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Abstract—This paper explores a passive control strategy with
variable stiffness actuation for swing movements. We consider
brachiation as an example of a highly dynamic task which re-
quires exploitation of gravity in an efficient manner for successful
task execution. First, we present our passive control strategy
considering a pendulum with variable stiffness actuation. Then,
we formulate the problem based an optimal control framework
with temporal optimization in order to simultaneously find an
appropriate stiffness profile and movement duration such that
the resultant movement will be able to exploit the passive
dynamics of the robot. Finally, numerical evaluations on a two-
link brachiating robot with a variable stiffness actuator (VSA)
model are provided to demonstrate the effectiveness of our
approach under different task requirements, modelling errors
and switching in the robot dynamics. In addition, we discuss the
issue of task description in terms of the choice of cost function
for successful task execution in optimal control.

I. I NTRODUCTION

In recent years, there has been growing effort in the de-
velopment of variable stiffness actuators. Various designs of
actuators with mechanically adjustable stiffness/compliance
composed of passive elastic elements such as springs have
been proposed [4, 6, 11, 12, 14, 15]. In contrast to conventional
stiff actuators, one of the motivations to develop variable
stiffness actuators is that such actuators are expected to
have desirable properties such as compliant actuation, energy
storage capability with potential applications in human-robot
interaction and improvements of task performance in dynamic
tasks.

This paper explores a control strategy for exploiting passive
dynamics in tasks involving swing movements with variable
stiffness actuation based on optimal control. Despite potential
benefits of variable stiffness joints, finding an appropriate
control strategy to fully exploit the capabilities of variable
stiffness actuators (VSAs) is challenging due to the increased
complexity of mechanical properties and the number of control
variables. Taking an optimal control approach, recent studies
in [3, 8, 10] have investigated the benefits of variable stiffness
actuation such as energy storage in explosive movements from
a viewpoint of performance improvement. Braun et al. [3]
have demonstrated such benefits of VSAs by simultaneously
optimizing time-varying torque and stiffness profiles of the
actuator in a ball throwing task. In [8, 10], an optimal control
problem of maximizing link velocity with variable stiffness
actuator models has been investigated. It is shown that much
larger link velocity can be achieved than that of the motor
in the VSA with the help of appropriate stiffness adjustment

during a hitting movement. In a similar problem, Hondo and
Mizuuchi [13] have discussed the issue of determining the
inertia parameter and spring constant in the design of series
elastic actuators to increase the peak velocity. In robot running,
Karssen and Wisse [16] have presented numerical studies to
demonstrate that an optimized nonlinear leg stiffness profile
could improve robustness against disturbances.

In this paper, we focus on the passive control strategy
with variable stiffness actuation for swing movements in a
brachiation task. Indeed, the importance of exploitation of the
intrinsic passive dynamics for efficient actuation and control
has been discussed in the study of passive dynamic walking
where biped robots with no actuation or minimal actuation
can exhibit human-like natural walking behavior [5]. In this
study, we consider brachiation as an example of dynamic
task involving swing movement. Brachiation is an interesting
form of locomotion of an ape swinging from handhold to
handhold like a pendulum [7, 29] which requires explicit
exploitation of the passive dynamics with the help of gravity
to achieve the task. From a control point of view, designing
a brachiating controller is a challenging problem since the
system is underactuated, i.e., there is no actuation at the
gripper. Efforts have been made to develop a control law for a
class of underactuated systems from a control theoretic view1,
e.g., [18, 19, 22, 32].

In our previous study [23], we have proposed a method
of describing the task using a dynamical system based on a
nonlinear control approach, and derived a nonlinear control
law for a joint torque controlled two-link brachiating robot.
The control strategy in [23] uses an active cancellation of the
plant dynamics using input-output linearization to force the
robot to mimic the specified pendulum-like motion described
in terms of target dynamics. In contrast, Gomes and Ruina [9]
studied brachiation with zero-energy-cost motions using only
passive dynamics of the body. They sought numerical solutions
for the initial conditions which lead to periodically continuous
locomotion without any joint torques. By extending the (unsta-
ble) fixed point solutions in unactuated horizontal brachiation
found in [9], Rosa et al. [28] numerically studied open-loop
stable (unactuated downhill and powered uphill) brachiation of
a two-link model from a viewpoint of hybrid systems control
including switching and discontinuous transitions.

1Much of the related work has focused on the motion planning of underac-
tuated manipulators in a horizontal plane (not necessarily under the influence
of the gravity). In such a case, dynamic coupling of link inertia is exploited
rather than the passive dynamics due to gravity.
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Motivated by the work in [9], our goal in this study is
to demonstrate that highly dynamic tasks such as brachiation
can be achieved by fully exploiting passive dynamics with
simultaneous stiffness and temporal optimization. In our recent
work [24], effectiveness of temporal optimization and stiff-
ness optimization in periodic movements has been discussed.
However, temporal optimization and stiffness optimization are
treated separately and a rather simplified, ideal actuator models
were used in the evaluation. In this study, numerical evalua-
tions of our approach on a two-link brachiating robot with
a realistic MACCEPA (Mechanically Adjustable Compliance
and Controllable Equilibrium Position Actuator) VSA model
[11] (see motivation for this particular VSA in Section III-B)
are provided to show the effectiveness of our approach under
different task requirements, modelling errors and variations of
the robot dynamics. Furthermore, we also discuss the issue of
and effect of task encoding via an appropriate choice of the
cost function for successful task execution.

II. PASSIVE CONTROL STRATEGY IN SWING MOVEMENT

WITH VARIABLE STIFFNESSACTUATION

Our goal in this paper is to devise a control strategy to
achieve the desired swing maneuver in brachiation by exploit-
ing natural dynamics of the system. To begin with, we discuss
our approaches of implementing a passive control strategy,
considering a pendulum with variable stiffness actuation.

A natural and desirable strategy would be to make good
use of gravity by making the joints passive and compliant. For
example, in walking, unlike many high gain position controlled
biped robots with stiff joints, humans seem to let the lower
leg swing freely by relaxing the muscles controlling the knee
joint during the swing phase and increase stiffness only when
necessary. In fact, stiffness modulation is observed during a
walking cycle in a cat locomotion study2 [1].

Consider the dynamics of a simplified single-link pendulum
under the influence of gravity. If we consider an idealized
VSA model of the formτ = −k(q− qm), whereq is the joint
angle,τ is the joint torque,k is the stiffness andqm is the
equilibrium position of the elastic actuator, then the dynamics
can be written as:

ml2q̈ +mgl sin q = τ = −k(q − qm) (1)

wherem is the mass,l is the length andg is the gravitational
constant. In this idealized VSA model, we assume thatk and
qm are the control variables. From a viewpoint of position
control, one way of looking at this system is as a manipulator
with a flexible (elastic) joint, where we solve a tracking control
problem [31]. Recently, Palli et al. [25], proposed a tracking
control algorithm for such a flexible joint manipulator with
variable stiffness actuation to achieve asymptotic tracking to
the desired joint and stiffness trajectories based on input-
output linearization, effectively an active cancellationof the
intrinsic robot dynamics. Note that the main focus of [25] is

2To our knowledge, there are a large number of studies of stretch reflexes
modulation in human walking, however, something that specifically addresses
stiffness modulation is very limited. In human arm cyclic movement, Bennett
et al. [2] reported time-varying stiffness modulation in the elbow joint.

the tracking control of thegiven joint and stiffness trajectories,
and the problem of generating such desired trajectories fora
given specific task is not addressed.

On the other hand, if we rearrange the linearized dynamics
of (1) (sin q ≈ q) as

ml2q̈ + (mgl + k)q = v (2)

wherev = kqm, another view of the control problem could
be that varying the stiffness of the actuatork in the second
term of the left hand side effectively changes the dynamics
property, e.g., the natural frequency of the pendulum. From
this perspective, the control problem can be framed as find-
ing an appropriate (preferably small) stiffness profilek to
modulate the system dynamics (only when necessary) and
compute the virtual equilibrium trajectoryqm [30] to fulfill
the specified task requirement while maximally exploiting the
natural dynamics.

In a realistic situation, it is not straightforward to compute a
control command for the actuator to realize such an idea due to
the complexity of the system dynamics, actuator mechanisms,
the requirement of coordination of multiple degrees of freedom
and redundancy in actuation. Next, we exploit the framework
of optimal control and spatiotemporal optimization of variable
stiffness actuation to find appropriate control commands to
implement the brachiation task.

III. PROBLEM FORMULATION

A. Robot Dynamics

The equation of motion of the two-link brachiating robot
shown in Fig. 1 takes the standard form of rigid body dynamics
where only the second joint has actuation:

M(q)q̈+C(q, q̇)q̇+ g(q) +Dq̇ =

[

0
τ

]

(3)

whereq = [ q1, q2 ]T is the joint angle vector,M is the
inertia matrix,C is the Coriolis term,g is the gravity vector,
D is the viscous damping matrix, andτ is the joint torque
acting on the second joint.

B. Variable Stiffness Actuation

We consider a MACCEPA model [11] as our VSA imple-
mentation of choice. MACCEPA is one of the designs of
mechanically adjustable compliant actuators with a passive
elastic element (see Fig. 1). This actuator design has the de-
sirable characteristics that the joint can be very compliant and
mechanically passive/back-drivable: this allows free swinging
with a large range of movement by relaxing the spring, highly
suitable for the brachiation task we consider. MACCEPA is
equipped with two position controlled servo motors,qm1 and
qm2, each of which controls the equilibrium position and
the spring pre-tension, respectively. The parameters of the
robot we use in this study (Fig. 1(c)) are based on a 2-link
MACCEPA joint (Fig. 1(b)) constructed in our lab [3].

The joint torque for this actuator model is given by

τ=κ sin(qm1−q)BC

(

1+
rdqm2 − (C −B)

√

B2 + C2−2BC cos (qm1−q)

)

(4)
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(a) Brachiating robot model with VSA (b) 2-link MACCEPA joint (c) Model parameters

Robot parameters i=1 i=2

Mass mi (kg) 0.42 0.23

Moment of inertia Ii (kgm
2) 0.0022 0.0017

Link length li (m) 0.25 0.25

COM location lci (m) 0.135 0.0983

Viscous friction di (Nm/s) 0.01 0.01

MACCEPA parameters value

Spring constant κ (N/m) 771

Lever length B (m) 0.03

Pin displacement C (m) 0.0125

Drum radius rd (m) 0.01

Fig. 1. Model of a two-link brachiating robot with a MACCEPA variable stiffness actuator.

and the joint stiffness can be computed as

k = −∂τ

∂q
= κ cos(α)BC

(

1 +
β

γ

)

− κ sin2(α)B2C2β

γ3
(5)

where κ is the spring constant,rd is the drum radius,
α = qm1 − q, β = rdqm2 − (C − B) and γ =
√

B2 + C2 − 2BC cos (qm1 − q) (see Fig. 1(a) and (c) for
the definition of the model parameters and variables).

The spring tension is given by

F = κ(l − l0) (6)

where l =
√

B2 + C2 − 2BC cos(qm1 − q) + rdqm2 is the
current spring length andl0 = C − B is the spring length at
rest. The joint torque equation (4) also can be rearranged in
terms of the moment arm and the spring tension as

τ =
BC sin(qm1 − q)

γ
F. (7)

Note that MACCEPA has a relatively simple configuration in
terms of actuator design compared to other VSAs, however, the
torque and stiffness relationships in (4) and (5) are dependent
on the current joint angle and two servo motor angles in a
complicated manner and its control is not straightforward.

In addition, we include realistic position controlled servo
motor dynamics, approximated by a second order system with
a PD feedback control

q̈mi + 2aiq̇mi + a2i (qmi − ui) = 0, (i = 1, 2) (8)

whereui is the motor position command,ai determines the
bandwidth of the actuator and the range of the servo motors
are limited asqmi,min ≤ qmi ≤ qmi,max andui,min ≤ ui ≤
ui,max [3]. In this study, we useai = 50.

C. Augmented Plant Dynamics

The plant dynamics composed of the robot dynamics (3)
and the servo motor dynamics (8) can now be formulated as

ẋ = f(x,u) (9)

where

f=











x2

M−1(x1)

(

−C(x1,x2)x2−g(x1)−Dẋ2+

[

0
τ(x1,x3)

])

x4

−a2x3 − 2ax4 + a2u











(10)
x = [ x1, x2, x3, x4 ]T = [ q, q̇, qm, q̇m ]T ∈ R

8,
q = [ q1, q2 ]T , qm = [ qm1, qm2 ]T andu = [ u1, u2 ]T .
Note thata in (10) denotesa = diag{ai} anda2 is defined
asa2 = diag{a2i } for notational convenience.

D. Optimal Feedback Control with Temporal Optimization

For plant dynamics

ẋ = f(x,u), (11)

the objective of optimal control [33] is to find a control law

u∗ = u(x, t) (12)

which minimizes the cost function

J = Φ(x(T )) +

∫ T

0

h(x(t),u(t))dt (13)

for a given movement durationT , where Φ(x(T )) is the
terminal cost andh(x(t),u(t)) is the running cost. We employ
the iterative linear quadratic Gaussian (ILQG) algorithm [17]
to obtain a locally optimal feedback control law

u(x, t) = uopt(t) + L(t)
(

x(t)− xopt(t)
)

. (14)

In addition to obtaining an optimal control law, we simultane-
ously optimize the movement durationT using the temporal
optimization algorithm proposed in [27]. In [27], a mapping
β(t) from the real timet to a canonical timet′

t′ =

∫ t

0

1

β(s)
ds, (15)

is introduced andβ(t) is optimized to yield the optimal
movement durationT . In this study, we simplify the temporal



optimization algorithm by discretizing (15) with an assumption
that β(t) is constant during the movement as

∆t′ =
1

β
∆t. (16)

By updatingβ using gradient descent

βnew = β − η∇βJ (17)

whereη > 0 is a learning rate, we obtain the movement dura-
tion T ′ = 1

β
T whereT = N∆t (N is the number of discrete

time steps). In the complete optimization procedure, ILQG and
the update ofβ in (17) are iterated in an EM (Expectation-
Maximization)-like manner until convergence to obtain the
final optimal feedback control law (14) and the associated
movement durationT ∗. Depending on the task objective, it
is further possible to augment the cost by including the time
explicitly as

J ′ = J + wTT (18)

whereJ is the cost (13) andwT is the weight on the time
cost, which determines trade-off between the original costJ
and movement durationT .

IV. EVALUATIONS 3

A. Optimization Results in Brachiation Task

In this paper, we consider the task of swing locomotion from
handhold to handhold on a ladder. and swinging-up from the
suspended posture to catch the target bar. Motivated by the
discussions on our passive control strategy in Section II, we
consider the following cost function to encode the task (the
specific reason will be explained below)

J=(y(T )−y∗)TQT (y(T )−y∗)+

∫ T

0

(

uTR1u+R2F
2
)

dt

(19)
wherey = [ r, ṙ ]T ∈ R

4 are the position and the velocity
of the gripper in the Cartesian coordinates,y∗ is the target
values when reaching the targety∗ = [ r∗, 0 ]T and F is
the spring tension in the VSA given in (6). This objective
function is designed in order to reach the target located atr∗

at the specified timeT while minimizing the spring tensionF
in the VSA. Note that the main component in the running cost
is to minimize the spring tensionF by the second term while
the first termuTR1u is added for regularization with a small
choice of the weights inR1. In practice, this is necessary since
F is a function of the state and ILQG requires a control cost
in its formulation to compute the optimal control law.

Notice that the actuator torque (7) can be expressed in the
form

τ = −F sin(q − qm1)/γ
′ (20)

where γ′ =
√

B2 + C2 − 2BC cos (qm1 − q)/BC. In this
equation (20), it can be conceived thatF has a similar role to
the stiffness parameterk as in the simplified actuator model

τ = −k(q − qm). (21)

3A video clip of summarizing the results is available at
http://goo.gl/iYrFr

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0 Target

robot movement with spring tension cost

(a) Movement of the robot with optimized durationT = 0.607 (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−2

0

2

jo
in

t a
ng

le
s 

(r
ad

)

joint angles

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−2

0

2

time (sec)

an
gl

e 
(r

ad
)

servo motor positions

 

 

q
1

q
2

q
m1

q
m2

(b) Joint trajectories and servo motor positions

! !"# !"$ !"% !"& !"' !"( !")

 #

!

#

*+
,-
./
.+
01
2
3
/4
5
6
7 *+,-./.+0123

/

/

! !"# !"$ !"% !"& !"' !"( !")
!

$!

&!

8
9
0,
-
:
/.
3
-
8
,+
-
/4
5
7 890,-:/.3-8,+-

/

/

! !"# !"$ !"% !"& !"' !"( !")

!

#

$

.,63/483;7

8
.,
<<
-
3
8
8
/4
5
6
=0
>
?
7 *+,-./8.,<<-388

/

/

 

@

A

nearly zero joint torque

nearly zero spring tension

nearly zero joint stiffness

(c) Joint torque, spring tension and joint stiffness

Fig. 2. Optimization of the locomotion task using the cost (19). In (b) and
(c), gray thin lines show the plots for non-optimizedT in the range ofT =
[0.5, · · · , 0.7] (sec) and blue thick lines show the plots for optimizedT =
0.606. Note that especially at the beginning and the end of the movement,
joint torque, spring tension and joint stiffness are kept small allowing the joint
to swing passively.

Another interpretation can be considered in such a way that if
we linearize (4) around the equilibrium position assuming that
α = qm1 − q ≪ 1, the relationship between the joint stiffness
k in (5) and the spring tensionF in (6) can be approximated
as

k ≈ 1√
B2 + C2 − 2BC

F. (22)

Thus, effectively, minimizing the spring tensionF corresponds
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Fig. 3. Servo motor commandsui (dotted line) and actual angleqmi (solid
line) for the results with optimal movement durationT = 0.606 (cf. Fig. 2
(b) bottom). Servo motor response delay can be observed characterized by
the servo motor dynamics (8). The proposed optimal control framework finds
appropriate control commands taking this effect into account.

to minimizing the stiffnessk in an approximated way. Note
that it is possible to directly usek in the cost function.
However, in practice, first and second derivatives ofk are
needed to implement the ILQG algorithm which become
significantly more complex than those ofF since the joint
stiffnessk is already the first derivative ofτ as described in (5).
Thus, it is preferable to use the spring tensionF . This close
relationship betweenF and k in the general nonlinear case
can be observed in the plots, for example, in Fig. 2 (middle
and bottom in (c)). In fact, the appropriate choice of the cost
function is critical for successful task execution. We discuss
the issue of task encoding via cost selection in Section IV-D
in more details.

1) Swing Locomotion: Consider the case where that target
bar is located atd = 0.3 (m). We optimize both the control
commandu and the movement durationT . We useQT =
diag{10000, 10000, 10, 10}, R1 = diag{0.0001, 0.0001} and
R2 = 0.1 for the cost function in (19). As mentioned above,
R1 is chosen to be a small value for regularization needed
for ILQG implementation. The optimized movement duration
wasT = 0.606 (sec).

Fig. 2 shows (a) the optimized robot movement, (b) joint
trajectories and servo motor positions, and (c) joint torque,
spring tension and joint stiffness. In the plots, trajectories
of the fixed time horizon rangingT = 0.5 ∼ 0.7 (sec) are
also overlayed for comparison in addition to the case of the
optimal movement durationT = 0.606 (sec). In the optimized
movement, the spring tension and the joint stiffness are kept
small at the beginning and end of the movement resulting
in nearly zero joint torque, which allows the joint to swing
passively. The joint torque is exerted only during the middle
of the swing by increasing the spring tension as necessary.
This result suggests that the natural plant dynamics are fully
exploited for the desirable task execution based on the control
strategy discussed in Section II with simultaneous stiffness and
temporal optimization.

In order to illustrate the effect of the servo motor dynamics
characterized by (8), Fig. 3 shows the servo motor position
commands and actual motor angles with the optimal movement
duration (cf. Fig. 2 (b) bottom). Delays in the servo motor
response can be observed in this plot. This suggests that
the proposed optimal control framework can find appropriate
control commands taking this effect into account.
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B. Effect of Optimal Feedback under Modelling Error

One of the benefits of using the optimalfeedback control
framework is that in addition to computing the optimal feedfor-
ward control command, it provides a locally optimal feedback
control in the neighborhood of the optimal trajectory, which
allows the controller to make corrections if there is small
deviation from the nominal optimal trajectory. In this section,
we present numerical studies of the effect of optimal feedback
control (14) under the influence of model mismatch between
the nominal model and actual robot parameters. We introduce
a modelling error asmi,nominal = 1.05mi (link mass) and
lc,i,nominal = 1.1lc,i (location of center of mass on the link)
for i = 1, 2.

Fig. 4 shows the comparison between the movement using
the optimal feedback control law (14) obtained in the sim-
ulation in Section IV-A1 above and with only feedforward
(open loop) optimal control commandu = uopt (t) under the
presence of modelling error. Using only feedforward control,
the robot deviates from the target bar due to the model
mismatch. However, with the optimal feedback control law,
the robot is able to get closer towards the target with the help
of the feedback term. These results suggest the effectiveness of
the optimal feedback control. In future work, we are interested
in on-line learning of the plant dynamics to address the issue
of model uncertainty [20, 21].

C. Switching Dynamics and Tasks Parameters

In this section, we explore different task requirements with
switching dynamics. In the following simulation, we use the
robot model with the link length asl1 = 0.2 (m) and
l2 = 0.35 (m) introducing asymmetric configuration in the
robot structure. We consider the task of first swinging up from
the suspended posture to the target atd = 0.45 (m), then
subsequently continuing to locomote twice to the target bars
at d = 0.4 (m) andd = 0.42 (m) (irregular intervals). Note
that every time the robot grasps the target and starts swinging
for the next target, the robot configuration is interchanged,
which significantly changes the dynamic properties for each
swing movement due to asymmetric structure of the robot.
Thus, the stiffness and movement duration need to be adjusted
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Fig. 5. Simulation results of the sequence of movements. Note that the robot
configuration is asymmetric with the link lengthl1 = 0.2 (m) andl2 = 0.35
(m) . When the robot swings after grasping the bar, the robot configuration
is interchanged, which significantly changes the dynamic characteristics.

appropriately to fulfill the desired task requirement. The cost
function (19) with the same parameters are used as in the
previous simulations. For the swing-up task, we add the time
costwTT with wT = 5 (see (18)), i.e., the task requirement
in swing-up is try to swing up quickly while minimizing the
control cost.

Fig. 5 shows (a) the sequence of the optimized robot
movement, (b) joint trajectories and servo motor positions,
and (c) joint torque, spring tension and joint stiffness. The ob-
tained optimal movement duration was The obtained optimal
movement duration was 1)T = 2.071 (sec) for swing up, 2)
T = 0.778 (sec) for the locomotion with interchanged (upside
down) robot model and 3)T = 0.611 (sec) for the last swing
movement, respectively. Notice the significant differencein the

optimized movement time for the swing locomotion 2) and 3)
(more than 25%). In 2), the lower link is heavier and in 3) the
top link is heavier due to the mass of the VSA model. Thus,
the effective natural frequency of the pendulum movement
is different, which resulted in different movement duration.
The results highlight that our approach can find appropriate
movement duration and command sequence to achieve the
task under different requirement and conditions (locomotion,
swing-up, robot dynamics change and target distance change).
In this example, each maneuver is optimized separately. Opti-
mization over multiple swing movements including transitions
will be of our future interest.

D. Design and Selection of a Cost Function

In optimal control, generally, a task is encoded in terms of
a cost function, which can be viewed as an abstract repre-
sentation of the task. From our point of view and experience,
design and selection of the cost function is one of the most
important and difficult parts for a successful application of
such an optimal control framework. For a simple task and
plant dynamics, an intuitive choice (typically a quadraticcost
in the state and control as in an LQR setting) would suffice
(still it is necessary to adjust the weights). However, for
a highly dynamic task with complex plant dynamics, this
increasingly becomes difficult and an appropriate choice of
the cost function which best encodes the task still remains an
open issue.

In this section, we explore a few more candidates of the
cost functions. In addition to the cost function (19), consider
the following running cost functionsh = h(x,u) in (13):

• quadratic cost with the control command (servo motor
position command):

h = uTRu (23)

• quadratic cost with the joint torque. The main term is
the cost associated with the joint torqueτ anduTR1u

is added for regularization (smallR1):

h = uTR1u+R2τ
2 (24)

Figure 6 shows the results using the running costh =
uTRu in (23) with R = diag{1, 1}. The obtained optimal
movement duration isT = 0.604 (sec). Figure 7 shows the
results using the running costh = uTR1u+R2τ

2 in (24) with
R1 = diag{0.0001, 0.0001} and R2 = 100. The obtained
optimal movement duration isT = 0.620 (sec). In both of
these two cases, the same terminal cost parameters are used
as in the case of (19).

As demonstrated in Figs. 6 and 7, the robot is also success-
fully able to reach the target bar by minimizing each specific
cost in addition to the case of the cost (19) presented in Section
IV-A above. However, with the choice of the running cost
(23), significant difference in the resultant robot movement and
much higher spring tension and joint stiffness can be observed
in Fig. 6. As can be seen in Fig. 7, with the choice of cost
associated with the joint torque in (24), the resultant movement
looks almost identical to the one with the cost (19) (see Fig.2)
and the joint torque profile is comparable. However, we can



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.5

−0.4

−0.3

−0.2

−0.1

0 Target

robot movement with servo motor position command cost

0 0.1 0.2 0.3 0.4 0.5 0.6

−2

0

2

jo
in

t a
ng

le
s 

(r
ad

)

joint angles

 

 

q
1

q
2

0 0.1 0.2 0.3 0.4 0.5 0.6

−2

0

2

time (sec)

an
gl

e 
(r

ad
)

servo motor positions

 

 

q
m1

q
m2

0 0.1 0.2 0.3 0.4 0.5 0.6

−1

0

1

jo
in

t t
or

qu
e 

(N
m

) joint torque

 

 
τ

0 0.1 0.2 0.3 0.4 0.5 0.6
0

20

40

sp
rin

g 
te

ns
io

n 
(N

) spring tension

 

 
F

0 0.1 0.2 0.3 0.4 0.5 0.6

0

1

2

time (sec)st
iff

ne
ss

 (
N

m
/r

ad
) joint stiffness

 

 
k

Fig. 6. Optimization of the locomotion task using the running cost l = u
T
R1u in (23) withR1 = diag{1, 1}. Left: Movement of the robot with optimized

durationT = 0.604 (sec) Center: Joint angles and servo motor angles. Right: Joint torque, spring tension and joint stiffness. Note that while the task itself
is achieved, the movement looks very different from the one in Fig. 2 and much higher spring tension and joint stiffness during the swing movement can be
observed.
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Fig. 7. Optimization of the locomotion task using the running cost l = u
T
R1u+R2τ

2 in (24) with R1 = diag{0.0001, 0.0001} andR2 = 100. Left:
Movement of the robot with optimized durationT = 0.620 (sec) Center: Joint angles and servo motor angles. Right: Joint torque, spring tension and joint
stiffness. The resultant movement looks almost identical to the one in Fig. 2 and the joint torque profile is comparable. However, we can observe that spring
tension and joint stiffness are larger than those of Fig. 2.

observe that spring tension and joint stiffness are larger than
those of the cost (19). This is due to the redundancy in the
variable stiffness actuation and the results depend on how we
resolve it by an appropriate choice of the cost function. These
results suggest that the choice of the cost function is crucial,
however, its selection is still non-intuitive.

Note that other consideration of cost functions could be
possible, e.g., energy consumption. In the brachiation task,
without friction, the mechanical energy of the rigid body
dynamics, E =

∫ T

0
τ q̇2 dt, is conserved for the swing

locomotion with the same intervals at the same height starting
and ending at zero velocity (if no potential energy is stored
in the spring of the VSA at the end of the swing). Thus, if
we wish to consider true energy consumption, it would be
necessary to evaluate theelectrical energy consumed at the
motor level. However, this is not straightforward since we
need a precise model of the mechanical and electrical motor
dynamics including all the factors such as motor efficiency and
transmission loss, which could be rather complex to model in
practice, and the control strategy would largely depend on the
properties of the actual motors used.

E. Remarks on other Joint Actuation and Controller Design
Approaches

In this paper, we explore variable stiffness actuation to
exploit passive dynamics in swing movement. One of the
desirable properties of the variable stiffness actuation we
consider is that the joint can be fully mechanically passive
by appropriately adjusting the spring tension in the actuator

mechanisms. This is in contrast to joint actuation with geared
electric motors in many of existing robotic systems. Typically,
joints with geared motors with high gear ratio aimed for po-
sition control cannot be fully back-drivable, i.e., jointscannot
be made passive to exploit natural dynamics of the link. For
example, the brachiating robot in [23] uses a DC motor with
a harmonic drive gear and exhibited complex and relatively
high friction. Thus, in this design, it is not possible to exploit
the passive dynamics of the second link since the motor is not
fully back-drivable by gravity, and it is necessary to actively
drive the joint to achieve the swing movement. To make the
joint fully back-drivable without passive components, we may
need to use high performance direct drive motors which would
typically require precise torque control mechanisms.

From the viewpoint of a different controller design ap-
proach, the target dynamics method [23] uses input-output
linearization to actively cancel the plant dynamics. While its
effectiveness has been demonstrated in the torque controlled
robot hardware, it is not straightforward to apply this method
to the control of robot with general variable stiffness mecha-
nisms since the system dynamics are not easily input-output
linearizable due to redundancy and complex nonlinearity in
actuator dynamics. Furthermore, it turned out that for the
parameter setting used in Section IV-C, the target dynamics
controller becomes singular at some joint angleq2 within the
range of the movement even for the torque controlled case.
With the link mass parameters used in this paper, we did not
find problems with the same link lengthl1 = l2, however,
typically, we numerically found that whenl2 > l1, the



target dynamics method encounters an ill-posedness problem
of invertibility in the derivation of the control law (cf. Equation
(15) in [23]).

V. CONCLUSION

In this paper, we have presented an optimal control frame-
work for exploiting passive dynamics of the system for swing
movements. As an example, we considered brachiation on a
two-link underactuated robot with a variable stiffness actuation
mechanism, which is a highly dynamic and challenging task.
Numerical simulations illustrated that our framework was able
to simultaneously optimize the time-varying joint stiffness
profile and the movement duration exploiting the passive
dynamics of the system. These results demonstrate that our
approach can deal with different task requirements (locomo-
tion in different intervals, swing-up), modelling errors and
switching in the robot dynamics. In addition, we empirically
explored the issue of the design and selection of an appropriate
cost function for successful task execution.

The approach presented in this paper to exploit the passive
dynamics with VSA contrasts to the nonlinear controller
design with active cancellation of the plant dynamics using
input-output linearization for the same task [23]. However,
we feel that it shares an important issue of task encoding
(or description) either in the form of target dynamics or in
terms of a cost function based on physical understanding and
insight into the task. We aim to extend our approach to include
variable damping [26] for dynamic tasks involving interactions
with environments.
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