Optimal Control with Adaptive Internal Dynamics Models

Djordje Mitrovic, Stefan Klanke, Sethu Vijayakumar – School of Informatics, The University of Edinburgh, UK

1 – Motivation

- Optimal feedback control (OFC) is a plausible movement generation strategy in goal reaching tasks for **biological systems** → attractive for **anthropomorphic manipulators**
- OFC yields minimal-cost trajectory with implicit resolution of kinematic and dynamic redundancies plus a feedback control law which corrects errors *only* if they adversely affect the task performance.
- Systems with non-linear dynamics and non-quadratic costs: OFC law can only be found locally and iteratively, e.g., using **iLQG** (Todorov & Li, 2005). However, iLQG relies on analytic form of system dynamics: — often unknown, difficult to estimate, subject to changes.
- Our approach: Combine **iLQG** framework with a **learned forward** dynamics model, based on Locally Weighted Projection Regression (LWPR – Vijayakumar, D'Souza & Schaal, 2005) iLQG-LD \longrightarrow

4 – Basic 2-DOF example

First investigation: Reaching performance evaluated on a simple 2-DOF planar arm, simulated using the MATLAB Robotics Toolbox.

- Learned model is **adaptive**: Can compensate for complex dynamic perturbations in an online fashion
- Learned model is **efficient**: Derivatives are easy to compute (**iLQG** involves linearization)

2 – Background: OFC and iLQG

Notation we use here:

- state of a plant (joint angles \mathbf{q} and velocities $\dot{\mathbf{q}}$) $\mathbf{x}(t)$
- control signal applied at time *t* (torques) $\mathbf{u}(t)$
- forward dynamics (this is what we **learn**) $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$

Problem statement:

Given initial state x_0 at time t = 0, seek optimal control sequence u(t)such that "final" state $\mathbf{x}(T) = \mathbf{x}^*$.

Cost function:

Final cost $h(\mathbf{x}(T))$ plus accumulated cost $c(t, \mathbf{x}, \mathbf{u})$ of sending a control signal u at time *t* in state $x \rightarrow$ "Error" in final state plus used "energy"

Weighted cost for time-discrete system, target in joint space:

Prediction error (nMSE)	0.80	0.50	0.001	—				(IVI)		
Iterations	19	17	5	4	-10				-	
Cost	2777	1810	192	192			(_) \		
Eucl. target distance (cm)	19.50	7.20	0.40	0.01	-20	10	20	30	40_cm	

5 – Adapting to nonstationary dynamics

Simulate systematic perturbances by virtual force fields: Analytic models cannot account for this, but the learned model can.

Adaption to constant uni-directional force field (switched on/off):

Learning and un-learning the influence force field can be accelerated by tuning LWPR's forgetting factor λ . Default is 0.999, we now use 0.950:

More complex example: Velocity-dependent force field.

	L	1					
.1		10 -	MI	0.1	 10	-	_

$$v = w_p \|\mathbf{q}_K - \mathbf{q}_{tar}\|^2 + w_v \|\dot{\mathbf{q}}_K\|^2 + w_e \sum_{k=0} \|\mathbf{u}_k\|^2 \Delta t$$

Basic idea of iLQG:

Simulate initial control sequence, linearize dynamics $f(\cdot)$ around resulting trajectory, solve local LQG problem for *deviations* $\delta \mathbf{u}_k$ and $\delta \mathbf{x}_k$ analytically. Update control sequence and repeat procedure until convergence.

3 – Incorporate learned dynamics

Learned model (LWPR) is **used** in simulated trials, and trained online during final trials on the real plant.

- Learned model can be pre-trained using motor babbling or a coarse analytic model
- LWPR is fully localised algorithm, local models learn independently — **incremental** training **without interference** problems
- **LWPR** features built-in dimensionality reduction by using Partial Least Squares within the local models
- Range of validity of local models ("receptive fields") can be automatically adjusted during training

6 – Scaling iLQG–LD: 6-DOF

Faithful model of DLR robot arm (w/o last joint): Reaching 3 targets

Left to right: Real DLR arm, toolbox simulation and targets, resulting trajectories in xy-view and xz-view.

Modified cost function only includes end-effector **position** (through forward kinematics) \rightarrow **iLQG** resolves redundancy implicitly. Simulated control-dependent noise yields lots of variance in joint-space trajectories \rightarrow irrelevant deviations are **not** corrected.

• Calculating derivatives of learned model is **much faster** than using, e.g., finite differences of a model based on Newton-Euler recursions \rightarrow **performance gain** especially for large number of DOF

References

Todorov & Li. A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems. Proceedings of the American Control Conference, 2005.

Vijayakumar, D'Souza & Schaal. Incremental online learning in high dimensions. Neural Computation 17, pp. 2602–2634, 2005.

Acknowledegments: This research is supported partially by the EC project SENSOPAC. Contact Author: Djordje Mitrovic (d.mitrovic@ed.ac.uk) for further details on this work.

Compare cost and accuracy: **iLQG–LD** (left) and **iLQG** (right)

target	running cost	pos. error (cm)	running cost	pos. error (cm)
(a)	$\textbf{18.32} \pm 0.55$	1.92 ± 1.03	$\textbf{18.50} \pm 0.13$	2.63 ± 1.63
(b)	$\textbf{18.65} \pm 1.61$	0.53 ± 0.20	$\textbf{18.77} \pm 0.25$	$\textbf{1.32}\pm0.69$
(c)	$\textbf{12.18} \pm 0.03$	$\textbf{2.00} \pm 1.02$	$\textbf{12.92}\pm0.04$	$\textbf{1.75} \pm 1.30$