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1 –Motivation

• Optimal feedback control (OFC) is a plausible movement genera-
tion strategy in goal reaching tasks for biological systems
→ attractive for anthropomorphic manipulators

• OFC yields minimal-cost trajectory with implicit resolution of kine-
matic and dynamic redundancies plus a feedback control law
which corrects errors only if they adversely affect the task perfor-
mance.

• Systems with non-linear dynamics and non-quadratic costs: OFC
law can only be found locally and iteratively, e.g., using iLQG
(Todorov & Li, 2005). However, iLQG relies on analytic form of
system dynamics: → often unknown, difficult to estimate, subject
to changes.

• Our approach: Combine iLQG framework with a learned forward
dynamicsmodel, based on Locally Weighted Projection Regression
(LWPR – Vijayakumar, D’Souza & Schaal, 2005) → iLQG–LD

• Learned model is adaptive: Can compensate for complex dynamic
perturbations in an online fashion

• Learned model is efficient: Derivatives are easy to compute
(iLQG involves linearization)

2 –Background: OFC and iLQG

Notation we use here:
x(t) state of a plant (joint angles q and velocities q̇)
u(t) control signal applied at time t (torques)

ẋ = f(x,u) forward dynamics (this is what we learn)

Problem statement:
Given initial state x0 at time t = 0, seek optimal control sequence u(t)
such that “final” state x(T ) = x∗.

Cost function:
Final cost h(x(T )) plus accumulated cost c(t,x,u) of sending a control
signal u at time t in state x → “Error” in final state plus used “energy”

Weighted cost for time-discrete system, target in joint space:
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Basic idea of iLQG:
Simulate initial control sequence, linearize dynamics f(·) around result-
ing trajectory, solve local LQG problem for deviations δuk and δxk analyt-
ically. Update control sequence and repeat procedure until convergence.

3 – Incorporate learned dynamics
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Learned model (LWPR) is
used in simulated trials,
and trained online dur-
ing final trials on the real
plant.

• Learned model can be pre-trained using motor babbling or a coarse
analytic model

• LWPR is fully localised algorithm, local models learn indepen-
dently→ incremental training without interference problems

• LWPR features built-in dimensionality reduction by using Partial
Least Squares within the local models

• Range of validity of local models (“receptive fields”) can be auto-
matically adjusted during training

• Calculating derivatives of learned model ismuch faster than using,
e.g., finite differences of a model based on Newton-Euler recursions
→ performance gain especially for large number of DOF

4 – Basic 2-DOF example

First investigation: Reaching performance evaluated on a simple 2-DOF
planar arm, simulated using the MATLAB Robotics Toolbox.

−40
−20

0
20

0

20

40

60

0   

X (cm)
Y (cm)

Z
 (

cm
)

−40 −20 0         cm

0

20

40

−40 −20 0         cm

0

20

40

Left: Simulated arm and reaching targets. Middle: Trajectories of iLQG (analytic). Right: iLQG–LD (learned).

Naturally, reaching performance depends on quality of learned model:

iLQG–LD (L) (M) (H) iLQG

Train. points 111 146 276 –
Prediction error (nMSE) 0.80 0.50 0.001 –
Iterations 19 17 5 4
Cost 2777 1810 192 192
Eucl. target distance (cm) 19.50 7.20 0.40 0.01 0 10 20 30 40 cm
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5 – Adapting to nonstationary dynamics

Simulate systematic perturbances by virtual force fields: Analytic models
cannot account for this, but the learned model can.
Adaption to constant uni-directional force field (switched on/off):

  open loop  closed loop
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Learning and un-learning the influence force field can be accelerated by
tuning LWPR’s forgetting factor λ. Default is 0.999, we now use 0.950:
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More complex example: Velocity-dependent force field.
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6 – Scaling iLQG–LD: 6-DOF

Faithful model of DLR robot arm (w/o last joint): Reaching 3 targets

-100
-50

0
50

-50
0

50
100

0

50

X (cm)Y (cm)

Z
 (

cm
)

cm

cm−50 0   

−50

0

50

X

Y

(a)

(b)

(c)

cm

cm

−50 0   

0   

50

X

Z

(b)

(a)

(c)

Left to right: Real DLR arm, toolbox simulation and targets, resulting trajectories in xy−view and xz-view.

Modified cost function only includes end-effector position (through
forward kinematics)→ iLQG resolves redundancy implicitly.
Simulated control-dependent noise yields lots of variance in joint-space
trajectories→ irrelevant deviations are not corrected.
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Trial-to-trial variability as depicted by the evolution of joint angles over time. Grey: iLQG. Black: iLQG–LD.

Compare cost and accuracy: iLQG–LD (left) and iLQG (right)

target running cost pos. error (cm) running cost pos. error (cm)
(a) 18.32± 0.55 1.92± 1.03 18.50± 0.13 2.63± 1.63
(b) 18.65± 1.61 0.53± 0.20 18.77± 0.25 1.32± 0.69
(c) 12.18± 0.03 2.00± 1.02 12.92± 0.04 1.75± 1.30
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