
Real-time Object Pose Recognition and Tracking with an
Imprecisely Calibrated Moving RGB-D Camera

Karl Pauwels1, Vladimir Ivan2, Eduardo Ros1 and Sethu Vijayakumar2

Abstract— We introduce a real-time system for recognizing
and tracking the position and orientation of a large number
of complex real-world objects, together with an articulated
robotic manipulator operating upon them. The proposed system
is fast, accurate and reliable and yet does not require precise
camera calibration. The key to this high level of performance
is a continuously-refined internal 3D representation of all the
relevant scene elements. Occlusions are handled implicitly in
this approach and a soft-constraint mechanism is used to
obtain the highest precision at a specific region-of-interest.
The system is well-suited for implementation on Graphics
Processing Units and thanks to a tight integration of the latter’s
graphical and computational capability, scene updates can be
obtained at framerates exceeding 40 Hz. We demonstrate the
robustness and accuracy of this system on a complex real-world
manipulation task involving active endpoint closed-loop visual
servo control in the presence of both camera and target object
motion.

I. INTRODUCTION

The task of recognizing known objects and estimating
their position and orientation is a well-studied problem. It
is also a crucial component of a robotic system designed
for manipulating objects. Even when the visual appearance
of these objects is known, recognition and pose estimation
become increasingly difficult in scenes with a large number
of objects, clutter, varying lighting conditions or when the
camera and/or the objects move at high speed. On top of that,
tedious and sensitive calibration procedures are required in
order to extract precise 3D information.

We propose a method capable of real-time 3D position
and orientation estimation of textured rigid and articulated
objects. Our technique makes use of highly parallelized com-
putation on Graphics Processing Units (GPUs). This allows it
to perform object pose recognition and pose tracking at rates
exceeding 40 Hz and it also scales the method to a large
number of tracked objects. Manipulation tasks (especially
in cluttered environments) rely heavily on accurate and fast
pose estimation [1]. Manipulating objects and tools [2] or
passing objects between human and a robot [3] are still hard
problems that are being actively researched. The method
proposed here achieves high pose tracking accuracy at speeds
exceeding typical camera frame rates, enabling practical
deployment in real-time robotics applications operating in

*This work has been supported by grants from the European Commission
(Marie Curie FP7-PEOPLE-2011-IEF-301144 and TOMSY FP7-270436)
and CEI BioTIC GENIL (PYR-2014-6 and PYR-2014-16). The GPU used
for this research was donated by the NVIDIA Corporation.

1Computer Architecture and Technology Department, University of
Granada, Spain {kpauwels,eros}@ugr.es

2School of Informatics, University of Edinburgh, UK
{v.ivan,sethu.vijayakumar}@ed.ac.uk

unstructured environments with significant and intermittent
occlusion.

We demonstrate our system on a manipulation task that
involves visual servoing. We combine multi-object tracking
of complex objects in real-time with proprioception and the
kinematic constraints of the robot to improve the accuracy of
tracking by constraining the motion of tracked objects. Self-
occlusion is handled implicitly while the robustness against
occlusion from objects that are not being tracked is high.

A. Main Contributions

As compared to our previous work on real-time combined
pose recognition and tracking [4] we present three main
contributions.

1) Multi-object tracking: We extend the method to simul-
taneously track a (potentially very) large number of objects.
Due to the 3D scene representation used, self-occlusions and
occlusions between tracked objects are handled implicitly by
the approach.

2) Joint Object–Manipulator Tracking: By incorporating
real-time proprioceptive information and kinematic con-
straints, we extend the approach to allow highly accurate
manipulator tracking as well. Using a unique two-way con-
sistency resolution paradigm, we exploit the information
provided by grasped objects to facilitate manipulator tracking
and vice versa.

3) Imprecise Calibration: We no longer rely on a pre-
cisely calibrated stereo configuration as in [4], but instead
employ an imprecisely calibrated RGB-D camera (Kinect).
We present two mechanisms to achieve reliability and ro-
bustness to this and the various other noise sources present
in the system. Rather than attempting to exactly match the
entire scene to our internal representation, we focus on a
specific region-of-interest where high precision is required
(e.g. where the interaction takes place) and use a soft-
constraint mechanism to incorporate information obtained
from other areas in the scene.

B. Related Work

There is considerable recent work focusing on object pose
or viewpoint recognition, and in particular on scaling this
problem (in real-time) to a very large number of objects [5],
[6]. Our primary focus here is on pose tracking rather than
detection. Although we discuss how both are combined, we
rely on standard methods for the recognition element.

With regard to real-time pose tracking, many efficient
model-based methods exploit edge- or region-based informa-
tion or both [7] and often use particle filtering to enhance ro-
bustness [8]. Recently, also dense depth information is being

sethu
Text Box
In: Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS 2014), Chicago (2014).

considered, e.g. in visual servoing [9]. The method presented
here extends a method that combines sparse keypoints with
dense motion and depth information [4].

Another group of work also considers the manipulator
in tracking [10]–[13]. All these methods involve only a
single object and rely on precisely calibrated sensors, without
allowing the camera(s) to move. Calibrating multi-camera
systems is non-trivial and RGB-D sensors, such as Kinect,
are known to exhibit depth distortions that increase with
range [14].

Model-based tracking has been widely used for manip-
ulation and tool handling in robotics [2]. While solving
most such tasks can be improved by accurate pose tracking,
more complex tasks require robust detection and tracking
capabilities, e.g. inferring object properties [15], manipula-
tion in clutter [1] or interaction with humans [3]. Analyzing
interactions often involves extraction of semantic information
from the tracked data [16], [17], which also relies on pose
estimation in difficult conditions with occlusions.

II. PROPOSED METHOD

An overview of the proposed method is shown in Fig. 1.
We consider an environment with multiple freely moving
objects (among which the servoing target object) observed
by a freely moving Kinect camera. This sensor provides
RGB color video together with dense depth data at a 30 Hz
framerate. In addition, encoder values are sampled from
the robot arm and hand synchronous with the Kinect data.
Sparse keypoints (Scale-Invariant Feature Transform or SIFT
features) [18] together with dense motion (cf. optical flow)
are extracted from the images (Section II-B). The keypoints
are used exclusively to initialize or reset the tracker in case
objects are lost. The other cues are used for tracking. The
tracker continuously updates the internal state in order to
maximize the consistency between these cues and a detailed
3D representation of the environment (Section II-A). The
tracker is the core of the proposed method and is explained
in detail in Section II-C. The internal state is used here to
control the robot in a classic visual servoing task (Section II-
E).

A. Scene Representation

The modeled scene consists of rigid objects, the robot arm,
and the robot hand (Fig. 1B). The objects are represented
by 3D textured wireframe models. A commercial solution
was used to construct detailed models from a collection
of pictures taken from different viewpoints [19]. Once the
models are constructed, SIFT features are extracted from
different viewpoints and mapped onto the model surface.
The robot arm (KUKA LWR4) and hand (Schunk Dexterous
Hand 2.0) are represented by colored 3D wireframe models
that were generated from CAD models provided by their
respective manufacturers. They do not contain useful texture
for tracking.

In order to update the state in response to the arrival of new
sensory data, the scene needs to be synthesized (rendered)
multiple times (Section II-C). We use a collection of custom

OpenGL shader-code for this. By rendering the scene through
OpenGL, self-occlusions and occlusions between different
objects and the robot arm or hand are managed automatically
using the z-buffering mechanism.

Figure 2 shows some of the information that can be
extracted from a successfully tracked scene. By rendering
the scene we can obtain textured views (B,F) from arbitrary
viewpoints, object and robot part segments (D), together with
depth (G) and normals (H). Note that the base of the robot
(the textured table, yellow in D) is also considered as an
independently moving rigid object. The robot arm and hand
are composed of multiple separate rigid models to allow for
their articulation.

B. Sensor Data and Visual Features

The input to the algorithm consists of images (Fig. 2A)
and depth (i.e. Kinect disparity, Fig. 2E) provided by a
Kinect sensor at 30 Hz. We rely on OpenCV for mapping
the depth image onto the RGB image and do not perform
any additional processing (e.g. undistortion). We do not
manually calibrate the Kinect camera, but use inaccurate
default parameters. Specifically we use a focal length equal
to 525 pixels, a baseline equal to 8 cm, and assume that the
nodal point is located in the image center. We also sample the
motor encoder values at the same framerate. From these we
obtain precise position information (±0.05 mm repeatability)
for the different components of the robot arm and hand in
the robot’s frame of reference.

We use efficient GPU libraries to extract dense phase-
based motion cues [20] and SIFT features [21] from the im-
ages. The optical flow algorithm used integrates the temporal
phase gradient across different orientations and uses a coarse-
to-fine scheme to increase the dynamic range. Rather than
extracting optical flow directly from the images we instead
compute optical flow between a (partially) synthetic image,
generated on the basis of the current tracking hypothesis (i.e.
the current pose estimates), and the next image. When used
for tracking, this type of motion information is insensitive
to drift since it measures the difference between the current
scene hypothesis and the observed scene (rather than simply
the image motion). For the same reason it can be used
to measure the reliability of tracking. We refer to this as
Augmented Reality (AR) flow since the partially synthetic
image combines rendered information with the real image.
An example is shown in Fig. 2C. When compared to the
actual image (Fig. 2A) lighting differences (specularities on
the bottle and shading inside the mug) and non-modeled
occlusions (the thumb) are visibly different. The inherent
robustness of phase-based measures to intensity changes is
critical here. Note that we do not blend the robot since its
texture is not useful for tracking (occlusions are however
considered implicitly, e.g. at the robot finger). See [4] for
more details on AR flow.

C. Object and Manipulator Pose Tracking

Considering a single object model for now, we aim to
estimate the rigid rotation and translation that transforms

����
������

��	�
�

���
 ���

������

��	�
�

� �

Fig. 1. (A) Method overview (AR = Augmented Reality) and (B) scene elements of interest.

� ����� � �������	��
 � ��������

�
��������������� � ������	��
 � �����

� ��������

� ���������������

Fig. 2. Scene representation and sensory cues. (A) RGB image and (E) disparity obtained from Kinect sensor, tracker state rendered from (B) camera
point-of-view and (F) alternative point-of-view. (C) Augmented Reality image obtained by blending the object parts (but not the robot) of (B) with (A).
Additional information obtained from scene rendering: (D) object and part segments, (G) depth (scaled here to highlight region-of-interest), and (H) normals
(only horizontal component shown).

each model point m = [mx, my, mz]
⊤ at time t into point

m
′ at time t+ 1:

m
′ = Rm+ t , (1)

according to the rotation matrix R and the translation vector
t = [tx, ty, tz]

⊤ that best explains the observed motion
and/or depth cues. The rotation matrix can be simplified
using a small angle approximation:

m
′ ≈ (1+ [ω]×)m+ t , (2)

with ω = [ωx, ωy, ωz]
⊤ the rotation axis and angle, and

[ω]× the skew-symmetric cross product matrix.
For the depth cues, an efficient Iterative Closest Point

(ICP) approach is used. The correspondences are obtained
using projective data association [22], effectively matching
the Kinect depth measurements to model points that project

to the same pixel. The point cloud at time t + 1 is recon-
structed from the Kinect disparity d′ as follows:

s
′ = [s′x, s

′

y, s
′

z]
⊤ = [x s′z/f, y s

′

z/f, f b/d′]⊤ , (3)

with pixel coordinates x = [x, y]⊤ (with nodal point as
origin), focal length f and b Kinect baseline. Recall that these
calibration parameters are only approximate. A linearized
version of the point-to-plane distance is then used [23] as
target of the optimization. This results in the following error
function:

eD(t,ω) =
∑

i

(

[

(1+ [ω]×)mi + t− s
′

i

]

· ni

)2

, (4)

with ni the normal at sample i obtained from rendering the
scene (Fig. 2H).

For the motion cues, the differential motion equation is
used [24]. It relates the 3D motion of a point, ṁ, to its 3D

translational and rotational velocity:

ṁ = t+ [ω]×m . (5)

By projecting this 3D motion into the image, the pixel motion
ẋ = [ẋ, ẏ]⊤ can be expressed as follows [24]:

ẋ =
(f tx − x tz)

mz

−
x y

f
ωx + (f +

x2

f
)ωy − y ωz , (6)

ẏ =
(f ty − y tz)

mz

− (f +
y2

f
)ωx +

x y

f
ωy + xωz , (7)

which is linear in t and ω, provided that the depth of the
point (mz) is known. To maximize complementarity of the
cues, we do not use the Kinect depth (sz) here but rather the
depth obtained from rendering the model at the current pose
estimate (Fig. 2G). In this way motion information can still
be exploited in the absence of Kinect depth (e.g. when the
object is close to the camera). We then have the following
error function for motion:

eM (t,ω) =
∑

i

‖ẋi − ai‖
2 , (8)

with a = [ax, ay]
⊤ the observed AR flow.

Both the linearized point-to-plane distance in the depth
case and the differential motion constraint in the motion
case now provide linear constraints on the same rigid motion
representation (t,ω) and can thus be minimized jointly using
the following error function:

E(t,ω) = eD(t,ω) + eM (t,ω) . (9)

The samples used to compose (4) and (8) can be different.
In the case of large rotations these linearized constraints
are only crude approximations, and many of the shape
correspondences obtained through projective data association
will be wrong. Therefore, the minimization of (9) needs to
be iterated a number of times, at each iteration updating the
pose, the shape correspondences, and the unexplained part
of the AR flow measurements. An M-estimation scheme is
also used to increase robustness to outliers [25]. See [4] for
more details on this procedure.

We employ different strategies here for tracking the dif-
ferent scene parts (Fig. 1B).

1) Target Object and Robot Base: Since the rigid objects
and the robot base are assumed textured, both motion and
depth cues can be used in their update. Tracking the base
provides an indication of camera motion whereas the tracked
target guides the servoing.

2) Robot Arm and Hand: The robot’s arm and hand
are articulated objects, but since we have access to the
encoder values, we update the articulation at the start of
each frame and consider the robot rigid. What remains then,
is to correctly position and orient it with respect to the
(moving) camera. This may appear to be a trivial problem
since tracking the robot base already gives us an indication of
the camera motion. However, at this point various sources of
error manifest themselves. Specifically we are dealing with:

• imprecise internal calibration of RGB and depth cam-
eras (focal length, baseline, nodal point, depth-to-RGB
mapping, lens distortion, ...)

• imprecise tracking of the base (i.e. external calibration)
• imprecise geometry and/or texture of object, robot, and

base models
• imprecise model connection between the scanned base

and the arm CAD model
• inaccurate encoder values
• lags due to communication delays
Visually tracking (parts of) the robot itself allows us to

compensate for these errors. Since the robot’s arm and hand
are glossy and uniformly colored, it is difficult to extract
good quality visual motion at their location. We therefore
only rely on the Kinect’s depth signal to refine the robot’s
rigid pose. It is difficult to precisely match the robot in
its entirety due to the imprecise internal calibration. We
therefore only use the parts we are interested in for tracking,
our region-of-interest. In the servoing task considered here,
the hand is most interesting.

The tracked base is still useful for stabilizing this esti-
mation and for dealing with rapid camera motion. For this
reason we connect the rigid pose updates of the robot hand
and the robot base using a soft-constraint mechanism. We
can rewrite (9) as follows to expose the linearity:

E(α) = (Fα− c)
⊤
(Fα− c) , (10)

where the rigid motion parameters are stacked into a vector

α =

(

ω

t

)

for convenience, and F and c are obtained by

gathering the sensor data according to (4),(6),(7). This can be
solved in the least-squares sense using the normal equations:

F
⊤
Fα = F

⊤
c . (11)

Instead, the solution can be biased towards a specific solu-
tion, αp, as follows:

(

F
⊤
F+ λ

)

α = F
⊤
c+ λαp . (12)

This is similar to ridge regression but instead of penalizing
the size of the coefficients, it penalizes their difference from
the prior αp [26]. We let λ scale with the diagonal of F⊤

F

to fix the relative contribution of data and prior.
3) Grasped Object: In the scenarios considered here the

grasped object is rigidly manipulated by the robot. As a result
it can guide the hand pose update and, conversely, the hand
pose update can guide the object pose update. For this reason
we update both jointly. This is simply done by adding the
depth and AR flow measurements of the grasped object to
F and c in the soft-constraint normal equations (12).

D. Object and Manipulator Pose Detection

So far we have only discussed pose tracking. This does
not enable initializing the pose or recovery in case of
severe occlusions. For this purpose we incorporate a standard
RANSAC-based monocular perspective-n-point pose detec-
tor [27]. This detector matches SIFT keypoint descriptors
between the image (2D) and the model codebook (3D).

To improve efficiency and accuracy, only one object is
considered at a time. The object-of-interest is determined
probabilistically, depending on the tracking reliability of that
part. Note that only the objects and the robot base are
considered here. The robot itself is insufficiently textured
for this purpose. Instead, the base is used to re-initialize its
location. In the same way as in [4], we select either the
sparse or dense estimate based on the proportion of valid
AR flow that can be extracted in their region. This measures
how well the synthetic image matches the observed image.
It also signals non-modeled occlusions (such as hands) and
will thus trigger a switch to the detector.

E. Robot Control

The robot used in our experiments is a KUKA LWR4
arm with a Schunk Dexterous Hand 2.0 mounted as the end-
effector. This system allows us to control seven Degrees-Of-
Freedom (DOFs) of the arm to grasp and fully position and
orient an object, controlling all six DOFs of its movement.

The proposed system is capable of tracking the end-
effector (the robot hand holding the object) as well as the
manipulated objects. This allows us to perform Endpoint
Closed Loop control (ECL) [28]. The corrections in the
Cartesian space are computed using an iterative Inverse
Kinematics (IK) with weighted pseudo-inverse method. Here,
we specify the optimization criteria of the IK solver as: the
position of the tip of the manipulated object (the bottle cap)
and the alignment of the object (alignment of the central
axis of the bottle). The position target is set to the tracked
position of the target object (the mug) and the axis alignment
is controlled with respect to the gravity vector to simulate
a pouring motion. The alignment is controlled manually by
the operator, since its target does not depend on the tracked
objects. We let the IK solver converge until the position
error is smaller than 0.001 mm (which is below the robot’s
repeatability of ±0.05 mm). This kinematic motion has been
arbitrarily chosen to mimic a real-life task.

F. Implementation Aspects

The timings mentioned in this section were obtained using
an NVIDIA Geforce GTX 590 and an Intel Core i7. The
system relies heavily on the integration between OpenGL
and NVIDIA’s CUDA framework in order to achieve real-
time performance.

The AR flow is computed using a highly efficient coarse-
to-fine algorithm [4]. Since we rely on dense visual cues
(easily exceeding 100,000 measurements), the bulk of the
computational effort is spent on the composition of the
normal equations (11),(12). This can however be performed
independently and in parallel for each segment (free objects,
base, grasped object, hand) making it ideally suited for
GPU acceleration. Apart from this, the most time-consuming
step is assigning the valid measurements to their respective
segments (in accordance with the current pose estimates).
For this, the segment indices (Fig. 2D) need to be sorted.
Since the number of segments is limited, an efficient radix
sort can be used here [29].

TABLE I

POSE TRACKING FRAME RATES

motion/depth samples

segments 50,000 500,000

1 62 Hz 57 Hz
20 55 Hz 44 Hz

150 47 Hz 38 Hz

Table I shows the achieved frame rates for different num-
bers of tracked parts as a function of number of data samples
(AR flow and Kinect depth) used. In the servoing scenario
considered here we are only tracking four distinct parts;
the robot base, target object, grasped object, and hand. We
achieve tracking framerates around 50 Hz for this scenario.
The SIFT-based part detection runs independently on the
second GPU of the GTX 590. Its estimates are employed
when available so that it does not slow down the tracker. In
our current implementation it provides a pose hypothesis at
20 Hz.

III. EXPERIMENTS

See our previous work for an extensive comparative eval-
uation of the core single object pose tracking and detection
component [4]. In the remainder we only evaluate the exten-
sions presented in this work.

A. Sequences

We have evaluated the proposed method on two video
sequences, one involving visual servoing and limited camera
motion, and the other involving extensive camera motion.
Both sequences are shown in their entirety, together with the
tracking results, in the Supplemental Material video.

1) Visual Servoing: The first sequence corresponds to the
scenario depicted in Fig. 1B with active visual servoing.
There are two freely moving objects (the robot base and
a coffee mug) and one object (the bottle) is firmly grasped
by the robot hand. It is considered rigidly attached to the
robot hand, as explained in Section II-C.3. Although the
sequence contains only limited camera motion, the mug and
robot exhibit fast motion over a large area. The hand and
grasped object occlude each other strongly. There are many
instances where the grasped object is difficult to see due to its
distance from and pose with respect to the camera (Fig. 4A).
The sequence also contains many frames where the objects
are very close to the camera and thus outside the range of
the Kinect depth camera (Fig. 4B).

2) Camera Motion: In the second sequence, the target
object has been omitted and no visual servoing occurs.
Instead, the grasped object is manipulated faster and in more
complex ways. The camera undergoes high speed motion
over a large area since the recording was made while walking
around the robot. The hand is also further from the camera
(Fig. 4C) and there is an instance where it is completely
occluded by the robot arm (Fig. 4D).

� �������� � ����	�
����
����

� �������� � ����	�
����
����

Fig. 3. Frames used to initialize tracking in the ‘visual servoing’ (A,B)
and ‘camera motion’ sequences (C,D).

B. Tracker Initialization

For simplicity we only consider pose tracking here. The
SIFT-based pose detector is used at the start of each se-
quence only. In this way the results are not obscured by
the detector’s ability to recover from tracking errors. The
interaction between tracker and detector has been extensively
evaluated in [4]. The tracker is initialized on a frame where
sufficient information is available to detect the objects and
align the hand with the grasped object. Figure 3 shows these
initialization frames. The segments in Fig. 3A,C correspond
to the result of initialization. The detector was used to
initialize the pose of the bottle, mug, and table. A fixed initial
relative pose between base and robot was used to initialize
the robot pose. Next, AR flow and depth were used to refine
the objects’ poses, and depth was used to refine the hand
pose (using the green areas in Fig. 3A,C only). The relative
pose between hand and grasped object was then fixed for the
remainder of the sequence (Section II-C.3).

C. Results

The proposed method successfully tracks all the objects-
of-interest over the course of the entire sequences without
requiring detector re-initialization. This amounts to 2800
consecutive frames in the ‘visual servoing’ sequence and
1400 consecutive frames in the ‘camera motion’ sequence.
These results are shown in their entirety in the Supplemental
Material video. Some indicative results are shown in Fig. 4.
All the actively tracked segments precisely match the scene
objects and robot hand. The front-view-rendering in rows (A)
and (B) give an indication of the precision obtained while
servoing. The misalignment between robot base and arm is
the result of not actively tracking the arm. Recall that the
effects of the various noise sources manifest themselves as
this misalignment. The relative pose between base and arm
is set at initialization time but is then allowed to change

according to the soft-constraint mechanism. The evolution of
this time-varying base offset over the course of the ‘visual
servoing’ sequence is shown in Fig. 5A. The changes in
this offset correlate with the distance between the hand and
the camera, and are mainly due to the inaccurate camera
calibration.

D. Comparative Evaluation

We next compare the proposed method to a number
of alternatives. Since ground-truth is not available for the
complex real-world sequences used, we instead evaluate
the results in terms of how well the disparity obtained by
synthesizing the scenes according to the tracker state matches
the disparity obtained from the Kinect sensor. We allow for
a maximal error of one pixel and compute the proportion of
explained measurements within the image region occupied
by the combined hand/grasped object segment. The results
are summarized in Fig. 6 and discussed next.

1) Fixed Robot–Base Connection: This approach does not
track the hand and grasped object, but instead relies on a
fixed relative pose between robot base and arm. In this way,
the poses can be derived directly from the estimated base
pose, encoder values and forward kinematics. The connec-
tion between base and robot is optimized here. Using the
successful pose trace estimated with the proposed method,
we estimated the fixed relative pose that minimizes the least-
squares 3D distance error between corresponding vertices
at the hand and bottle object over the course of the entire
two sequences. The results obtained with this approach are
depicted with the red dash-dotted lines in Fig. 6 and are
significantly worse than the other two approaches.

2) Tracking Without Base Prior: In this approach we use
the hand and grasped object features directly to compute
the pose update, without including the prior as in (12). This
approach works very well as can be seen in Fig. 6A (green
dashed curve). It slightly outperforms the proposed method
on many occasions, which is to be expected since this method
is strictly data-driven and does not need to satisfy the prior.
It is however significantly outperformed around frames 1200
and 2700 in (A) due to an ambiguous situation for depth-
only ICP (near-planarity). An example frame (1203) is shown
in Fig. 7A. Note how the proposed method does not suffer
from this problem (Fig. 7B). The robot–base connection also
moves very erratically without prior (Fig. 5B) which can be
problematic for control. Note how the tracking errors around
frames 1200 and 2700 in (A) also manifest themselves in
the base offset. The problems with this method increase
with more severe camera motion and occlusions, and it
fails completely on the ‘camera motion’ sequence (Fig. 6B)
around frame 320 (corresponding to the situation in Fig. 4D).

3) Tracking Objects Only, Ignoring Manipulator: This
method can not exploit the hand pose to improve the grasped
object pose and ignores their mutual occlusions. We do not
include it in the quantitative comparison since tracking is
lost quickly. For example, in the scenario depicted in Fig. 4A
there are not enough measurements at the bottle for reliable
pose tracking.

���������	
����
 ��������	������	 ����������� ����������

�

�

�

�

Fig. 4. Tracking results obtained with the proposed method. Only the actively tracked segments are highlighted.

� ������������	
����

�

� ������������	
�������

�

� ��� ���� ���� ���� ����
���

��

�

�

���	

��
��
�

�
�
�
�
�
�

�

�
�

�
�

� � �

� ��� ���� ���� ���� ����
���

��

�

�

���	

��
��
�

�
�
�
�
�
�

�

�
�

�
�

� � �

� ��� ���� ���� ���� ����
����

���

�

��

���

���	

��
�
�
�
��
�

�
�
�

�
	
	
� � � �

� ��� ���� ���� ���� ����
����

���

�

��

���

���	

��
�
�
�
��
�

�
�
�

�
	
	
� � � �

Fig. 5. Evolution of the position (left) and orientation (right) of the base offset with respect to the initial relative pose between robot base and arm
when (A) including the base pose update as a prior in the tracker, and (B) when using only hand and grasped object to establish the robot pose. We use a
left-handed coordinate system with X-axis horizontal, Y-axis vertical, and Z-axis in-depth.

� ���������	�
���

�
���	���
��
�

� ��� ��� ��� ��� ���� ����
�

��

���

�	
��

�
�
�
�

��
�
�
�
�
�
��

����� �
�� ���� �	��	 ������� �	��	

� ��� ���� ���� ���� ����
�

��

���

�	
��

�
�
�
�

��
�
�
�
�
�
��

Fig. 6. Proportion of the valid Kinect disparity measurements (within the
hand + grasped object region) that match the disparity as predicted by the
current tracker state for the fixed base (dash-dotted red), proposed (solid
blue), and prior-less method (dashed green). The hand is too close to the
depth sensor around frames 650–1000 and 2000–2300 in (A).

� ���������	��	 � ������	��	

Fig. 7. Failure of tracking without base prior (A) due to ambiguity of depth-
only ICP (frame 1203 in Fig. 6A). Relying on the base update resolves the
ambiguity (B).

4) Tracking Manipulator Only, Ignoring Objects: We also
do not include quantitative results here since tracking fails
on many occasions, such as in the absence of Kinect depth
measurements (Fig. 4B).

IV. CONCLUSION AND FUTURE WORK

We have presented a real-time system for joint multi-object
and manipulator detection and tracking in complex, dy-
namic scenarios involving imprecise calibration. The method
achieves a high degree of accuracy and reliability by con-
stantly updating a detailed 3D scene representation on the
basis of large amounts of dense visual data. Although it could
easily be incorporated, a temporal filtering component is not
strictly required.

Future work will explore softening the connection between
hand and grasped object, to allow for vision-based grasp
stability assessment and enable more complex manipulations.
Recently, our approach has also been shown suitable for
explicitly tracking articulated objects [30], which can reduce
the dependence on precise proprioception.

REFERENCES

[1] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, “Physics-based
grasp planning through clutter,” in R:SS, July 2012.

[2] L. Righetti, M. Kalakrishnan, P. Pastor, J. Binney, J. Kelly, R. Voorhies,
G. Sukhatme, and S. Schaal, “An autonomous manipulation system
based on force control and optimization,” Autonomous Robots, vol. 36,
no. 1-2, pp. 11–30, 2014.

[3] V. Micelli, K. Strabala, and S. Srinivasa, “Perception and control
challenges for effective human-robot handoffs,” in R:SS, June 2011.

[4] K. Pauwels, L. Rubio, J. Diaz Alonso, and E. Ros, “Real-time model-
based rigid object pose estimation and tracking combining dense and
sparse visual cues,” in CVPR, June 2013, pp. 2347–2354.

[5] A. Collet Romea, M. Martinez Torres, and S. Srinivasa, “The MOPED
framework: Object recognition and pose estimation for manipulation,”
R:SS, vol. 30, no. 10, pp. 1284 – 1306, 2011.

[6] Q. Hao, R. Cai, Z. Li, L. Zhang, Y. Pang, F. Wu, and Y. Rui, “Efficient
2D-to-3D correspondence filtering for scalable 3D object recognition,”
in CVPR, 2013.

[7] A. Petit, E. Marchand, and K. Kanani, “A robust model-based tracker
combining geometrical and color edge information,” in IROS, 2013.

[8] C. Choi and H. I. Christensen, “RGB-D object tracking: A particle
filter approach on GPU,” in IROS, 2013, pp. 1084–1091.

[9] C. Teuliere and E. Marchand, “Direct 3D servoing using dense depth
maps,” in IROS, 2012, pp. 1741–1746.

[10] M. Wuthrich, P. Pastor, M. Kalakrishnan, J. Bohg, and S. Schaal,
“Probabilistic object tracking using a range camera,” in IROS, Nov
2013, pp. 3195–3202.

[11] P. Hebert, N. Hudson, J. Ma, and J. Burdick, “Dual arm estimation
for coordinated bimanual manipulation,” in ICRA, 2013.

[12] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Full DOF tracking of
a hand interacting with an object by modeling occlusions and physical
constraints,” in ICCV, 2011, pp. 2088–2095.

[13] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object
tracking for in-hand 3D object modeling,” IJRR, vol. 30, no. 11, pp.
1311–1327, 2011.

[14] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic cali-
bration of depth sensors via SLAM,” in R:SS, 2013.

[15] P. Güler, Y. Bekiroglu, K. Pauwels, and D. Kragic, “What’s in the
container? Classifying object contents from vision and touch,” in IROS,
Chicago, Illinois, 2014.

[16] Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3D-based reasoning
with blocks, support, and stability,” in CVPR, 2013.

[17] A. Pieropan, G. Salvi, K. Pauwels, and H. Kjellström, “Audio-visual
classification and detection of human manipulation actions,” in IROS,
Chicago, Illinois, 2014.

[18] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[19] Autodesk, “123d catch,” http://www.123dapp.com/catch/.
[20] K. Pauwels, M. Tomasi, J. Diaz Alonso, E. Ros, and M. Van Hulle, “A

comparison of FPGA and GPU for real-time phase-based optical flow,
stereo, and local image features,” IEEE Transactions on Computers,
vol. 61, no. 7, pp. 999–1012, July 2012.

[21] C. Wu, “SiftGPU: A GPU implementation of scale invariant feature
transform (SIFT),” http://cs.unc.edu/ ccwu/siftgpu, 2007.

[22] G. Blais and M. Levine, “Registering multiview range data to create
3D computer objects,” IEEE PAMI, vol. 17, no. 8, pp. 820–824, 1995.

[23] C. Yang and G. Medioni, “Object modelling by registration of multiple
range images,” Image Vision Comput., vol. 10, pp. 145–155, 1992.

[24] H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a
moving retinal image,” P. Roy. Soc. B-Biol. Sci., pp. 385–397, 1980.

[25] F. Mosteller and J. Tukey, Data analysis and regression: A second
course in statistics. Mass.: Addison-Wesley Reading, 1977.

[26] H. Theil, “On the use of incomplete prior information in regression
analysis,” JASA, vol. 58, no. 302, pp. 401–414, 1963.

[27] V. Lepetit and P. Fua, “Monocular model-based 3D tracking of rigid
objects,” FTCGV, vol. 1, pp. 1–89, 2005.

[28] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE T. Robotic. Autom., vol. 12, no. 5, pp. 651–670, 1996.

[29] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010,
version 1.7.0. [Online]. Available: http://thrust.github.io/

[30] K. Pauwels, L. Rubio, and E. Ros, “Real-time model-based articulated
object pose detection and tracking with variable rigidity constraints,”
in CVPR, Columbus, Ohio, 2014.

