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Abstract
Novel anthropomorphic robotic systems increasingly employ variable impedance actuation with a view to achieving
robustness against uncertainty, superior agility and improved efficiency that are hallmarks of biological systems. Control-
ling and modulating impedance profiles such that they are optimally tuned to the controlled plant is crucial in realizing
these benefits. In this work, we propose a methodology to generate optimal control commands for variable impedance
actuators under a prescribed tradeoff of task accuracy and energy cost. We employ a supervised learning paradigm to
acquire both the plant dynamics and its stochastic properties. This enables us to prescribe an optimal impedance and
command profile (i) tuned to the hard-to-model plant noise characteristics and (ii) adaptable to systematic changes. To
evaluate the scalability of our framework to real hardware, we designed and built a novel antagonistic series elastic
actuator (SEA) characterized by a simple mechanical architecture and we ran several evaluations on a variety of reach
and hold tasks. These results highlight, for the first time on real hardware, how impedance modulation profiles tuned to
the plant dynamics emerge from the first principles of stochastic optimization, achieving clear performance gains over
classical methods that ignore or are incapable of incorporating stochastic information.

Keywords
Antagonistic actuator, dynamics learning, equilibrium point control, impedance control, stochastic optimal control

1. Introduction

Humans have remarkable abilities in controlling their limbs
in a fashion that outperforms most artificial systems in
terms of versatility, compliance and energy efficiency. The
fact that biological motor systems suffer from significant
noise, sensory delays and other sources of stochasticity
(Faisal et al. 2008) makes their performance even more
impressive. Therefore, it comes as no surprise that biologi-
cal motor control is often used as a benchmark for robotic
systems. On the one hand, biological motor control charac-
teristics are a result of the inherent biophysical properties
of human limbs, and on the other hand, they are achieved
through a framework of learning and adaptation processes
(Wolpert et al. 1995; Kawato 1999; Davidson and Wolpert
2005). These concepts can be transferred to robotic systems
by (i) developing appropriate anthropomorphic hardware
and (ii) by employing learning mechanisms that support
motor control in the presence of noise and perturbations
(Mitrovic et al. 2008).

In this paper, we focus on issues related to adaptive motor
control of antagonistically actuated robots. Antagonistic
actuator designs are based on the biological principle of

opposing muscle pairs. Therefore, the joint torque motors,
for example, of a robotic arm are replaced by opposing
actuators, typically using mechanical springs (Pratt and
Williamson 1995). Such series elastic actuators (SEA) have
had increasing attention in the last few decades (Van-
derborght et al. 2009) as they provide several beneficial
properties over classic joint torque actuated systems:

1. Impedance control and variable compliance: Through
the use of antagonistic actuation, the system is able to
vary co-contraction levels, which in turn change the sys-
tem’s mechanical properties: this is commonly referred
to as impedance control (Hogan 1984). Impedance in
a mechanical system is defined as a measure of force
response to a motion exerted on the system and is
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composed of components such as inertia, damping and
stiffness. In general SEAs can only vary stiffness of a
system and achieving variable damping is technically
challenging (e.g. Laffranchi et al. 2010). Consequently,
in this paper, when we refer to impedance control, we
will solely address a change in stiffness and ignore vari-
able damping or variable inertia. Antagonistic actuation
introduces an additional degree of freedom in the limb
dynamics, i.e. the same joint torque can be achieved
by different muscle activations. This means low co-
contraction leads to low joint impedance whereas high
co-contraction increases joint impedance. This degree
of freedom can be used beneficially in many motion
tasks, especially those involving manipulation or inter-
action with tools. It has been shown through many neu-
rophysiological studies (e.g. Burdet et al. 2001) that
humans are capable of modulating this impedance in
an optimal way with respect to the task requirements,
trading off selectively against energy consumption. For
example, when you use a drill to drill holes in a wall,
you learn how to co-contract your muscles such that
the random perturbations of the drilling have a mini-
mal impact. Furthermore, the ability to vary compliance
plays a crucial role in robot safety (Zinn et al. 2004).
In general, impedance modulation is an efficient way to
control systems that suffer from noise, disturbances or
sensorimotor delays.

2. Energy efficiency and energy storage: By appropriately
controlling the SEA, one can take into account the
passive properties of the springs and produce control
strategies with low energy requirements. A well-known
example is walking, where the spring properties com-
bined with an ideal actuation timing can be used to
produce energetically efficient gaits (Collins and Ruina
2005; Collins and Kuo 2010). Furthermore, an SEA has
impressive energy storage and fast discharge capabili-
ties, enabling “explosive” behavior such as throwing a
ball (Wolf and Hirzinger 2008), which is quite hard to
achieve with regular joint torque controllers. Therefore,
series elasticity can amplify power and work output of
an actuator, which is important in the fabrication of
lightweight but powerful robotic or prosthetic devices
(Paluska and Herr 2006).

A disadvantage of antagonistic actuation is that it
imposes higher demands on the redundancy resolution
capabilities of a motor controller. Optimality principles
have successfully been used in biological (Flash and Hogan
1985; Scott 2004; Todorov 2004) and in artificial systems
(Nakamura and Hanafusa 1987; Cortes et al. 2001) as a
principled strategy to resolve redundancies in a way that is
beneficial for the task at hand. More specifically, stochas-
tic optimal control (SOC) (Stengel 1994; Bertsekas 1995;
Todorov 2006) appears to be an especially appealing the-
ory as it studies optimality principles under the premise of
noisy and uncertain dynamics. Another important aspect
when studying stochastic systems is how the information,

for example, about noise or uncertainty is obtained with-
out prior knowledge. Supervised learning methods can pro-
vide a viable solution to this problem as they can be used
to extract information from the plant’s sensorimotor data
directly.

Here, we propose a control strategy for antagonistic sys-
tems that is based on stochastic optimal control theory
under the premise of minimal energy cost. We propose to
extend SOC by learning the dynamic model of the plant,
which enables us (i) to adapt to systematic changes of the
plant and (ii) extract its stochastic properties. Stochastic
properties or stochastic information refers to noise or ran-
dom perturbations of the controlled system that cannot be
modeled deterministically. By incorporating this stochas-
tic information into the optimization process, we show
how impedance modulation and co-contraction behavior
emerges as an optimal control strategy from first principles.

In the next section, we present a new antagonistic actua-
tor, which serves as our implementation testbed for study-
ing impedance control in the presence of stochasticity and
which, compared to previous antagonistic designs, has a
much simpler mechanical design. In Section 3, we introduce
the basic concepts of optimal control and propose an exten-
sion that uses a learned dynamic model. This supervised
learning methodology allows us to adapt online to changes
in the dynamics as well as to extract localized stochastic
information from movement data. We then propose a sys-
tematic methodology for incorporating deterministic and
stochastic plant dynamic information into the optimal con-
trol framework, resulting in a scheme that improves per-
formance significantly by exploiting the antagonistic redun-
dancy of our plant. Our claims are supported by a number
of experimental evaluations on real hardware in Section 4.
We conclude the paper with a discussion and an outlook.

2. A Novel Antagonistic Actuator Design for
Impedance Control

To study impedance control, we developed an antagonistic
joint with a simple mechanical setup. Our design is based
on the SEA approach in which the driven joint is connected
via spring(s) to a stiff actuator (e.g. a servomotor). A vari-
ety of SEA designs have been proposed (for a recent review
see Vanderborght et al. (2009)), which we here classify
into pseudo-antagonistic and antagonistic setups. Pseudo-
antagonistic SEAs have one or multiple elastic elements,
which are connected between the driving motor and the
driven joint. The spring tension and therefore, the joint
stiffness, is regulated using a mechanism equipped with
a second actuator. Antagonistic SEAs have one motor per
opposing spring and the stiffness is controlled through a
combination of both motor commands. Therefore, in antag-
onistic designs, the relationship between motor commands
and stiffness must be resolved by the controller. This addi-
tional computational cost is the tradeoff for a biologically
plausible architecture.
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Fig. 1. Schematic of the variable stiffness actuator. The robot’s
dimensions are: a = 15 mm, L = 26 mm, d = 81 mm, h =
27 mm. The spring rest length is s0 = 27 mm.

For antagonistic SEAs, non-linearity of the springs is
essential to obtain variable compliance (van Ham et al.
2009). Because forces produced through springs with lin-
ear tension-to-force characteristics tend to cancel out in an
antagonistic setup, an increase in the tension of both springs
(i.e. co-contraction) does not change the stiffness of the
system. Commercially available springs usually have lin-
ear tension-to-force characteristics and consequently most
antagonistic SEAs require relatively complex mechanical
structures to achieve a non-linear tension-to-force curve
(Hurst et al. 2004; Migliore et al. 2005; Tonietti et al.
2005). These mechanisms typically increase construction
and maintenance effort but also can complicate the sys-
tem identification and controllability, for example, due to
added drag and friction properties. We directly addressed
this aspect in our design of the SEA, which aims to achieve
variable stiffness characteristics using a simple mechanical
setup.

2.1. Variable Stiffness with Linear Springs

Here we propose an SEA design that does not rely on com-
plex mechanisms to achieve variable stiffness but achieves
the desired properties through a specific geometric arrange-
ment of the springs. While the emphasis of this paper is
not on the mechanical design of actuators, we will explain
the essential dynamic properties of our testbed. Figure 1
shows a sketch of the robot, which is mounted horizontally
and consists of a single joint and two antagonistic servo-
motors that are connected to the joint via linear springs.
The springs are mounted with a moment arm offset a at
the joints and an offset of L at the motors. Therefore, the
spring-endpoints move along circular paths at the joints and
at the motors. Under the assumption that the servomotors
are infinitely stiff, we can calculate the torque τ acting on
the arm as follows. Let s1 denote the vector from point C to

A, and s2 the vector from D to B, and s1 and s2 their respec-
tive lengths. Putting the origin of the coordinate system at
the arm joint, we have

s1 =
⎛
⎝

−h − L sinα
−d + L cosα

0

⎞
⎠−

⎛
⎝

−a cos θ
−a sin θ

0

⎞
⎠

︸ ︷︷ ︸
=a1

,

s2 =
⎛
⎝

h + L sinβ
−d + L cosβ

0

⎞
⎠−

⎛
⎝

a cos θ
a sin θ

0

⎞
⎠

︸ ︷︷ ︸
=a2

. (1)

Denoting the spring constant by κ and the rest length by s0,
this yields forces

F1 = κ( s1 − s0)
s1

s1
and F2 = κ( s2 − s0)

s2

s2
. (2)

Given the motor positions α and β and the arm position θ ,
the torque generated by the springs is

τ (α,β, θ ) = ẑT( F1 × a1 + F2 × a2) , (3)

where ẑT denotes the three-dimensional basis vector
( 0, 0, 1)T. To calculate the equilibrium position θeq for given
motor positions α and β, we need to solve τ (α,β, θeq) = 0,
which in practice is by numerical optimization. At this
position, we can calculate the joint stiffness as

K(α,β) = ∂

∂θ
τ (α,β, θ )

∣∣∣
θ=θeq

. (4)

Note that K depends linearly on the spring stiffness κ , but
the geometry of the arm induces a non-linear dependency
on α and β. Figure 2 shows the computed profiles of the
equilibrium position and stiffness, respectively.

Further, denoting the arm’s inertia around the z-axis by Iz

and a damping torque given by τ ( θ̇ ) = −Dθ̇ , the dynamic
equation can be analytically written as

Izθ̈ = τ (α,β, θ ) −Dθ̇ . (5)

2.2. Actuator Hardware

Figure 3 depicts our prototype SEA hardware implemen-
tation of the discussed design. For actuation, we employ
two servomotors (Hitec HSR-5990TG), each of which is
connected to the arm via a spring mounted on two low
friction ball bearings. To avoid excessive oscillations, the
joint is attached to a rotary viscous damper. The servos are
controlled using 50 Hz PWM signals by an Arduino Duemi-
lanove microcontroller board (Atmel ATmega328). That
board also measures the arm’s joint angle θ with a contact-
free rotary position encoder (Melexis MLX90316GO),
as well as its angular acceleration θ̈ using a LilyPad
accelerometer (Analog Devices ADXL330). Finally, we
also measure the servomotor positions by feeding a signal
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Fig. 2. Left: Equilibrium position as a function of the motor positions (in degrees), with contour lines spaced at 5◦ intervals. Right:
Stiffness profile of the arm, as calculated from Equation (4). The maximum achievable stiffness is 150% of the intrinsic spring stiffness.

Fig. 3. Photograph of our antagonistic robot. Inset panel (a): Sep-
arate servomotor mounted at the end of the arm to create stochastic
perturbations (see Section 4.2).

from their internal potentiometer to the AD converters of
the Arduino. While the operating frequency is limited to 50
Hz due to the PWM control, all measurements are taken at
a 4× higher frequency and averaged on the board to reduce
the amount of noise, before sending the results to a PC via
a serial connection (RS232/USB).

2.3. System Identification

Apart from measuring the exact dimensions (L = 2.6 cm,
a = 1.5 cm, h = 2.7 cm, d = 8.1 cm) of the robot, and the
stiffness constant of the spring (κ = 424 N m−1), system
identification consists of a series of steps, each of which
involves a least-squares fit between known and actually
measured quantities.

1. Identify servomotor dynamics: The servomotors are
controlled by sending the desired position (encoded as a
PWM signal), which we refer to as u1 and u2 for motors
1 and 2, respectively. Even though the servomotors we
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Fig. 4. Comparison of prediction of performance of estimated
motor dynamics (top and middle) and of arm dynamics (bottom)
for an independent test data set.

use are very accurate, they need some time to reach
the desired position, and therefore we model the true
motor positions (α,β) as a low-pass filtered version of
the commands ( u1, u2) using a finite impulse response
(FIR) filter, i.e.

α[n] = ( h ∗ u1) [n] + ε[n] =
K∑

k=0

h[k]u1[n − k] + ε[n]

(6)
and similarly for β and u2. The term ε[t] denotes a
noise component of the true motor position that can-
not be modeled with the FIR filter. By using the inter-
nal potentiometer of the servomotors, we can measure
the actual motor positions to identify the filter coeffi-
cients hi using a least squares fit, that is, by minimizing∑

t(α[n]−( h ∗ u1) [n])2 with respect to hi. We retrieved
a good fit of the motor dynamics (cf. Figure 4) using an
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FIR filter with seven steps, with estimated coefficients
h = [0, 0, 0, 0.0445, 0.2708, 0.3189, 0.3658].

2. Calibrate position sensor: Tests with the position sensor
revealed linear position characteristics. By moving the
arm physically to several predefined and geometrically
measured positions, we determined the sensor’s offset
and slope.

3. Calibrate acceleration sensor: We matched the accel-
erations measured with the accelerometer with accel-
erations derived from the position sensor (using finite
differences).

4. Collect training data and fit parameters: We carried out
motor babbling (any excitation movements are applica-
ble) on the servos and measured the resulting arm posi-
tions, velocities and accelerations. Taking into account
the estimated motor dynamics using the fitted filter, we
estimated the arm’s inertia (Iz = kg∗m2∗

rad(−2)) and vis-
cous damping (D = N∗m∗s∗rad(−1)) coefficient using
least squares from Equation (5).

On a large independent test set of Stest = 300, 000 data
points, the motor prediction produces a Normalized Mean
Squared Error (NMSE) of enmse = 1.85%. Figure 4 shows
an example prediction of performance for a sequence of
random motor commands (20 s from the test set Stest) using
the estimated dynamic model.

3. Stochastic Optimal Control

In many control scenarios it is desirable to be able to
perform in the “best way possible”. For example, one may
wish to move the system to a desired posture and consume
as little energy as possible during the movement. This type
of problem is studied in optimal control theory, the central
ingredient of which is the minimization of an optimality
criterion

J [u] =
∫ T

0
c( x( t) , u( t) , t) dt + h( x( T) ) or

J [u] =
∫ ∞

0
c( x( t) , u( t) , t) dt, (7)

for a task with a finite or infinite horizon. Apart from the
optional final cost h( ·), the criterion integrates a cost rate
c( x, u) over the course of the movement. That cost may
depend on the system’s state x, control commands u and
on time t, where the initial state of the system is given as
x( 0), and x( t) evolves depending on the commands u( t).
In the context of biological motor control, this theory has
been studied for decades with the well-known examples of
various optimality criteria such as minimum time (Bobrow
et al. 1985), energy (Li and Todorov 2007), jerk (Flash and
Hogan 1985) and torque change (Uno et al. 1989).

For a system with deterministic (and accurately modeled)
dynamics ẋ = f( x, u), it is sufficient to find the open-loop
sequence of commands u( t) and the associated trajectory
x( t) that minimizes J , which can usually be obtained by

solving a two-point boundary difference/differential equa-
tion derived by applying Pontryagin’s minimum principle
(Stengel 1994). In practice, in the presence of small pertur-
bations or modeling errors, the optimal open-loop sequence
of commands can be run on the real plant together with
a simple PD controller that corrects deviations from the
planned trajectory. However, those corrections will usually
not adhere to the optimality criterion, and the resulting cost
J will be higher.

Alternatively, we can try to incorporate stochasticity, e.g.
as a dynamic model

dx = f( x, u) dt + F( x, u) dξ , ξ ∼ N ( 0, I) (8)

directly into the optimization process and minimize the
expected cost.1 Here, dξ is a Gaussian noise process and
F( ·) tells us how strongly the noise affects each part of
the state and control space. A well-studied example of this
case is the LQG problem, which stands for linear dynamics
(f( x, u) = Ax + Bu), quadratic cost (in both x and u), and
Gaussian noise (F is constant). A solution to this class of
problems is the optimal feedback controller (OFC), that is,
a policy u = π ( x, t) that calculates the optimal command
u based on feedback x from the real plant. In the LQG
case, the solution is a linear feedback law u = L( t) x with
precomputed time-dependent gain matrices2 L( t) (Stengel
1994).

Solving OFC problems for more complex systems (non-
linear dynamics, non-quadratic cost, varying noise levels
F) is a difficult computational task. A general way to
solve OFC problems for non-linear quadratic problems is
Dynamic Programming (DP) (Bellman 1957). DP in its
basic form relies on a discretization of the state and action
space, which in practice is difficult to obtain: On the one
hand, tiling the state–action space too sparse will lead to
poor representation of the underlying plant dynamics. On
the other hand, a very fine discretization leads to a com-
binatorial explosion of the problem, which is commonly
referred to as the curse of dimensionality. For example, con-
sider a discretization of 100 steps for each variable of the
state and action space. In the case of the presented SEA,
this corresponds to a state space dimensionality n = 2, for
positions and velocities, and action space dimensionality
m = 2, for the two motors.3 Even for this low-dimensional
system the possible combinations of states and actions that
DP needs to evaluate and store in order to find the optimal
control law are p = 1004 = 100,000,000. One way to avoid
the curse of dimensionality is to restrict the state space to
a region that is close to a nominal optimal trajectory. In the
neighborhood of such trajectories the DP problem can be
approximated analytically using Taylor expansions of the
dynamics and the cost function. The idea is to compute
an optimal trajectory together with a locally valid feedback
law and then iteratively improve this nominal solution until
convergence. Well-known examples of such iterative meth-
ods are Differential Dynamic Programming (DDP) (Dyer
and McReynolds 1970; Jacobson and Mayne 1970) or the
more recent iterative Linear Quadratic Gaussian (ILQG)
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(Todorov and Li 2005), which will serve as solution tech-
nique of choice in this paper. ILQG yields both an open-
loop sequence of commands and optimized feedback gain
matrices, but these are not guaranteed to converge towards
the global optimum: Depending on the initial guess of
the trajectory, the iterative improvement might result in a
solution with only a locally optimal expected cost J .

3.1. Modeling Dynamics and Noise through
Learning

Analytical dynamic formulations, as described in Section
2.1 or in Equation (5), have the tremendous advantage of
being compact and fast to evaluate numerically, but they
also suffer from drawbacks. First, their accuracy is limited
to the level of detail put into the physical model. For exam-
ple, our model is based on the assumption that the robot is
completely symmetric, that both motors are perfectly cali-
brated, and that the two springs are identical, but in reality
we cannot avoid small errors in all of these. Second, the
analytical model does not provide obvious ways to model
changes in the dynamics, such as from wear and tear, or
more systematic changes due to the weight of an added tool.

While these problems can to some extent be alleviated
by a more involved and repeated system identification pro-
cess, the situation is more difficult if we consider the noise
model F( ·), or stochastic changes to the dynamics. For
example, an arm might be randomly perturbed by tool inter-
actions such as when drilling into a wall, with stronger
effects for certain postures, and milder effects for others.
It is not obvious how one can model state dependent noise
analytically.

We therefore propose to include a supervised learning
component and to acquire both the dynamics and the noise
model in a data-driven fashion (Figure 5). Our method of
choice in this paper is Locally Weighted Projection Regres-
sion (LWPR) or (Vijayakumar et al. 2005), because that
algorithm allows us to adapt the models incrementally and
online, and it is able to reflect heteroscedastic4 noise in the
training data through localized confidence intervals around
its predictions. More details on learning with LWPR can be
found in Appendix A.

In order to simplify the presentation as much as possi-
ble, and also due to technical challenges of operating on the
real hardware (for details see Section 5), in this work we
learn the stochastic mapping f ( u) from motor positions to
joint angle θ , not taking into account velocities and accel-
erations. During stationary conditions and in the absence
of perturbations, this mapping reflects the equilibrium posi-
tion of the arm (Figure 2, left). In correspondence to the
general dynamic equation (8), here the state x = θeq repre-
sents the current equilibrium position, u the applied motor
action, and dx the resulting change in equilibrium position.
Therefore the reduced dynamics used here, only depends on
the control signals, i.e.

dx = f ( u) dt + F( u) dξ , ξ ∼ N ( 0, 1) . (9)

Learning this mapping from data, we can directly account
for asymmetries. More interestingly, when we collect data
from the perturbed system, we can acquire a model of
the arm’s kinematic variability as a function of the motor
positions.

We use this learned model f̃ in two ways: first, in (slow)
position control tasks (Section 3.2), and in conjunction with
full analytic dynamic models for dynamic reaching tasks
(Section 3.3).

3.2. Energy Optimal (Equilibrium) Position
Control

Consider the task of holding the arm at a certain position
θ̂ , while consuming as little energy as possible. Let us fur-
ther assume that we have no feedback from the system,5

but that the arm is perturbed randomly. We can state this
mathematically as the minimization of a cost

J = 〈
wp( f ( u) −θ̂ )2 + | u | 2

〉
, (10)

where wp is a factor that weights the importance of being
at the right position against the energy consumption, which
for simplicity we model by | u | 2. Taking into account that
the motor commands u are deterministic, and decomposing
the expected position error into an error of the mean plus
the variance, we can write the expected cost J as

J = wp

(
〈f ( u) 〉 − θ̂

)2
+ wp

〈(
f ( u) −〈f ( u) 〉

)2〉
+ | u | 2,

(11)
which based on the LWPR learned model becomes

J = wp( f̃ ( u) −θ̂ )2 +wpσ
2( u) + | u | 2. (12)

Here f̃ ( u) and σ ( u) denote the prediction and the one-
standard-deviation-based confidence interval of the LWPR
model of f ( u). The constant wp represents the importance
of the accuracy requirements in our task. We then can easily
minimize J with respect to u =( u1, u2)T numerically, taking
into account the box constraints 0◦ ≤ ui ≤ 180◦.6

3.3. Dynamic Control with Learned Stochastic
Information

Equilibrium position control is ignorant about the dynam-
ics of the arm, that is, going from one desired position
to the next might induce swinging movements, which are
not damped out actively. Proper dynamic control should
take these effect into account and optimize the command
sequence accordingly. What follows is a description of
how we model the full dynamics of the arm, that is, the
combination of the dynamics of the joint and the motors.

The state vector x[k] of our system at time k consists of
the joint angle x1[k] = θ [k] and joint velocity x2[k] = θ̇ [k]
as well as 12 additional state variables, which represent the
command history of the two motors, i.e. the last six motor
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Fig. 5. Schematic diagram of our proposed combination of stochastic optimal control (SOC) and learning. The dynamic model used
in SOC is acquired and constantly updated with data from the plant. The learning algorithm extracts the dynamics as well as stochastic
information contained (noise model from confidence intervals). SOC takes into account both measures in the optimization.

commands that were applied to the system. The state vector,
therefore, is

x[k] = ( θ [k], θ̇ [k], u1[k − 1], . . . , u1[k − 6],

u2[k − 1], . . . , u2[k − 6])T , (13)

where the additional state variables x3[k], . . . , x8[k] for
motor 1, and similarly, x9[k], . . . , x14[k] for motor 2, are
required to represent the FIR filter states of the motor
dynamics from Equation (6). We can estimate the motor
positions α[k] and β[k] solely from these filter states
because the FIR coefficients are h0 = h1 = 0:

α[k] =
7∑

j=2

hju1[k − j + 1] =
7∑

j=2

hjxj+1[k] (14)

β[k] =
7∑

j=2

hju2[k − j + 1] =
7∑

j=2

hjxj+7[k]. (15)

Based on the rigid body dynamics from Equation (5) we
can compute the acceleration from states (i.e. forward
dynamics) as

θ̈ [k] = 1

Iz

(
τ (α[k],β[k], θ [k]) −Dθ̇ [k]

)
. (16)

Therefore “running” the dynamics here means account-
ing for motor dynamics by shifting the filter states, that is
xi+1[k + 1] = xi[k] for i = 3, . . . , 7 and i = 9, . . . , 13, and
then Euler-integrating the velocities and accelerations:

x[k + 1] = x[k] +�t f( x[k], u[k]) (17)

= ( θ [k] +�tθ̇ [k], θ̇ [k] +�tθ̈[k], u1[k],

x3[k], . . . , x7[k], u2[k],

x9[k], . . . , x13[k])T . (18)

Alternatively, we can drop the time index k and write the
dynamics in compact form as

f( x, u) =
(

x2, θ̈ ( x) ,
1

�t
( u1 − x3) ,

1

�t
( x3 − x4) , . . . ,

1

�t
( u2 − x8) ,

1

�t
( x8 − x9) , . . .

)T

. (19)

The gradient of θ̈ ( x) is given by the chain rule, where τ is
the short notation for τ (α,β, θ ). Note that θ = x1, θ̇ = x2,
and α and β are calculated from x3...14:

∇xθ̈ = 1

Iz

(
∂τ

∂θ
, −D,

∂τ

∂α
h2,

∂τ

∂α
h3, . . . ,

∂τ

∂α
h7,

∂τ

∂β
h2,

∂τ

∂β
h3, . . . ,

∂τ

∂β
h7

)
. (20)

This only shows the second row of the Jacobian ∇xf( x, u)
and for brevity we omitted the others as they are trivial. The
other Jacobian ∇uf( x, u) consists of zero entries apart from
the entry 1/�t = 50 at indices ( 3, 1) and ( 9, 2).

Since the dynamics of our system is non-linear and high-
dimensional, we have to employ an iterative local optimiza-
tion approach. We employ the ILQG method due to its abil-
ity to include constraints on the commands. More details of
the ILQG algorithm can be found in Appendix B.

The usual ILQG formulation is based on an analytically
given cost function (deterministic) and a stochastic dynamic
function. Here we use a deterministic dynamics (with the
idealized analytic model) and we propose a cost function
that takes stochastic information into account.

c( x, u) = wp( x1 − θ̂ )2 +wvx2
2 + we | u | 2 + wd( ( u1 − x3)2

+ ( u2 − x9)2 ) +wpσ
2( u) . (21)

All quantities in Equation (21) (also possibly the pre-
factors) are time-dependent, but we have dropped the time
indices for notational simplicity. As before wp governs the
accuracy requirement. In addition, a stability term wv gov-
erns the importance of having zero velocity and we penal-
izes energy consumption at the level of springs. The weight-
ing factor wd penalizes changes in motor commands and
therefore energy consumption at the level of the servomo-
tor. The last term includes the learned uncertainty in our
equilibrium positions, which is here also scaled by wp. This
is justified because, for example, for a reaching task, the
arm will finish with the servomotors in a position such that
the arm’s equilibrium position is the desired position θ̂ , and
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we have learned from data how much perturbation we can
expect at any such configuration. The same holds true for
slow tracking tasks, where the servos will be moved such
that the equilibrium positions track the desired trajectory.

4. Results

In this section we present results from the optimal control
model applied to the hardware described earlier in Sec-
tion 2. We first highlight the adaptation capabilities of this
framework experimentally and then show how the learned
stochastic information leads to an improved control strat-
egy over solutions obtained without stochastic information.
More specifically the new model achieves higher posi-
tional accuracy by varying impedance of the arm through
motor co-contraction. We study position holding, trajectory
tracking and target reaching tasks.

4.1. Experiment 1: Adaptation towards a
Systematic Change in the System

An advantage of the learned dynamic paradigm is that it
allows us to account for systematic changes without prior
knowledge of the shape or source of the perturbation. To
demonstrate such an adaptation scenario we set up a sys-
tematic change in the hardware by replacing the left spring,
between motor 1 and the joint (i.e. between points A and C
in Figure 1), with one that has a lower, “unknown” spring
constant. The aim is to hold a certain equilibrium position
using the energy optimal position controller described in
Section 3.2. As expected, the prediction about the equilib-
rium points (i.e. f̃ ( u)) does not match the real, changed
system properties.

Next, we demonstrate how the system can adapt online
and increase performance, trial by trial. We specified a tar-
get trajectory that is a linear interpolation of 200 steps
between the start position θ0 = −30◦ and the target posi-
tion θ̂ = 30◦. We tracked this trajectory by recomputing
the equilibrium positions, i.e. by minimizing Equation (12)
at a rate of 50 Hz. At the same time we updated f̃ ( u)
during reaching. Due to the nature of local learning algo-
rithms, f̃ is only updated in the neighborhood of the current
trajectory and therefore shows limited generalization. To
account for this, after each trial, we additionally updated
the model with 400 training data points, collected from a
20 × 20 grid of the motor’s range u1 = u2 = [0◦, 180◦].
Figure 6 depicts the outcome of this adaptation experiment.
One can observe that the controller initially (lighter lines)
fails to track the desired trajectory (red). However, there
is significant improvement between each trial, especially
between trials 1 to 5. After about nine trials the internal
model has been updated and manages to track the desired
trajectory well (up to the hardware’s level of precision). The
equilibrium position predictions in Figure 7 confirm that
the the systematic shift has been successfully learned, as

shown by the asymmetric shape. Analyzing the motor com-
mands (Figure 6 right) shows that the optimal controller, for
all trials, chooses the motor commands with virtually no
co-contraction. This is a sensible choice as co-contraction
would contradict the minimum energy cost function that we
have specified.

4.2. The Role of Stochastic Information for
Impedance Control

Because co-contraction and energy consumption are oppos-
ing properties, our controller will hardly make use of the
redundant degree of freedom in the actuation. Even though
minimum energy optimal control in an antagonistic system
seems to be “unable to co-contract” it remains our favorite
choice of performance index as it also implies compliant
movement and as it follows the biological motivation. If we
consider the stochastic information that would arise from
a task involving random perturbations, we can see that the
produced stochasticity holds valuable information about the
stability of the system.7 If the uncertainty can be reduced
by co-contracting it will be reflected in the data, i.e. in the
LWPR confidence bounds. Therefore the answer to the pre-
vious question is that, given that we wish to achieve high
task accuracy, the controller should co-contract whenever
it can reduce the expected noise/stochasticity in the system
(weighted with the accuracy requirement).

Suppose our system experiences some form of small
random perturbations during control. In the hardware we
realize such a scenario by adding a perturbation motor at
the end of the arm, which mimics, for example, a drilling
tool (panel “a” in Figure 3). The perturbation on the arm
is produced by alternating the servomotor positions quickly
every 200 ms from 40◦ to −40◦. The inertia of the addi-
tional weight then produces deflections of the arm from the
current equilibrium position. With these perturbations, we
collected new training data and updated the existing LWPR
model f̃ . The collected data reveals that the arm stabilizes
in regions with higher co-contraction, where the stiffness
is higher. This behavior is illustrated in Figure 8, which
shows motion traces around θ = 0◦ due to the perturbation
motor for different co-contraction levels. This information
is contained in the learned confidence bounds (Figure 9)
and, therefore, the optimal controller effectively tries to find
the tradeoff between accuracy and energy consumption.

4.3. Experiment 2: Impedance Control for
Varying Accuracy Requirements

Based on the learned LWPR model f̃ from the previous
section, we can demonstrate the improved control behav-
ior of the stochastic optimization with emerging impedance
control. We formulate a task to hold the arm at the fixed
positions θ̂ = 15◦ and θ̂ = 0◦, respectively. While minimiz-
ing for the cost function in Equation (12), we continuously
and slowly increased the position penalty within the range
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Fig. 6. Visualization of the adaptation process. Left: Desired (red) and observed arm positions. Right: Motor commands for the
corresponding trials. Darker and thinner lines indicate later stages of learning.

wp = [10−2, 105]. The left column in Figure 10 summarizes
the results we discuss next: At wp = 10−2 to approximately
wp = 100 the optimization neglects position accuracy and
minimizes mainly for energy, i.e. u1 = u2 = 0. The
actual joint positions, because of the perturbations, oscil-
late around the mean θ = 0◦ as indicated by the shaded
area. Between wp = 100 and wp = 102 the position con-
straint starts to “catch up” with the energy constraint; a shift
in the mean position towards θ̂ can be observed. At about
wp = 5 · 101, the variance in the positions increases as the
periodic perturbation seems to coincide with the resonance
frequency of the system. For wp > 102 the stochastic infor-
mation is weighted sufficiently such that the optimal solu-
tion increases the co-contraction and the accuracy improves
further.

In contrast, if we run the same experiment while ignoring
the stochastic part of the cost function, i.e. we minimize for
the deterministic cost function J = wp( f̃ ( u) −θ̂ )2 + | u | 2

only, we can can see (Figure 11) that the system does, as
expected, not co-contract and hardly improves performance
accuracy.

4.4. Experiment 3: ILQG-Reaching Task with a
Stochastic Cost Function

For certain tasks, such as quick target reaching or faster
tracking of trajectories, the system dynamics based on equi-
librium points θ = f ( u) may not be sufficient, as it contains
no information about the velocities and accelerations of the
system. Next, we assume a full forward dynamic descrip-
tion of our system as identified in Equation (13), where the
state consists of joint angles, joint velocities, and twelve
motor states.

The task is to start at position θ0 = 0◦ and reach
towards the target θ̂ = 0.3 rad (= 17.18◦). The reaching
movement duration is fixed at 2 s, which corresponds to
T = 100 discretized time steps at the hardware’s opera-
tion rate of 50 Hz. This task can be formalized based on

the cost function (21) by setting the weighting terms as
follows: the time-dependent position penalty is a mono-
tonically increasing linear interpolation of 100 steps, i.e.
wp[t] = [0.1, 0.2, . . . , 10]. The penalty for zero endpoint
velocity was set to wv[t] = 0 for 0 < t < 80 and wv[t] = 1
for t ≥ 80. The energy penalties are assumed constant
we = wd = 1 during the whole movement.

By using ILQG, we then compute an optimal control
sequence ū with the corresponding desired trajectory x̄ and
a feedback control law L. Figure 12 depicts the reaching
performance of the ILQG trajectory, applied in open-loop
mode and in closed-loop mode (i.e. using feedback law L),
where the robot has been perturbed by a manual push. The
closed-loop scheme successfully corrects the perturbation
and reaches the target while the open-loop controller oscil-
lates and fails to reach the target. This experiment high-
lights the benefits of closed-loop optimization which can,
by incorporating the full dynamic description of the sys-
tem, account for such perturbations. However, the ability
to correct perturbations is limited by the hardware control
bandwidth (i.e. slow servomotor dynamics and 50 Hz con-
trol board frequency). If the system also suffers from feed-
back or motor delays the correction ability is limited and
for example accounting for vibrations or noise8 is difficult
to achieve using feedback signals only. For such stochastic
perturbations, impedance control can improve performance
as it changes the mechanical properties of the system in
a feed-forward manner, i.e. it reduces the effects of the
perturbations in the first place.

To realize such a scenario, we defined a tracking task
that starts at the zero position then moves away and back
again along a sinusoidal curve for 2.5 s. The cost function
parameters for this task are defined as follows: The time-
dependent position penalty is wp[t] = [50, 100, . . . , 4,000]
for 0 < t < 80 and wp[t] = 4,000 for t ≥ 80. The endpoint
velocity term is wv[t] = 0 for 0 < t < 80 and wv[t] = 10
for t ≥ 80. The energy penalties are held constant, i.e.
we = wd = 1.
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Fig. 7. Learned position models during the adaptation process. The white numbers represent the equilibrium points.

As before, we observe the benefits of using stochastic
information for optimization compared to a determinis-
tic optimization (not using the LWPR confidence bounds).
After computing the optimal control using ILQG we ran
the optimal feedback control law (see Appendix B) con-
secutively 20 times in each condition, i.e. with and without
stochastic optimization. Note that the perturbation motor is
switched on at all times. Figure 13 summarizes the results:
as expected the stochastic information in the cost function
induces a co-activation for the reaching task, which shows
generally better performance in terms of reduced variabil-
ity of the trajectories. Evaluating the movement variability
where the accuracy weight is maximal, i.e. for t > 80, the
standard deviation of the trajectories is significantly lower
with σstoch = 0.55◦ for the stochastic optimization com-
pared to the deterministic optimization with σdet = 1.38◦.

A detailed look at the bottom right plot in Figure 13 reveals
a minor shift in the recorded trajectory compared to the
planned one from the analytic model. We attribute this
error to imprecisions in the hardware, i.e. tiny asymme-
tries, which are not included in the analytic model. In the
case of higher co-contraction, small manufacturing errors
and an increased joint friction lead to deviations towards
the idealized analytic model predictions. Indeed the learned
dynamic model can account for these asymmetries as can
be seen in Figure 9 (left), along the equilibrium position
θ = 0◦, i.e. the line u1 = u2 is slightly skewed.

5. Conclusion and Outlook

In this paper we have presented a stochastic optimal control
model for antagonistically actuated systems. We proposed
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Fig. 8. Motion traces of our SEA hardware around θ = 0◦. The perturbation motor causes different deflections depending on the
co-contraction levels: (a) u1 = u2 = 0◦, (b) u1 = u2 = 45◦, (c) u1 = u2 = 120◦.
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Fig. 9. Left: Learned equilibrium position as a function of the motor positions (in degrees), with contour lines spaced at 5◦ intervals.
Right: Stochastic information given by the heteroscedastic confidence intervals of LWPR.

to learn the dynamics as well as the stochastic information
of the controlled system from sensorimotor feedback of the
plant. This control architecture can account for a system-
atic change in the system properties (Experiment 1) and,
furthermore, is able, by incorporating the heteroscedastic
prediction variances into the optimization, to compensate
for stochastic perturbations that were induced in the plant.

Doing so, our control model demonstrated significantly
better accuracy performance than the deterministic opti-
mization in both energy-optimal equilibrium point control
(Experiment 2) and energy-optimal reaching using dynamic
optimization (Experiment 3). The improved behavior was
achieved by co-activating antagonistic motors, i.e. by using
the redundant degree of freedom in the system based on the
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Fig. 10. Experiment with increasing position penalty wp for two targets. Left plot column: θ̂ = 15◦; right plot column: θ̂ = 0◦. The
plots show the desired vs. measured position and corresponding motor commands as a function of the accuracy requirement (pre-factor
wp). The shaded area results from the perturbation motor.

first principles of optimality. The presented results demon-
strate that this is a viable optimal control strategy for real
hardware systems that exhibit hard-to-model system prop-
erties (e.g. asymmetries, systematic changes) as well as
stochastic characteristics (e.g. using a power tool) that may
be unknown a priori.

An advantage of the presented control architecture is that
motor co-activation (or impedance) does not need to be
specified explicitly as a control variable but emerges from
the actual learned stochasticity within the system (scaled
with the specified accuracy requirements of the task).
Therefore, co-activation (i.e. higher impedance), since it is
energetically expensive, will only be applied if it actually is
beneficial for the accuracy of the task.

Exploiting stochasticity in wider domains The method-
ology we suggest for optimal exploitation of sensorimo-
tor stochasticity through learning is a generic principle
that goes beyond applications to impedance modulation of
antagonistic systems but can be generalized to deal with any
kind of control or state dependent uncertainties. For exam-
ple, if we wish to control a robot arm that suffers from poor
repeatability in certain joint angles or in a particular range
of velocities, this would be visible in the noise landscape

(given one has learned state dependent stochastic dynamics)
and consequently those regions would be “avoided” by the
optimal controller. In this context, the source of the stochas-
ticity is irrelevant for the learner and therefore, it could arise
from internal (i.e. noise in the motor), as well as external
(i.e. power tool) sources. However, the stochastic system
properties must, to a certain degree, be stationary in time
so that the learner can acquire enough information about
the noise landscape.

Biological relevance As mentioned in the introduction,
biological systems are often used as a benchmark for the
control of artificial systems. In this work not only the antag-
onistic hardware but also the actual control architecture is
motivated by biological principles. Optimality approaches
have been a very fruitful line of research (Todorov 2004;
Scott 2004; Shadmehr and Krakauer 2008) and its combi-
nation with a learning paradigm (Mitrovic et al. 2008) is
biologically justified a priori, since the sensorimotor sys-
tem can be seen as the product of an optimization process
(i.e. evolution, development, learning, adaptation) that con-
stantly learns to improve its behavioral performance (Li
2006). Indeed, internal models play a key role in efficient
human motor control (Davidson and Wolpert 2005) and it
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Fig. 11. The same experiment as in Figure 10 where the stochastic information was not incorporated into the optimization.
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Fig. 12. ILQG-reaching task without stochastic information used in open-loop and closed-loop control. We perturbed the arm by hitting
it once after 0.4 s (left plot) and 1.2 s (right plot), respectively. The dashed lines in the right plot represent unperturbed trials (open loop
and closed loop).

has been suggested that the motor system forms an internal
forward dynamic model to compensate for delays, uncer-
tainty of sensory feedback, and environmental changes in a
predictive fashion (Wolpert et al. 1995; Kawato 1999; Shad-
mehr and Wise 2005). Notably a learned optimal trade-
off between energy consumption, accuracy and impedance
has been repeatedly observed in human impedance con-
trol studies (Burdet et al. 2001; Franklin et al. 2008).
More specifically, the amount of impedance modulation in

humans seems to be governed by some measure of uncer-
tainty, which could arise from internal (e.g. motor noise) or
external (e.g. tools) sources (Selen et al. 2009).

In the computational model presented here, these uncer-
tainties are represented by the heteroscedastic confidence
bounds of LWPR and integrated into the optimization
process via the performance index (i.e. cost function). Such
an assumption is biologically plausible, since humans have
the ability to learn not only the dynamics but also the
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Fig. 13. Twenty trials of ILQG for a tracking task of 2.5 s. Left column: Deterministic optimization does not exhibit co-contraction.
Right column: Twenty trials of ILQG using stochastic information in the cost function. The system co-contracts as the accuracy
requirements increase.

stochastic characteristics of tasks, in order to optimally
learn the control of a complex task (Chhabra and Jacobs
2006; Selen et al. 2009).

Hardware Limitations and Scalability This work repre-
sents an initial attempt to modulate the impedance of a real
antagonistic system in a principled fashion. The proposed
SEA has been primarily designed to perform as a “proof of
concept” of our control method on a real system. Specifi-
cally we can identify several limitations of our system that
need further investigation in the future.

First, the stiffness range of the system is fairly low as
spring non-linearities are achieved by the geometric effect
of changing the moment arms. There are other, mechani-
cally sophisticated, SEA designs with large stiffness ranges
(e.g. Grebenstein and van der Smagt 2008; van Ham et al.
2009), which also could serve as attractive implementation
platforms for our algorithm. Specifically the MACCEPA
design (van Ham et al. 2007) is very appealing as it is tech-
nically simple and offers a large stiffness range; however,
parallels to biologically realistic implementations are less
obvious in this design, as the system is not antagonistically

actuated. The fact that we were able to obtain a significant
increase in co-contraction from the learned stochastic infor-
mation, even for hardware with a very low stiffness range
is promising, indicating good resolution capabilities of the
localized variance measure in LWPR.

Second, the relatively slow control loop (50 Hz) causes
controllability issues (i.e. slow feedback) and, furthermore,
turned out to be sensitive to numerical integration errors
within ILQG. While these numerical issues have not caused
problems in an analytic dynamic formulation (Experiment
3), they turned out to be critical when we run ILQG using
the full learned forward dynamics f̃ ( x, u). Under these con-
ditions, for most of the time ILQG does not converge to
a reasonable solution. A potential route of improvement
could be a combination of LWPR learning with an analytic
model. Instead of “ignoring” valuable knowledge about the
system given in analytic form, one could focus on learning
an error model only, i.e. aspects of the dynamics that are
not described by the analytic model.

Third, the transfer of optimal controls from simulation to
the real hardware has proven to be very challenging. Cur-
rently we are computing ILQG solutions for a fixed time
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horizon and later applying them to the SEA. For slower
movements this approach produces satisfying accuracy. In
Experiment 3 we “enforced” slower and smoother move-
ments by formulating an appropriate time-dependent cost
function. However, for movements with higher frequency
the situation is more difficult: Errors accumulate on the
hardware over the course of the trajectory, since the feed-
back loop for corrections is very slow. This leads to solu-
tions that differ significantly from the preplanned optimal
solution. A potential route to resolve this problem is to
use a model predictive control approach in which the opti-
mal solutions are re-computed during control with current
states of the plant as initial states. However, this approach
requires computationally efficient re-computations of the
optimal control law, which may be hard to obtain, especially
for systems with higher dimensionality.

Finally, our experiments were carried out on a low-
dimensional system with a single joint and two motors.
Implementations on systems with higher dimensionality,
however, are still very challenging as the construction of
antagonistic robots is non-trivial and the availability of large
degrees of freedom systems is very limited. Due to the
curse of dimensionality, high-dimensional systems impose
serious computational challenges on both optimal control
methods and machine learning techniques. While some of
these issues have been addressed in previous work (Todorov
et al. 2005; Mitrovic et al. 2008, 2010), we believe that
the study of impedance control based on stochastic senso-
rimotor feedback is a promising route of research for both
robotic and biological systems.
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Notes

1. This means we put expectation brackets around the integrals
and h( ·) in (7).

2. For the infinite-horizon case, the matrix is constant.
3. Note that we have ignored any motor dynamics.
4. Stability here refers to the desired equilibrium position.
5. Heteroscedastic noise has different variances across the state

and action space. For example, the variance of the noise can
scale with the magnitude of the control signal u, which is also
called signal dependent noise.

6. Alternatively, assume the feedback loop is so slow that it is
practically unusable.

7. For our SEA this optimization can be performed in real time,
i.e. at least 50 times per second, which corresponds to the
maximum control frequency of our system (50 Hz).

8. or any other high-frequency perturbation.
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Appendix A: Learning with LWPR

In order to learn the plant dynamics various supervised
learning algorithms could be applied. Here we focus on
local learning methods, which represent a function by using
small simplistic patches, e.g. first-order polynomials. The
size of the locality is determined by gating activation ker-
nels, and the positions and number of the local kernels are
adapted during learning to represent the non-linear func-
tion. Because the input data activates only local patches,
local learning algorithms are robust against global nega-
tive interference. This ensures the flexibility of the learned
model towards systematic changes in the dynamic proper-
ties of the arm (e.g. load, material wear). Furthermore, the
domain of real-time robot control demands certain proper-
ties of a learning algorithm, namely fast learning rates and
high prediction speeds at run-time if the model is trained
incrementally. LWPR has been shown to exhibit these prop-
erties, and to be very efficient for incremental learning of
non-linear models (Vijayakumar et al. 2005).

In LWPR, the regression function is constructed by
blending local linear models, each of which is endowed with
a locality kernel that defines the area of its validity (also
termed its receptive field). During training, the parameters
of the local models (locality and fit) are updated using incre-
mental Partial Least Squares, and models can be pruned or
added on an as-need basis, for example, when training data
is generated in previously unexplored regions. Usually the
receptive fields of LWPR are modeled by Gaussian kernels,
so their activation or response to a query vector z (here the
inputs are the two motor commands u) is given by

wk( z) = exp

(
−1

2
( z − ck)T Dk( z − ck)

)
, (22)

where ck is the center of the kth linear model and Dk is its
distance metric. Treating each output dimension separately
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for notational convenience, the regression function can be
written as

f̃ ( z) = 1

W

K∑
k=1

wk( z)ψk( z) , W =
K∑

k=1

wk( z) , (23)

ψk( z) = b0
k + bT

k ( z − ck) , (24)

where b0
k and bk denote the offset and slope of the kth

model, respectively.
LWPR learning has the desirable property that it can be

carried out online, and moreover, the learned model can be
adapted to changes in the dynamics in real-time. Further-
more, the statistical parameters of LWPR regression models
provide access to the confidence intervals, here termed con-
fidence bounds, of new prediction inputs (Vijayakumar et al.
2005). In LWPR the predictive variances are assumed to
evolve as an additive combination of the variances within
a local model and the variances independent of the local
model. The predictive variance estimates σ 2

pred,k for the kth
local model can be computed by analogy with ordinary
linear regression. Similarly one can formulate the global
variances σ 2 across models. By analogy with Equation (23),
LWPR then combines both variances additively to form the
confidence bounds given by

σ 2
pred = 1

W 2

(
K∑

k=1

wk( z) σ 2 +
K∑

k=1

wk( z) σ 2
pred,k

)
. (25)

The local nature of LWPR leads to the intuitive require-
ment that only receptive fields that actively contribute to
the prediction (e.g. large linear regions) are involved in
the actual confidence bounds calculation. Large confidence
bound values typically evolve if the training data contains
much noise and other sources of variability, such as chang-
ing output distributions. Further regions with sparse or no
training data, i.e. unexplored regions, show large confidence
bounds compared with densely trained regions. Figure 14
depicts the learning concepts of LWPR graphically for a
learned model with one input and one output dimension.
The noisy training data was drawn from an example func-
tion that becomes more linear and more noisy for larger z
values. Furthermore, in the range z = [5..6] no data was
sampled for training to show the effects of sparse data on
LWPR learning.

Appendix B: The ILQG Algorithm

The ILQG algorithm starts with a time-discretized initial
guess of an optimal control sequence and then iteratively
improves it with respect to the cost function. From the
initial control sequence ūi at the ith iteration, the corre-
sponding state sequence x̄i is retrieved using the determin-
istic forward dynamics f with a standard Euler integration

Fig. 14. Typical regression function (blue continuous line) using
LWPR. The dots indicate a representative training data set. The
receptive fields are shown as ellipses drawn at the bottom of the
plot. The shaded region represents the confidence bounds around
the prediction function. The confidence bounds grow between
z = [5..6] (no training data) and generally towards larger z values
(noise grows with larger values).

x̄i[k + 1] = x̄i[k] +�t f( x̄i[k], ūi[k]). Next, the discretized
dynamics (Equation (5)) are linearly approximated as

δx[k + 1] =
(

I + �t
∂f

∂x

∣∣∣∣
x̄[k]

)
δx[k] + �t

∂f

∂u

∣∣∣∣
ū[k]

δu[k].

(26)
Similarly one can derive a quadratic approximation of the
cost function around x̄i[k] and ūi[k]:

cost[k] = q[k] + δx[k]Tq[k] + 1

2
δx[k]TQ[k]δx[k]+ (27)

δu[k]Tr[k] + 1

2
δu[k]TR[k]δu[k] +

δu[k]TP[k]δx[k]

where

q[k] = �tv[k] q[k] = �t
∂v[k]

∂x

∣∣∣∣
x̄[k]

(28)

Q[k] = �t
∂2v[k]

∂x ∂x

∣∣∣∣
x̄[k],ū[k]

P[k] = �t
∂2v[k]

∂u ∂x

∣∣∣∣
x̄[k],ū[k]

r[k] = �t
∂v[k]

∂u

∣∣∣∣
ū[k]

R[k] = �t
∂2v[k]

∂u ∂u

∣∣∣∣
ū[k]

.

Both approximations are formulated as deviations δxi[k] =
xi[k] − x̄i[k] and δui[k] = ui[k] − ūi[k] of the current opti-
mal trajectory and therefore form a “local” LQG problem.
This linear quadratic problem can be solved efficiently via
a modified Ricatti-like set of equations that yields an affine
control law π [k]( δx) = l[k] + L[k]δx[k]. This control law
has a special form: since it is defined in terms of deviations
of a nominal trajectory and since it needs to be implemented
iteratively, it consists of an open-loop component l[k] and a
feedback-component L[k]δx[k]. The actual optimization in
ILQG supports constraints for the control variable u, such
as lower and upper bounds. After the optimal control signal

 at Edinburgh University on April 21, 2011ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


Mitrovic et al. 573

correction δūi has been obtained, it can be used to improve
the current optimal control sequence for the next iteration
using ūi+1[k] = ūi[k] + δūi[k]. Finally, ūi+1[k] is applied to
the system dynamics (Equation (5)) and the new total cost
along the trajectory is computed. The algorithm stops once
the cost v cannot be significantly decreased anymore. After
convergence, ILQG returns an optimal control sequence ū
and a corresponding state sequence x̄ (i.e. trajectory). Along
with the open-loop parameters x̄ and ū, ILQG produces a
feedback matrix L which may serve as optimal feedback
gains for correcting local deviations from the desired tra-
jectory of the plant (Figure 15). The control law for each
time step k is defined as

u[k]plant = ū[k] + δu[k] (29)

δu[k] = L[k] · (x[k] − x̄[k]) , (30)

where x[k] represents the real plant position and x̄[k] the
desired position at time k.

ILQG u plant 
(SEA)

dynamics model +

feedback
controller

L, x xcost function
(incl. target)

δu

–

– u +– uδ

Fig. 15. The optimal feedback control scheme using ILQG.
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