes [3], B-splines, dynamical systems,
kernel methods [20], [27], [28], or subsampling of an initial
coarse time parametrisation [29].

As for the trajectory library, defining the task space
encoding and distance metric for efficient look-up is important.
Avenues for future work include clustering of solutions into
distinct classes (e.g., from topology), learning of feature
descriptors (in lieu of the engineered task space encoding)
and/or distance metrics, as well as investigating the use of
function approximation for value and policy functions. Here,
learning disentangled policy predictions that regress within
distinct solution classes are particularly interesting. Further,
the current formulation only handles static obstacles and
warm-starts in dynamic scenes remain an open question.

Additionally, as discretized or exhaustive sampling is
prohibitive, future work should address exploration strategies
for the offline dataset generation stage when posed with
more complex problems. Beyond exploration, limitations on
memory and online look-up runtime motivate information-
theoretical considerations on how many samples are required
and which ones can be discarded.

Finally, this work considered high-dimensional problems
in complex environments with implicit first-order Markov
dynamics. It is an interesting area for further investigation
to extend it to include tasks with complex dynamics such as
switching contacts or underactuated systems as the optimiza-
tion problems become more expensive to evaluate and thus a
near-optimal warm-start more effective.
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