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Abstract— This paper presents OpTaS, a task specification
Python library for Trajectory Optimization (TO) and Model
Predictive Control (MPC) in robotics. Both TO and MPC
are increasingly receiving interest in optimal control and in
particular handling dynamic environments. While a flurry
of software libraries exists to handle such problems, they
either provide interfaces that are limited to a specific problem
formulation (e.g. TracIK, CHOMP), or are large and stati-
cally specify the problem in configuration files (e.g. EXOTica,
eTaSL). OpTaS, on the other hand, allows a user to specify
custom nonlinear constrained problem formulations in a single
Python script allowing the controller parameters to be modified
during execution. The library provides interface to several open
source and commercial solvers (e.g. IPOPT, SNOPT, KNITRO,
SciPy) to facilitate integration with established workflows in
robotics. Further benefits of OpTaS are highlighted through
a thorough comparison with common libraries. An additional
key advantage of OpTaS is the ability to define optimal control
tasks in the joint-space, task-space, or indeed simultaneously.
The code for OpTaS is easily installed via pip, and the source
code with examples can be found at github.com/cmower/optas.

I. INTRODUCTION

High-dimensional motion planning and control are es-
sential for complex manipulation tasks in unstructured and
dynamic environments, such as placing objects on shelves or
surgical procedures like pedicle screw fixation (see Fig. 1).
The planner and controller must account for bi-manual coor-
dination, contact constraints, and robustness to disturbances.
Efficient motion planning and fast controllers enable robots
to perform these tasks while considering motion constraints,
system dynamics, and changing task objectives.

Sampling-based planners [1] are effective but usually need
significant post-processing, such as trajectory smoothing.
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Fig. 1: Examples of contact-rich manipulation including (a) a
robot placing an item on a shelf, and (b) a human interacting
with a robot during a drilling task for pedicle screw fixation.
Image credit: University Hospital Balgrist, Daniel Hager
Photography & Film GmbH.

Optimal planners like RRT∗, that are provably asymptotically
optimal, are promising but inefficient for solving high-
dimensional problems [2].

Gradient-based trajectory optimization (TO) is a key ap-
proach in optimal control and motion planning in robotics, as
seen in recent works such as [3], [4], [5], [6], [7], [8], [9],
[10]. Optimization starts with an initialization and finds a
locally optimal state and control commands subject to motion
constraints and system dynamics (i.e. equations of motion).

Several open-source and commercial optimization solvers,
such as IPOPT [11], KNITRO [12], and SNOPT [13], are
reliable for solving TO problems. However, there is a lack
of libraries that allow for fast development and prototyping
of optimization-based approaches for multi-robot setups that
easily interface with these solvers, despite the success of
optimization approaches in literature and motion planning
frameworks like MoveIt [14].

This paper proposes OpTaS, a user-friendly task-
specification library for rapid development and deployment
of nonlinear optimization-based planning and control ap-
proaches, including Model Predictive Control (MPC). OpTaS
leverages the symbolic framework provided by CasADi [15],
enabling function derivatives to an arbitrary order, which is
crucial for solvers like SNOPT that require Jacobian and
Hessian of the objective function and constraints.

A. Related work

In this section, we review popular optimization solvers and
their interfaces, similar works to our proposed library, and
summarize key differences. Table I provides a summary of
alternatives and how they compare to OpTaS.

https://github.com/cmower/optas
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Fig. 2: System overview for the proposed OpTaS library. Red highlights the main features of the proposed library. Green
shows configuration parameter input. Grey shows third-party frameworks/libraries. Finally, the image in the top-right corner
shows integration with the ROS-PyBullet Interface [16].

Several open-source and commercial optimization solvers
are available. For quadratic programming, OSQP provides
a general-purpose solver based on the alternating direction
method of multipliers [17]. Alternatively, CVXOPT uses a
custom interior-point solver [18]. IPOPT is an interior-point
solver for constrained nonlinear optimization. SNOPT has an
interface to an SQP algorithm [13], while KNITRO solves
general mixed-integer programs [12]. Note that SNOPT and
KNITRO are proprietary.

Optimization solvers such as OSQP, CVXOPT, IPOPT,
SNOPT, and KNITRO are often implemented in low-level
programming languages such as C, C++, or FORTRAN, but
there are also many interfaces via higher-level languages like
Python to make implementation easier. SciPy’s optimize
module provides interfaces for low-level routines such as
conjugate gradient and the BFGS algorithm [19], the Simplex
method [20], COBYLA [21], and SLSQP [22]. Function
gradients are necessary for many optimization-based meth-
ods. Automatic differentiation is implemented in various
popular software packages such as JAX [23], PyTorch [24],
and CasADi [15]. We chose CasADi because it is readily
integrated with common solvers for optimal control, whereas
JAX and PyTorch are not currently integrated with con-
strained nonlinear optimization solvers.

Similar packages to our proposed library are as follows:
MoveIt [14] provides specific IK/planning formulations with
interfaces to particular solvers; eTaSL [25] supports cus-
tom task specifications but only for problems formulated
as quadratic programs; CASCLIK [26] uses CasADi for
constraint-based inverse kinematic controllers but only al-
lows optimization in the joint-space; and EXOTica [27]
allows the user to specify a problem formulation from an
XML file however requires the user to supply gradients
analytically (otherwise the gradients are estimated using the

TABLE I: Comparison of OpTaS with common alternatives.

Languages End-pose Traj. MPC Solver AutoDiff ROS Re-form
OpTaS Python 3 3 3 QP/NLP 3 3 3
EXOTica Python/C++ 3 3 7 QP/NLP 7 3 3
MoveIt Python/C++ 3 3 7 QP 7 3 7
TracIK Python/C++ 3 7 7 QP 7 3 7
RBDL Python/C++ 3 7 7 QP 7 7 7

eTaSL C++ 3 7 7 QP 3 71 3
OpenRAVE Python 7 3 7 QP 7 3 7

finite differences method that can be less efficient and can be
affected by roundoff errors [19]). Our framework supports
joint- and task-space optimization for multiple robots in a
single formulation, and leverages CasADi for automatic dif-
ferentiation. Table I summarizes the key differences between
these packages and OpTaS.

B. Contributions

This paper makes the following contributions:
• A task-specification Python library for rapid devel-

opment/deployment of TO approaches for multi-robot
setups.

• Given a URDF file, modeling of the robot kinematics
to arbitrary derivative order.

• An interface that allows a user to easily reformulate
an optimal control problem, and define parameterized
constraints for online modification of the optimization
problem.

• Analysis comparing the libraries performance (i.e.
solver convergence, solution quality) versus existing
packages. Further demonstrations highlight the ease in
which nonlinear constrained optimization problems can
be deployed in realistic settings.

1Enabled with external pluggins.



II. PROBLEM FORMULATION

We can write an trajectory optimization problem as

min
x,u

cost(x, u;T ) s.t. ẋ = f(x, u), x ∈ X, u ∈ U (1)

where t denotes time, and x = x(t) ∈ Rnx and u =
u(t) ∈ Rnu denote states and controls, T is the time-
horizon, the scalar cost : Rnx × Rnu → R function models
task objectives (typically a weighted sum of terms), the dot
notation represents a derivative with respect to time t (i.e.
ẋ ≡ dx

dt ), f is the system dynamics (equations of motion)
represented by several equality constraints, and X ⊆ Rnx

and U ⊆ Rnu are feasible regions for the states and controls
respectively (modeled by a set of equality and inequality
constraints). Optimal control finds optimal (with respect to
the cost function) states and controls for a discrete set
of time steps. Typically numerical methods (e.g. Euler or
Runge-Kutta) are used to estimate the integral of the system
dynamics over the time horizon [28]. Given an initialization
xinit, uinit, a locally optimal trajectory x∗, u∗ is found by
solving (1).

In Sec.I, we discussed optimization-based approaches for
planning and control, which can be formulated under a TO
problem as in (1). Our goal is to provide a library that
enables quick development and prototyping of constrained
nonlinear TO for multi-robot problems, with support for
both IK and task-space TO. The library automates common
steps such as transcription that transforms the problems task
specification into a form accepted by optimization solver
routines. Furthermore, many works in practice require the
ability to adapt constraints dynamically to handle changes
in the environment (e.g. MPC). This motivates a constraint
parameterization feature.

III. PROPOSED FRAMEWORK

Here, we present features of the proposed library (Fig. 2),
implemented in Python. Python was chosen for its simplicity
for beginners, versatility, and support for fast prototyping.

A. Robot model

The RobotModel provides kinematic modeling and
specifies time derivative orders needed for the optimization
problem. It can be instantiated with a URDF filename, string,
or xacro filename. Additional base frames and end-effector
links can be added programmatically, which is helpful when
optimizing multiple robots and localizing their base frames
within a global coordinate frame. Several robot model objects
can be initialized to handle multi-robot setups (e.g. Fig. 3).

The RobotModel class provides access to data such as
the number of degrees of freedom, actuated joint names, and
limits. It also offers methods to compute forward kinematics
and geometric Jacobian in any reference frame. Various
kinematics modeling methods are provided, including the
4 × 4 homogeneous transformation matrix, rotational rep-
resentations (e.g. Euler angles, quaternions), and geomet-
ric/analytical Jacobian. Each method requires a joint state,
which can be supplied as a Python list, NumPy array, or
CasADi symbolic array.

Fig. 3: Dual arm robot example. The two KUKA LWR
arms collaborate to pick up a box. The plan is found by a
single trajectory optimization problem. See the example/
directory in the main OpTaS repository.

B. Task model

Some works optimize robot motion in the task-space and
compute the IK as a secondary step, e.g. [8], [9]. The
TaskModel represents any arbitrary trajectory, e.g. a 3D
position trajectory. Time derivatives can also be specified
similar to the RobotModel.

C. Optimization builder

The OptimizationBuilder class simplifies the pro-
cess of setting up a TO problem and building an opti-
mization problem model. The development cycle involves
specifying the task (i.e. decision variables, parameters, cost
function, and constraints) using intuitive syntax and sym-
bolic variables. Several robot and task models (as described
previously) can be passed to the builder that creates the
corresponding decision variables for the states (e.g. positions,
velocities, etc.). The builder then creates an optimization
problem class that interfaces with several solvers.

1) Optimization problem model: The optimization builder
class allows the user to define a TO problem in a user-
friendly syntax. However, transcribing the problem into a
form that can be solved by off-the-shelf solvers is not
straightforward. The build method of the optimization
builder class produces an optimization problem model en-
abling us to interface with multiple solvers.

The most general problem modeled by OpTaS is given by

X∗ = argmin
X

f(X;P ) (2a)

s.t.
k(X;P ) =M(P )X + c(P ) ≥ 0 (2b)
a(X;P ) = A(P )X + b(P ) = 0 (2c)
g(X;P ) ≥ 0 (2d)
h(X;P ) = 0 (2e)

where X = [vec(x)T , vec(u)T ]T ∈ RnX is the decision
variable array, vec(·) is a function that returns the input m-
by-n array as a mn-by-1 vector, P ∈ RnP is the vectorized
parameters, f : RnX → R is the objective function, k :



Fig. 4: Joint state alignment with time. The derivs align
flag specifies how the time derivatives should be aligned.

RnX → Rnk are linear inequality constraints, a : RnX →
Rna are linear equality constraints, g : RnX → Rng are
nonlinear inequality constraints, and h : RnX → Rnh

are nonlinear equality constraints. The decision variables X
represent robot and task model states and any other variables
specified by the user stacked into a single vector. Similarly
for the parameters and constraints. Vectorization is made
possible by the SXContainer data structure implemented
in the sx container module. We can automatically tran-
scribe the TO problem specified in (1) into the form (2) using
this data structure.

Not all task specifications require defining all the functions
in (2). The choice of solver for (2) depends on various
factors, such as the structure of the objective function and
constraints, time budget, and desired accuracy. For instance,
a solver that only handles linear constraints (e.g. OSQP [17])
is not suitable for problems with nonlinear objective func-
tions and constraints. The optimization builder automatically
identifies the problem type and presents relevant solvers to
the user. Available problem types include problems with
either quadratic or nonlinear cost functions and those that
are unconstrained, linearly constrained, or constrained by
nonlinear functions.

2) Initialization: Upon initialization of the optimization
builder class we can specify (i) the number of time steps
in the trajectory, (ii) several robot and task models (given a
unique name for each), (iii) the joint states (positions and
required time-derivatives) that integrate the decision variable
array, (iv) task-space labels, dimensions, and derivatives to
also integrate the decision variable array, and (v) a Boolean
describing the alignment of the derivatives (Fig. 4).

The alignment of time-derivatives can be specified in
two ways. Each derivative is aligned with its corresponding
state (alignement), or otherwise. This is specified by the
derivs align flag in the optimization builder interface
and shown diagramatically in Fig. 4.

3) Decision variables and parameters: Decision variables
for joint- and task-space trajectories are labeled and defined
by the optimization builder interface. They can be retrieved
using the get model state method, which requires spec-
ifying a robot or task name, time index, and derivative
order. Extra decision variables can be added using the
add decision variables method with a unique name
and dimension. The add parameter method is used to
specify problem parameters (e.g. safe distances), requiring a

unique name and dimension.
4) Cost and constraint functions: The cost function in (1)

consists of multiple terms

cost(x, u;T ) =
∑
i

ci(x, u;T ) (3)

where ci : Rnx×Rnu → R is an individual term modeling a
particular sub-task. For example, define c0 = ‖ψ(xT )−ψ∗‖2
and c1 = λ

∫ T

0
‖u‖2 dt (discretization is implicit in this

formulation) where ψ : Rnx → R3 is a function for
the end-effector position (provided by the robot model, see
Sec. III-A), ψ∗ ∈ R3 is a goal position, and 0 < λ ∈
R is a weight representing the relative importance of c1.
The c0 term models ideal final states, and c1 encourages
control signals with minimal magnitudes (e.g. minimize joint
velocities). Each cost term is added to the problem using the
add cost term method; the build sequence ensures the
terms are summed as the objective function.

Constraints can be added to the optimization
problem using add equality constraint and
add leq inequality constraint for equality and
inequality constraints respectively. The library differentiates
between linear and nonlinear constraints by first checking
if they are linear with respect to the decision variables.
Additionally, OpTaS provides pre-implemented methods for
common constraints, such as joint position/velocity limits
and time-integration of the system dynamics f , enabling
integration of velocities to positions.

D. Solver interface

OpTaS can interface with solvers via CasADi and also
several others (both open-source and commercial) using
the Solver class. Available solvers include IPOPT [11],
SNOPT [13], KNITRO [12], Gurobi [29], the Scipy mini-
mize method [30], OSQP [17], and CVXOPT [18]

1) Initialization of solver: When initializing the solver,
variables are set up and the optimization problem object
becomes a class attribute. The user then calls the setup
method, which acts as an interface to the chosen solver’s
initialization. This method sets up the solver’s interface and
passes relevant solver parameters.

2) Resetting the interface: The solver may be called mul-
tiple times as a controller, requiring the problem parameters
and initial seed to be reset. To reset the initial seed and
problem parameters, the user calls reset initial seed
and reset parameters, respectively. The required vec-
torization is handled internally by the solver using the
SXContainer data structure so that the user can specify
the variables/parameters in the dimensions that are most
intuitive to them (e.g. a position trajectory with a 3-by-n
NumPy array); any unspecified values default to zero. This
is particularly useful for feedback controllers or controllers
with parameterized constraints, such as obstacles. The nam-
ing conventions for task/robot models are chosen such that
warm-starting the optimization with the previous solution is
easy; i.e. the user simply passes the solution object returned
by the solve method.



1 import optas
2

3 T = 100 # number of time steps in trajectory
4 tip = "ee_name" # name of end-effector in URDF
5 urdf = '/path/to/robot.urdf'
6 r = optas.RobotModel(urdf, time_derivs=[0, 1])
7 n = r.get_name()
8 b = optas.OptimizationBuilder(T, robots=[r])
9

10 qT = b.get_model_state(n, t=-1) # final state
11 pg = b.add_parameter("pg", 3) # goal pos.
12 qc = b.add_parameter("qc", r.ndof) # init q
13 o = b.add_parameter("o", 3) # obstacle pos.
14 s = b.add_parameter("s") # obstacle radius
15 dt = b.add_parameter("dt") # time step
16

17 p = r.get_global_link_position(tip, qT) # FK
18 b.add_cost_term("goal", optas.sumsqr(p - pg))
19 b.integrate_model_states(
20 n, time_deriv=1, dt=dt)
21 b.initial_configuration(n, qc)
22 for t in range(T):
23 qt = b.get_model_state(n, t=t)
24 pt = r.get_global_link_position(tip, qt)
25 b.add_geq_inequality_constraint(
26 f"obs_avoid_{t}",
27 optas.sumsqr(pt - o), s**2)
28

29 solver = optas.CasADiSolver(
30 b.build()).setup("ipopt")

Fig. 5: Example code for TO described in Section IV.

3) Solving an optimization problem: The solve method
passes the problem to the solver and collects the resulting
data, which is transformed into the state trajectory for each
robot/task. The interpolate method can be used to
interpolate trajectories across time, and the stats method
retrieves optimization statistics such as the number of itera-
tions – exactly what is returned is specific to each solver.

4) Extensible solver interface: The solver interface is
designed for easy extensibility, allowing for integration of
additional solvers. To include a new solver, the user cre-
ates a sub-class that inherits from the Solver class and
implements three methods: (i) setup for initializing the
solver interface, (ii) solve to call the solver and return
the optimized variable X∗, and (iii) stats to return any
solver statistics.

E. Additional features

Integration with ROS [31] is provided via the dedicated
optas ros repository2. Additionally, OpTaS can interfaced
with the ROS-PyBullet Interface [16].

In addition, we provide a partial port of the
spatialmath library [32] supporting CasADi variables.
The user can manipulate objects such as homogeneous
transformation matrices, quaternions, Euler angles, etc. with
symbolic variables.

IV. CODE EXAMPLE

This section demonstrates how easy it is to set up a
TO problem using the example of finding an end-effector
position trajectory. While we use position as an example,

2github.com/cmower/optas ros

(a)

(b)

Fig. 6: Comparison of two end-effector task-space trajectory
formulations. (a) Displays start (left) and final configurations
for each approach (right). (b) Shows the 2D end-effector
position trajectory plot.

goals and constraints can also be set for other dimensions,
including orientation

Given a serial link manipulator, the objective is to find
a collision-free plan from starting configuration qc to a
goal end-effector position pg over a time horizon of T . A
spherical collision is represented by position o and radius r.
The robot’s configuration at time t is denoted as qt and its
velocities q̇t, which act as controls.

The cost function, ‖p(qT ) − pg‖2, is minimized subject
to constraints: initial configuration q0 = qc, joint limits
q− ≤ qt ≤ q+, and obstacle avoidance ‖p(qt) − o‖2 ≥
r2. The system dynamics are represented by equality con-
straints qt+1 = qt + δtq̇t, which can be specified using
the built-in method integrate model states in the
OptimizationBuilder object. Fig. 5 shows the code
for solving this TO problem.

V. EXPERIMENTS

This section presents our experiments and results com-
paring OpTaS with alternative libraries and highlighting its
beneficial features. We compare OpTaS against TracIK [33],
which solves a specific IK problem formulation, and EXOT-
ica [27], a library that offers similar functionality as OpTaS
but, as mentioned in Sec. I-A, lacks automatic differentiation
integration (requiring analytical derivative supply or finite
differencing approximation).

A. Optimization along custom dimensions

TracIK [33], a commonly used solver, requires a 6D pose
as the task-space goal. While suitable for various robotics
problems (e.g. pick-and-place), optimizing every task-space
dimension may be unnecessary (e.g. spraying applications do
not require roll angular optimization). Moreover, optimizing
more dimensions than necessary can be disadvantageous.

https://github.com/cmower/optas_ros


Fig. 7: The Kawada Nextage robot performing non-
prehensile manipulation by pushing an object along a 2D
plane running OpTaS. The left image shows the maximum
reach when optimizing the full 6D end-effector pose, whereas
the right image shows that the robot can reach further by
optimizing only in the 2D plane.

OpTaS allows users to optimize or ignore any desired
joint- or task-space dimension, which can have advantages
such as expanding the robot’s workspace. For instance, in a
non-prehensile pushing task on a plane (Fig. 7), optimizing
the full 6D pose may be suboptimal as the task is two-
dimensional. By optimizing in the 2D plane and imposing
boundary constraints on the third linear spatial dimension,
the robot’s workspace can be increased.

We used OpTaS to set up a tracking experiment with a
simulated Kuka LWR robot arm to compare two cases: (i)
optimizing the full 6D pose and (ii) optimizing 2D linear
position. The task was to move the end-effector with a
constant magnitude and direction velocity in the 2D plane.
The initial configuration is shown in Fig.6a (left), and the
end configurations for each approach are shown in Fig.6a
(right), with the end-effector trajectories displayed in Fig. 6b.
The 2D optimization problem achieved a greater distance,
demonstrating an increased robot workspace. OpTaS was
also setup on the Kawada Nextage robot and similarly we
demonstration the improved workspace in Figure 7.

B. Performance comparison

In this section, we compare OpTaS to alternatives by
formulating similar problems. We model the same problem
used in TracIK [33] and EXOTica [27], using the Scipy
SLSQP solver [22]. With the Kuka LWR robot arm, we setup
a task where the robot tracks a figure-of-eight motion in task-
space and record the CPU time for the solver duration at each
control loop cycle (Fig. 8). TracIK is the fastest (0.049 ±
0.035ms), OpTaS is faster than EXOTica (2.608± 0.239ms
and 3.694± 0.300ms, respectively).

In a second experiment, we compared OpTaS against
EXOTica with an additional manipulability maximization
cost term [34]. Using the same setup as before, the results
shown in Fig. 9b indicate that OpTaS (2.650 ± 0.270ms)
outperforms EXOTica (7.640±1.404ms). EXOTica requires
the user to supply analytical gradients for sub-tasks, and
when analytical gradients are not available for a task such
as manipulability maximization, it resorts to using finite
difference method which can be slow to compute, likely
contributing to the difference in performance.

Fig. 8: Figure-of-eight trajectory tracked by the Kuka LWR.

(a)

(b)

Fig. 9: Solver duration comparisons for figure of eight
motion. (a) Compares an IK tracking approach described
in Section V, (b) is a similar comparison that includes a
maximization term for manipulability. Green is OpTaS, red
is TracIK, and blue is EXOTica.

VI. CONCLUSIONS

This paper introduced OpTaS, a Python library for con-
strained nonlinear program optimization for TO and MPC.
OpTaS allows users to set up custom problem formula-
tions and has been demonstrated to perform well against
alternatives. Parameterization enables easy implementation
of feedback controllers, motion planners, and benchmarking
problem formulations and solvers.

We hope OpTaS will be used by researchers, students,
and industry to facilitate the development of control/planning
algorithms. The code is easily installed via pip and
has been made open-source under the Apache 2 license:
https://github.com/cmower/optas. Several examples are in-
cluded such as optimization-based planning, differential in-
verse kinematics, multi-robot optimization, and MPC.

https://github.com/cmower/optas
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