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Abstract— Common formulations to consider collision avoid-
ance in trajectory optimization often use either preprocessed
environments or only check and penalize collisions at discrete
time steps. However, when only checking at discrete states,
this requires either large margins that prevent manipulation
close to obstacles or dense time discretization increasing the
dimensionality of the optimization problem in complex environ-
ments. Nonetheless, collisions may still occur in the interpola-
tion/transition between two valid states or in environments with
thin obstacles. In this work, we introduce a computationally
inexpensive continuous-time collision avoidance term in pres-
ence of static and moving obstacles. Our penalty is based on
conservative advancement and harmonic potential fields and
can be used as either a cost or constraint in off-the-shelf non-
linear programming solvers. Due to the use of conservative ad-
vancement (collision checks) rather than distance computations,
our method outperforms discrete collision avoidance based on
signed distance constraints resulting in smooth motions with
continuous-time safety while planning in discrete time. We eval-
uate our proposed continuous collision avoidance on scenarios
including manipulation of moving targets, locomanipulation on
mobile robots, manipulation trajectories for humanoids, and
quadrotor path planning and compare penalty terms based
on harmonic potential fields with ones derived from contact
normals.

I. INTRODUCTION

Planning collision-free motion in complex environments is
an active area of research in robotics. Robots are expected to
avoid undesired contact with themselves (self-collisions) and
the environment (collision with obstacles) while performing
desired interactions, e.g., grasping or making contact with
support surfaces. While these tasks are well studied for
sampling-based motion planning methods using a combination
of conditional logic and binary validity checks for both
discrete (states/vertices) and continuous (edges/transitions
between two valid states) cases, incorporating them into
optimization-based formulations is nontrivial. In particular,
incorporating collision avoidance in trajectory optimization
introduces nonlinearity (and often, if not pre-processed,
non-convexity) or relies on reduced models (e.g., only
considers the end-effector), preprocessed robot models or
environments. Furthermore, these approaches often utilize
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Fig. 1: Continuous time collision avoidance during whole-body
manipulation execution on the 38-DoF NASA Valkyrie humanoid
platform: Discrete metrics will consider a coarsely discretized
trajectory to be valid while a transition between two states can be in
collision with the environment. Continuous collision avoidance for
discrete trajectories successfully avoids the obstacle and guarantees
continuous-time collision safety.

distance computations between polyhedra or primitive shapes
which can be expensive to compute and may introduce
discontinuities in the proxy metric or its Jacobian1 in most
cases only considering collision avoidance at discrete knot
points.

A. Related work

Collision avoidance in motion optimization primarily
focuses on defining penalty terms or nonlinear inequality
constraints based on signed distance information between
pairs of primitive shapes or polyhedral objects A and B,
with their transforms obtained from forward kinematics at
the current joint configuration q. In order to define gradients,
local approximations based on motion along the normal
spanned by the witness points on the respective objects
are defined. However, in practice this approach suffers
from two limitations: (a) numerical instability related to the
implementations of the GJK [2] and EPA [3] algorithms in
commonly available software libraries, and (b) fast motion
of these witness points when surfaces are parallel and the
resulting discontinuity in the gradients for non-strictly-convex
shapes [4]. Additionally, the computation of the signed
distance depends on the number and complexity (number of

1For illustration, cf. Figure 4 in [1].



vertices) of the collision shapes and, generally, is expensive
to compute.

Many approaches to ensuring smooth gradients have thus
focused on offline and/or online preprocessing the collision
model and environment. Stasse et al. [5] used strict-convexity
bounding volumes based on patches of spheres and tori
(Sphere-Torus-Patches Bounding Volume, STP-BV) [4] to
guarantee the continuity of the proximity distance gradient for
real-time collision avoidance on a full-size humanoid robot.
CHOMP [6] and STOMP [7] replace the robot collision
model with overlapping sphere approximations and use
Euclidean Distance Transforms for the environment. Similarly,
for self-collisions only, Sugiura et al. [8] proposed self-
collision-avoidance using an artificial force changing the
desired posture target in the null-space of the main tasks
using a sphere-swept lines bounding volume. In general,
simplifications based on replacing polyhedra with enclosing
primitive shapes, e.g., the use of cylinders and spheres
for a redundant manipulator [9] or sphere swept volumes
on a humanoid robot [8], make use of the availability of
inexpensive to compute analytic, closed-form solutions—
however, fitting approximations is often a time-consuming
process and requires attention to convexity or otherwise
local minima may arise [4]. RieMo [10], on the other hand,
builds on Riemannian geometry allowing motion near thin
or long obstacles to be planned which are common failure
cases for pair-wise signed distance constraints. Alternatively,
approaches to limit the computational cost associated with
collision queries have been proposed such as adaptive
collision checking densities with more checks closer to
obstacles [11].

However, these approaches only enforce the collision
constraint as an inequality bound on the signed distance at
discrete collocation points to a safety margin ε. While there
is a direct relationship between the selected safety margin,
the maximum joint velocity, and the time discretization of the
trajectory, no guarantee for a continuous-time collision-free
trajectory can be given.

In sampling-based planning, continuous collision checks
that check at distinct interpolations are used. In practice, some
number of subsamples between two configurations qt and
qt+1 are evaluated – if one is in collision, the transition (edge)
is considered invalid. Dynamic Roadmaps explicitly encode
the swept volume of an edge and update the graph based
on environment collision information. Available memory
largely limited the number of edges that can be stored.
Recently, a novel hierarchical variant has been proposed
which explicitly resolves the required ε for discrete distance
checking and stores a configuration-to-workspace-occupation
mapping occupation information for configurations such that
the edges are fully enclosed by two adjacent vertices [12].

However, for trajectory optimization, continuous-time
collision avoidance remains an open challenge and has re-
ceived less attention compared with discrete-time constraints.
Instead, denser discretization of the time horizon is frequently
applied, however, this results in larger optimization problems.
Alternately, greater safety margins are proposed restricting

close interactions such as reaching into deep boxes or through
narrow gaps.

A notable exception—and similar to our approach—which
considers continuous-time safety by constraining the min-
imum signed distance between swept volumes of convex
shapes and non-convex shapes using sequential convex
optimization is TrajOpt [1]. Here, convex-convex collision
checking between approximately convex, static objects and
swept-out (cast) volumes of convex collision bodies is used to
formulate a maximum penetration penalty term as a convex
hinge loss. Instead of using the obstacle shapes directly,
Deits and Tedrake [13] apply greedy convex segmentation
and mixed-integer optimization for dynamic quadrotor path
planning ensuring that the planned motion lies within the
convex subregions of obstacle-free space.

Recently, Hauser [14] proposed a trajectory optimization
formulation based on semi-infinite programming which
handles both non-convex obstacles and continuous-time
collision avoidance by interactively adding constraints during
the optimization. However, these methods depend on more
complex optimization methods compared with off-the-shelf
nonlinear programming or require the computation of signed
distances, which are an order of magnitude more expensive
than a simple, binary collision check.

Continuous-time collision detection, however, is a well-
studied problem in computer graphics to address the tunneling
problem where collisions occur between two simulation
timesteps (e.g., a fast traveling bullet may otherwise pass
through a wall). As a result, methods such as conservative
advancement (CA) [15], [16] and continuous-collision detec-
tion (CCD) are based on bounding volume hierarchies for
polyhedral models and are an efficient way to compute the
time of contact/impact between two objects under motion
while guaranteeing not to miss any collisions.

B. Contribution

In this work, we introduce a penalty term and its Jacobian
for continuous collision avoidance in environments with static
and moving obstacles. Our method is based on conservative
advancement collision checks and harmonic potential fields
and can be directly used as either a cost or constraint in
nonlinear programming-based motion synthesis using off-the-
shelf solvers without changes to the optimization scheme
(e.g., outer loop changes to cost scheduling or interactive
addition/removal of constraints between iterations).

We show the application of the metric in various high-
dimensional scenarios initialized from feasible paths and
compare with discrete-time-only penalties based on pairwise
distances as well as constraints based on signed distances
from continuous collision casts.

II. PROBLEM FORMULATION

We consider path planning and motion planning as a
constrained minimization of a canonical optimality criterion
(e.g., minimum time, minimum torque, or a higher order
smoothness term) subject to bound, equality, and inequality



constraints:
arg min

x
`(x)

s.t. hi(x) = 0
gj(x) ≤ 0
xlb ≤ x ≤ xub
ẋlb ≤ ẋ ≤ ẋub

(1)

where a trajectory of length T with uniform time discretization
∆t is represented as the sequence of state vectors X =
(x1, x2, ..., xT ).

A. Discrete-time collision avoidance

Traditionally, collision avoidance is integrated here as
nonlinear inequality constraints of the closest signed distance
to the collision shapes of the actuated links at the discrete time
points t, subject to a safety margin ε: hi(x) = sd(xi)−ε ≤ 0.

Similarly, a smooth cost and gradient for unconstrained
optimization can be formulated [17].

However, determining a suitable safety margin ε can prove
tricky: while intuitive for the discrete-time case, in order
for it to capture potential collisions in the continuous-time
transition, an appropriately large ε has to be chosen such
that the two collision shapes enlarged by their safety margins
overlap (cf. Fig. 2). In particular, without an explicit joint

Fig. 2: Left: A wide safety margin ε along with a dense time
discretization and limited maximum step capture the continuous-
time transition between t− 1 and t as the enlarged collision bodies
overlap. Right: In contrast, a small ε or large permissible state
transition stemming from the time discretization/joint velocity limit
result in the interpolation from t − 1 to t being in collision with
B while the signed distance constraints at At−1 and At are both
satisfied.

velocity limit, solutions may become discontinuous—they
will be valid at the discrete waypoints, but standard transition
between two configurations (e.g., straight line interpolation)
will be in collision (cf. Fig. 6).

In order to develop a metric for scaling ε for each actuated
link i attached to a kinematic chain, an upper bound on the
change between two states should be set (i.e., a joint velocity
limit). Using this, an approximate scaling can be developed
for each link i ∈ 1..N :

εi = εi−1 +
li cos (ẋmax∆t)

2
, with ε0 = 0 (2)

where li is the length of the ith link. As is evident, the ε
has to be greater for links further removed from the root of
the kinematic tree, which makes fine-grained manipulation
or interaction in confined spaces intractable.

In contrast, in order to specify a maximum workspace
distance, [12] developed a relationship between a workspace
resolution and a corresponding required configuration space
discretization to guarantee a collision-free edge (i.e., by
ensuring the workspace occupation of two subsequent
states/vertices overlap). It further provided a resolution
completeness proof for general deterministically-sampled
roadmaps. This approach can alternately be used to deter-
mine individual maximum joint velocities given a desired
workspace resolution/collision avoidance ε. This, however,
could easily result in the requirement for a fine discretization
of the time horizon and in its current form does not extend
to moving multiple joints as continuous variables at the same
time as required in motion optimization.

III. CONTINUOUS COLLISION AVOIDANCE

In practice, continuous collision checking for sampling-
based algorithms can easily be implemented by subsampling
states as interpolations between two waypoints or applying
conservative advancement collision checks. The challenge
arises when defining a differentiable cost or constraint metric
for use in optimization-based algorithms.

Fig. 3: The figure above highlights the two different continuous
collision detection modes: conservative advancement (left) and
convex collision shape casting (right, e.g., as in [1]). Note, the
meaning and direction of the collision normal differs significantly.

In order to define a penalty term, we introduce the concept
of a continuous collision proxy (CCP) which contains a
binary flag c on whether the two objects are in collision
along the interpolation, the time of contact tc if they are in
collision, their transforms TA,t=c, TB,t=c at time of contact,
the penetration depth between the objects dp, the contact
position Pc and the contact normal nc:

CCP = (c, tc, TA,t=c, TB,t=c, dp, Pc,nc) (3)

This information is calculated for every pair of robot
to environment links by performing continuous collision
detection (CCD) for two objects A and B given their initial
and final world transforms and motion interpolation:

CCP = CCD(A,B, TA,t=0, TB,t=0, TA,t=T , TB,t=T ) (4)

Here, we use Conservative Advancement [15] to perform
CCD. We note that this information can also be computed



by considering the swept-out volume of the edge as a convex
body computed from its support mappings as used in [1]
and represents a geometrically more realistic interpretation
of the direction and depth between the edge and a static
obstacle (and additionally includes the signed distance for
objects at distance). In this work, we rely on continuous
collision detection between moving shapes and as thus, direct
use of the computed normal information is not expected to
be well-behaved. The difference is visualized in Fig. 3.

Using the closest continuous collision proxy for each
actuated link, a penalty can be formulated if the link is
in collision:

φ(qt−1,qt) =

{
dp if dp ≥ 0

0 if d < 0
(5)

with a corresponding, approximate derivative:

δφ

δqt
(qt−1,qt) =

{
−nc · J(Pc) if dp ≥ 0

0 if d < 0
(6)

where J(Pc) is the geometric Jacobian of the contact point.
We note that this derivative is approximate and discontinu-

ous at the boundary of collision (while the scalar metric is
not), however, due to the use of continuous collision checks
rather than distances to swept volumes (the former of which is
computationally much faster) we obtain a very fast metric that
in practice works well when initialized from a collision-free
guess in complex environments, e.g., obtained from sampling-
based planning or a memory of motion. We further formulate
the derivative with respect to a single waypoint assuming the
previous one to be fixed.

A. Harmonic potential field-based continuous collision avoid-
ance in dynamic environments

One challenge with conservative advancement is that the
computed contact information is the first contact between the
two moving collision bodies (i.e., the two bodies are touching).
The returned contact normal is often not representative of the
normal vector of the maximum penetration of the cast/swept
volume and in practice unstable, and extremely dependent
on the implementation and its numerical stability.

In order to provide a more robust gradient for the contact
penalty term, we utilize a harmonic potential field in place of
the penetration depth in (5). Such fields exhibit local minima
(saddle points) only due to the topology of the obstacle.
This makes them ideal for gradient descent and optimization.
Indeed, harmonic potential fields have been widely used for
avoiding static obstacles [18] and for navigation problems [19].
A harmonic potential field around a 3D shape can be derived
from equations for electric potential around a uniformly
charged object [20]. The electric potential arising from a
point charge q, at a distance r from the charge is defined as
V = 1

4πε0

q
r . However, we are interested in computing the

potential over a triangulated surface of the obstacle’s surface.2

2To further improve the performance of this method, closed-form solutions
for the potential and field of primitive shapes (boxes, cylinders, spheres,
etc.) can be used.

This will allow us to interact with generic shapes given the
potentials of the triangles they are made up of. As this is
an approximation of the true harmonic potential field of the
original shape, local minima may arise. [21] analysed the
resulting approximation error and [20] introduced a linear
programming based method to readjust the local surface
charge distribution.

Fig. 4: Electrostatic potential due to a charged triangle. Figure
reproduced from [20].

The integral of the potential V over the surface of an
uniformly charged triangle ABC (cf. Fig. 4 for definitions
of variables) has been derived in [21] as:

V =
1

4πε0

q

MABC
I (7)

I =± IMABG ± IMBCG ± IMCAG (8)
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||
−→
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−−→
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, h = ||
−−→
QP ||, (10)

where ABC are the vertices of the triangle, P is the query
point and G its projection onto the plane of the triangle
ABC, ε0 is the permittivity of vacuum, and q is the charge
of the triangle. Since the physical meaning of equation (7)
is irrelevant in the context of trajectory optimization, the
charge q can be chosen to arbitrarily scale the potential to
improve the numerical stability of the solver or as a relative
weight against other cost terms. To calculate I , we substitute
the permutations of the triangle vertices into equation (9).
We then sum the potentials of all triangles to calculate the
potential over the whole surface of the collision mesh. We
obtain the derivative of the potential, also called the electric
field, using the chain rule (see [20] for full formula).

For computational efficiency, we create and cache a
harmonic potential field for each collision body as a set
of triangles and transform all queries into the local frame of
the collision body. We query the potential of the collision
contact point on the surface of the active/moving robot shape
within the harmonic potential field of the obstacle. For the
moving obstacles, we transform the collision mesh of the



moving obstacle half way between its start and end position.
This is an approximation that allows us to avoid computing
the mesh of the swept volume of the moving obstacle. We
then use the geometric Jacobian of the relative point in the
link of the robot to compute a derivative with respect to
the control variables. The resulting term is then used as a
constraint or a cost term in an optimization problem (1).

IV. EVALUATION

We have implemented the proposed collision avoidance
method in the planning prototype and benchmarking library
EXOTica [22] using FCL [23] for continuous collision
detection (Equation (4)) and the Bullet physics engine for
continuous collision casts.3 This comes with the advantage
that all benchmarks use the same forward kinematics, col-
lision checking, objective and Jacobian computation and
thus performance differences are attributable to internal
optimization solver computations and the number of prob-
lem updates they require to converge to a solution. All
evaluations were carried out on a computer with an Intel
Core i7-6700K CPU with 4 GHz base frequency and 32 GB
2133 MHz memory in a single thread. In this paper, we
report our results using the commercial sparse, constrained
nonlinear programming solvers SNOPT [24] and KNI-
TRO [25] with default parameters. Supplementary material
and videos is available at http://www.wolfgangmerkt.
com/continuous-collision-avoidance. The re-
sults of our evaluation are in Table I and they test our approach
on the following scenarios:

A. Quadrotor path planning

In this example, a sparsely discretized collision-free path
for the base trajectory (6-DoF) of a quadrotor in presence
of obstacles is optimized subject to maximum task-space
velocities from a zero-motion initialization. We visualize a
single, wide and thin obstacle dividing the space in Fig. 5a
with benchmark results given in the first and second row of
Table I. It is key to note that the discrete collision penalty
converges quicker than the problems with continuous collision
avoidance penalties, however, the trajectory cuts corners and
passes through the thin obstacle. The harmonic potential
field-based method converges quickly to a continuous-time
collision-free path while the contact normal-based penalties
result in divergence or termination from numerical instability.

B. Motion planning near thin obstacles

As thin obstacles pose particular problems for collision
avoidance constraints at discrete waypoints, we demonstrate
a sparsely discretized motion plan (10-20 waypoints) on
a 7-DoF Kuka LWR3+ in Fig. 6 with benchmark results
given in the rows 3 and 4 of Table I. Fig. 6a highlights

3While we choose to mainly rely on FCL for this work, the flexible
framework of EXOTica allows for the easy switching of collision solver
plug-ins opening up the possibility for comparative evaluation of the proposed
metrics using other libraries, e.g., NVIDIA PhysX, in future work. In this
work, we use the ROS-Industrial middleware Tesseract as an interface to
the Bullet physics engine as it implements the continuous collision casting
as in [1].

the optimal motion from a start state on the left side of the
obstacle to an end-effector constraint on the right side without
considering collision avoidance. Fig. 6b depicts the optimal
solution using a distance-based discrete collision constraint
which is valid at each waypoint, but discontinuous and in
collision during its transition as can be seen from the motion
trail. Fig. 6c shows the optimal trajectory computed using
the proposed continuous collision avoidance constraint—note,
the computation times are significantly lower than for the
discrete-time penalty.

C. Moving environment obstacles

Collision avoidance in dynamic environments is a chal-
lenging problem in motion planning, and in particular for
trajectory optimization. Assuming the trajectory of all objects
in the scene is known a priori, time-configuration space
sampling or optimization methods can be employed. As
directly solving the full problem with a single optimization
problem was considered infeasible with local optimization
methods, [26] split the planning problem into a sequence
of sampling- and optimization-based subproblems: reaching
(collision-free, bidirectional sampling-based motion planning),
grasping (trajectory optimization), and placing (collision-free,
bidirectional sampling-based motion planning). Here, we
demonstrate a scenario similar to those presented in [26]
as a single optimization problem using harmonic potential
field-based continuous collision avoidance and solve it from
zero-motion initialization. The 7-DoF Franka Emika Panda
robot has to reach into a box which moves on a trajectory at a
velocity of 0.2 m s−1, follow a target object while the fingers
are closing, and place it to the side. The proposed method
solves the problem with a time horizon of 10 s at a 0.1 s
discretization in 7.55 s (cf. Table I, rows 5 and 6, and Fig. 8).
Using a higher relative function tolerance, a first feasible
solution can be found in 1.77 s. The penalties which are
based on contact normals and using the information returned
from continuous collision casts fail for this application as
they were not designed to handle moving obstacles.

D. Locomanipulation

Locomanipulation considers navigation/locomotion and
manipulation as a unified problem. To make the problem
tractable, it is often split into pipeline-based approaches,
e.g., where the base placement, navigation, and manipulator
motion planning are treated as separate problems resulting in
sub-optimal motions. Here, we consider a locomanipulation
planning for a 9-DoF mobile manipulation consisting out of
an omnidirectional base (3-DoF) with a 6-DoF manipulator.
In a bug trap-like scenario, sampling-based planners for the
entire motion deliver sub-optimal results (cf. Fig. 5b). We use
the collision-free path as an initial solution (RRT-Connect
with dense interpolation between two states to validate edges,
0.35 s) and optimize using the proposed continuous collision
avoidance metrics for a smooth whole-body motion (0.40 s,
cf. Fig. 5c and Table I, rows 7 and 8).



(a) Collision-free path for a quadrotor (zero-
motion initialization, 8.19ms).

(b) Collision-free initialization/feasible guess
computed by RRT-Connect (0.35 s).

(c) Optimized, continuously collision-free
locomanipulation trajectory (0.40 s).

Fig. 5: Experiment scenarios using a quadrotor (6-DoF) and mobile manipulation platform (9-DoF).

(a) No collision avoidance (0.05 s) (b) Discrete-time penalty (2.37 s) (c) Continuous-time penalty (0.68 s)

Fig. 6: Sparsely discretized motion on a 7-DoF manipulator near a thin obstacle: The discrete collision avoidance inequality constraint
results in a discontinuous and infeasible path (although valid as per the discrete objective) while taking longer (due to computation of
distances) compared with the proposed continuous collision tasks which results in a smooth, continuous-time collision-free trajectory.

E. Humanoid shelf manipulation

Planning smooth, collision-free manipulation motion on
bipedal robots in vicinity of obstacles is challenging due to the
requirement to maintain balance while avoiding obstacles and
remain within actuation limits. We focus on manipulation on
a shelf with multiple cabinets which introduce local minima
and non-convexity. We initialize our trajectory optimization
problem from a global sampling-based planner (RRT-Connect,
2.40 s) and validate the resulting trajectory on the 38-DoF
NASA Valkyrie humanoid platform (cf. Figure 1), with results
given in row 9 of Table I (0.90 s optimization time).

F. Step-up swing trajectory planning for legged robots

For legged robots, the swing trajectories of the end-effectors
transitioning between different contact configurations, e.g.,
footholds, are commonly parametrized using low-dimensional
polynomials, splines, or three-point interpolations. While
this is efficient and often works in practice, it comes with
no guarantee that the swing trajectory is collision-free,
particularly when stepping up tall steps or in cluttered
environments—which depending on the planned footsteps
can lead to clipped steps and falls. Here, we consider the
problem of planning a collision-free trajectory for the swing

leg while satisfying the quasi-static balance constraint given
swing and double support duration and show the obtained
collision-free swing trajectory in Fig. 7.

Fig. 7: Collision-free, quasi-statically balanced whole-body step-
up/swing trajectory (38-DoF).



Fig. 8: Collision-free pick-and-place of a moving target with a 7-DoF Franka Emika Panda manipulator. The solution has been synthesized
from a zero-motion initialization using the proposed harmonic potential field-based continuous collision avoidance constraint in 7.55 s.

Experiment DoF Initialization Solver HPF
(FCL)

Contact normal
(FCL)

HPF
(Tesseract/Bullet)

Contact normal
(Tesseract/Bullet) [1]

Discrete
(FCL)

1
UAV 6 Zero-motion

SNOPT 30.008± 0.001 70.053± 0.001 70.019± 0.001 70.021± 0.001 70.003± 0.001

2 KNITRO 30.075± 0.006 70.581± 0.007 30.068± 0.001 70.162± 0.002 70.008± 0.001

3
LWR, thin obstacle 7 Zero-motion

SNOPT 30.170± 0.001 70.769± 0.011 70.786± 0.014 30.104± 0.002 73.124± 0.060

4 KNITRO 31.803± 0.025 33.158± 0.024 32.293± 0.012 31.457± 0.029 75.679± 0.049

5
Panda, moving obstacle 7 Zero-motion

SNOPT 37.557± 0.089 314.178± 0.119 7475.403± 4.172 7105.864± 0.126 711.528± 0.016

6 KNITRO 7126.665± 1.017 7252.125± 3.806 7400.606± 4.264 7211.840± 0.235 7252.471± 1.890

7 Locomanipulation
with mobile manipulator 9 Collision-free

(RRT-Connect)
SNOPT 30.396± 0.019 30.400± 0.029 30.431± 0.025 30.429± 0.008 37.604± 0.049

8 KNITRO 31.855± 0.089 37.753± 0.233 311.625± 0.579 716.245± 0.592 7839.747± 23.034

9 Valkyrie: shelf manipulation 10 Collision-free
(RRT-Connect) SNOPT 30.904± 0.228 71.308± 0.858 71.835± 1.721 73.877± 0.693 71.624± 0.145

TABLE I: Computation times for a selection of motion planning problems indicating their degrees of freedom (DoF), initialization
strategy (zero-motion or collision-free from a global, sampling-based algorithm), and non-linear programming solver. We compare two
continuous-time metrics (contact normal and harmonic potential field, HPF) for two different collision solvers (FCL and Bullet), as well as
a discrete distance-based nonlinear inequality constraint (using FCL). All computation times are given in seconds and averaged over 10
runs. The best-performing algorithm with a valid continuous-time collision-free solution is highlighted in bold. We indicate whether a
trajectory is valid satisfying all constraints and is continuous-time collision-free (as validated by using very dense interpolation) using
3 and 7 otherwise.

V. DISCUSSION

This paper considered the formulation of fast continuous
collision avoidance penalty terms in the presence of moving
obstacles which can be incorporated directly into formulations
solved with off-the-shelf nonlinear programming solvers. To
the best of our knowledge, this is the first work to address
continuous-collision avoidance for trajectory optimization in
dynamic environments.

In particular, we combine conservative advancement with
harmonic potential fields around collision shapes to obtain
a smooth, continuously differentiable proxy metric for con-
tinuous collision avoidance. We highlighted the versatility
of the proposed method on a variety of high-dimensional
trajectory optimization problems from feasible and zero-
motion initialization and validated our motion plans using
hardware experiments on the NASA Valkyrie humanoid.

As a limitation, the conservative advancement implemen-

tation we deployed in this work relies on linear or screw
interpolation between initial and final transforms as a motion
model. Due to this, the method cannot handle arbitrarily large
transitions. While other motion models could be chosen, they
also form an approximation to the actual nonlinear motion
of the collision body rigidly attached to a kinematic chain.
For the case of a continuous collision cast, [1] presents an
analysis of the difference between a linear sweep/cast and
the exact nonlinear shape and states that, in practice, the
difference can often be neglected as it is contained within
the safety threshold ε.

As we used local nonlinear optimization, our method
still frequently requires collision-free (but not necessarily
feasible) initialization in order to converge. It has shown to
perform well in combination with sampling-based planning,
e.g., as part of a hybrid planner where a collision-free
guess can be provided quickly from sampling-based or



roadmap-based methods and then refined to fit optimality
criteria using trajectory optimization. Alternately, it can be
used within a memory of motion framework for warm-
start initialization as in [17]. Its faster computation time
compared with constraints based on distance computations
allows online deployment both for direct motion optimization
as well as path simplification and motion smoothing as
commonly employed in sampling-based motion planning—
with the added advantage that in addition to smoothing,
motion constraints can be satisfied.

An intriguing approach is to consider convex formulations
of the problem. Schulman et al. [1] use a convex hinge
penalty on the signed distance obtained from a continuous
collision cast in combination with a custom sequential convex
optimization solver and are able to synthesize motion from
an infeasible initialization. Deits and Tedrake [13] apply
greedy subdivision of the space into convex subregions
and use mixed-integer optimization to plan globally optimal
continuously-collision-free trajectories for the dynamic model
of a quadrotor in complex environments. However, the
scalability of the approach to articulated robots has not
yet been investigated. Considering the properties of convex
optimization with regards to convergence and optimality, for-
mulating a convex continuous-collision avoidance constraint
in presence of moving obstacles following these lines of work
presents an interesting area of study.

All of the discussed approaches required computing signed
distances between polyhedra or pre-processed proxies such as
Euclidean Distance Transforms. Campana et al. [27] avoid the
need to compute distance information altogether by iteratively
adding (or modifying existing) linear constraints whenever a
collision is detected. While this requires a custom optimization
scheme due to the changing optimization problem (i.e., the
number of constraints differs between iterations), it would
be interesting to explore whether this scheme could be
extended to continuous-time collision avoidance due to its
low computational cost and numerical stability.

While the case switching in (5) due to the binary collision
indicator c is discontinuous at the boundary in contrast
to signed distance-based approaches (the Jacobian is set
to zero when not in collision, which is strictly speaking
incorrect), it worked well in practice particularly from
collision-free initialization. However, further investigating
the use of approximate harmonic potential fields for a fully
continuous metric is an interesting avenue for future work.

We do not currently explicitly handle self-collisions as
part of the continuous collision avoidance term and instead
incorporated them through a combination of joint limits and
discrete collision costs, which in future work could be learnt
as a robot model-specific term.

Finally, we considered path planning and high-dimensional
kinematic trajectory optimization in this paper with ongoing
work focusing on extending the formulation to dynamic
optimal control problems.
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