
Optimal Control of Variable Stiffness
Policies: Dealing with Switching Dynamics
and Model Mismatch

Andreea Radulescu, Jun Nakanishi, David J. Braun
and Sethu Vijayakumar

Abstract Controlling complex robotic platforms is a challenging task, especially in
designs with high levels of kinematic redundancy. Novel variable stiffness actuators
(VSAs) have recently demonstrated the possibility of achieving energetically more
efficient and safer behaviour by allowing the ability to simultaneously modulate the
output torque and stiffness while adding further levels of actuation redundancy. An
optimal control approach has been demonstrated as an effective method for such
a complex actuation mechanism in order to devise a control strategy that simul-
taneously provides optimal control commands and time-varying stiffness profiles.
However, traditional optimal control formulations have typically focused on opti-
misation of the tasks over a predetermined time horizon with smooth, continuous
plant dynamics. In this chapter, we address the optimal control problem of robotic
systems with VSAs for the challenging domain of switching dynamics and dis-
continuous state transition arising from interactions with an environment. First, we
present a systematic methodology to simultaneously optimise control commands,
time-varying stiffness profiles as well as the optimal switching instances and total
movement duration based on a time-based switching hybrid dynamics formulation.
We demonstrate the effectiveness of our approach on the control of a brachiating
robot with a VSA considering multi-phase swing-up and locomotion tasks as an
illustrative application of our proposed method in order to exploit the benefits of
the VSA and intrinsic dynamics of the system. Then, to address the issue of model
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discrepancies in model-based optimal control, we extend the proposed framework by
incorporating an adaptive learning algorithm. This performs continuous data-driven
adjustments to the dynamics model while re-planning optimal policies that reflect
this adaptation. We show that this augmented approach is able to handle a range of
model discrepancies in both simulations and hardware experiments.

1 Introduction

Modern robotic systems are used in various fields and operate in environments highly
dangerous to humans (e.g., space and deep sea exploration, search and rescue mis-
sions). Controlling these robotic platforms is a challenging task due to the design
complexity and the discontinuity in the dynamics, e.g., introduced by mechanical
contact with the environment. Inspired by the efficiency of biological systems in
locomotion and manipulation tasks, the robotics community has recently developed
a new generation of actuators equipped with an additional mechanically adjustable
compliant mechanism [12, 24, 42]. These variable stiffness actuators (VSAs) can
provide simultaneous modulation of stiffness and output torque with the purpose of
achieving dynamic and flexible robotic movements. However, this adds further levels
of actuation redundancy, making planning and control of such systems even more
complicated, especially in the case of underactuated systems.

Several studies of stiffness modulation in the context of domains with contacts
showed that VSAs provide a significant improvement in energy efficiency due to their
energy storage capabilities and ability to modulate the system’s dynamics [22, 40].
The use of stiffness modulation in scenarios involving interaction with the environ-
ment has been shown to provide several safety benefits [11, 38]. Other advantages of
variable stiffness capabilities have been observed in terms of robustness and adapt-
ability. These are often required by tasks involving unpredictable changes in the
environment and noise [9, 47].

In this chapter, we first introduce a systematic methodology for movement op-
timisation with multiple phases and switching dynamics in robotic systems with
VSAs arising from contacts and impacts with the environment [21]. By modelling
such tasks as a hybrid dynamical system with time-based switching, our proposed
method simultaneously optimises control commands, time-varying stiffness profiles
and temporal aspect of the movement such as switching instances and total movement
duration to exploit the benefits of the VSA and intrinsic dynamics of the system. We
present numerical simulations and hardware experiments on a brachiating robot with
a VSA to demonstrate the effectiveness of our proposed framework in achieving a
highly challenging task on an underactuated system.

Then, we present an augmented method to improve the robustness of the proposed
framework with respect to model uncertainty by incorporating an adaptive learning
algorithm [29]. The performance of model-based control is dependent on the accuracy
of the dynamics models, which are traditionally obtained by model-based parameter
identification procedures. However, certain elements cannot be fully represented by
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simple analytical models (e.g., complex friction of the joints or dynamics resulting
from cable movement [35]), while changes in the behaviour of the system can occur
due to wear and tear, or due to the use of a tool [36]. Our proposed adaptive learning
method performs continuous data-driven adjustments to the dynamics model while
re-planning optimal policies that reflect this adaptation. We build on prior efforts to
employ adaptive dynamics learning in improving the performance of robot control
[15, 19, 23]. We present results showing that our augmented approach is able to
handle a range of model discrepancies in both simulations and hardware experiments
on a brachiating robot platform with a VSA.

2 Spatio-Temporal Optimisation of Multi-phase
Movements in Domains with Contacts

Traditional optimal control approaches have focused on the formulation over a pre-
determined time horizon with smooth, continuous plant dynamics. In this section,
we present our framework of optimal control problems for tasks with multiple phase
movements including switching dynamics and discrete state transition and its appli-
cation to the control of robotic systems with VSAs [21].

Dynamics with intermittent contacts and impacts such as locomotion and juggling
are often modelled as hybrid dynamical systems [2, 6, 14]. From a control theoretic
perspective, a significant effort has been made to address optimal control problems
of various classes of hybrid systems [25, 34, 44]. However, only a few robotic ap-
plications of optimal control with hybrid dynamics formulation can be found on
movement of optimisation over multiple phases [7, 14]. Instead of employing hy-
brid dynamics modelling formulation, different optimisation approaches to dealing
with multiple contact events have been proposed such as model predictive control
with smooth approximation of contact forces [37], a direct multiple-shooting based
method [18], direct trajectory optimisation methods [26, 43], and a further exten-
sion of the direct collocation method with linear quadratic regulator and quadratic
programming [27].

In this section, we present an approach to the hybrid optimal control problem
proposed in [21] with an extension to the iterative linear quadratic regulator (iLQR1)
algorithm [13] and generalisation of the time-based switched LQ control with state
jumps [44]. We also incorporate temporal optimisation in order to simultaneously
optimise control commands and temporal parameters (e.g., movement duration) [30].
iLQR/G is a practically effective method for iteratively solving optimal control prob-
lems and has been used in our previous work, e.g., [3, 4, 16]. Time-based switch-
ing approximation in hybrid dynamics is motivated due to the difficulties associated
with the state-based switching formulation in dealing with the need of imposing con-
straints and finding the time for switching [5, 46]. Discussions on the benefits and

1iLQG is the stochastic extension to iLQR [13] and in the sequel, we may refer to these two
interchangeably.
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practical difficulties of alternative optimal control approaches such as indirect meth-
ods (e.g., multiple-shooting methods), direct methods, and successive approximation
methods (e.g., iLQR/G and differential dynamic programming) can be found in [4].
Numerical simulations and hardware experiments on a brachiating robot driven by
a VSA will be presented to demonstrate the effectiveness of the proposed approach.

2.1 Outline of Multi-phase Spatio-Temporal Hybrid Optimal
Control Approach

We address spatio-temporal stiffness optimisation problems for tasks that consist
of multiple phases of movements including switching dynamics and discrete state
transitions (arising from interaction with the environment) in order to exploit the
benefits of VSAs. In addition to optimising control commands and stiffness, we
develop a systematic methodology to simultaneously optimise the temporal aspect of
the movement (e.g., movement duration). Our proposed formulation also provides an
optimal feedback control law while many trajectory optimisation algorithms typically
compute only optimal feedforward controls.

The main ingredients of our proposed optimal control framework are as follows:

1. use of nonlinear time-based switching dynamics with continuous control input to
model the dynamics of multi-phase movements;

2. use of nonlinear discrete state transition to model contacts and impacts;
3. use of realistic plant dynamics with a VSA model;
4. introduction of a composite cost function to describe task objectives with multi-

phase movements;
5. simultaneous optimisation of joint torque and stiffness profiles across multiple

phases;
6. optimisation of switching instances and total movement duration.

As presented below, we formulate this problem as time-based switching hybrid
optimal control with temporal optimisation.

2.2 Problem Formulation

2.2.1 Time-Based Switching Hybrid Dynamics

In order to represent multi-phase movements having interactions with an environ-
ment, we consider the following time-based switching hybrid dynamics formulation
composed of multiple sets of continuous dynamics (1) and discrete state transition
(2) as in [8, 45]:
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Fig. 1 A hybrid system with time-based switching dynamics and discrete state transition with a
known sequence. The goal is finding an optimal control command u, switching instances Ti and
final time T f which minimises the composite cost J

ẋ = fi j (x,u), Tj ≤ t < Tj+1 for j = 0, . . . , K (1)

x(T+
j ) = Δi j−1,i j (x(T−

j )) for j = 1, . . . , K (2)

where fi j : Rn × R
m → R

n is the subsystem i j , x ∈ R
n is a state vector and u ∈ R

m

is a control input vector for subsystems. At the moment of dynamics switching
from fi j−1 to fi j , we assume an instantaneous discrete (discontinuous) state transition
according to the impact map in (2), where x(T+

j ) and x(T−
j ) denote the post- and

pre-transition states, respectively (see Fig. 1).

2.2.2 Robot Dynamics with Variable Stiffness Actuation for
Multi-phase Movement

Given the general form of the plant dynamics of our concern in a hybrid dynamics
representation introduced in Sect. 2.2.1, we consider the following multiple set of
robot dynamics with VSAs to describe multi-phase movements:

Mi (q)q̈ + Ci (q, q̇)q̇ + gi (q) + Di q̇ = τi (q,qm) (3)

where i denotes the i-th subsystem corresponding to its associated phase of the
movement, q ∈ R

n is the joint angle vector, qm ∈ R
m is the motor position vector of

the VSA, Mi ∈ R
n×n is the inertia matrix, Ci ∈ R

n is the Coriolis term, gi ∈ R
n is

the gravity vector, Di ∈ R
n×n is the viscous damping matrix, and τi ∈ R

n is the joint
torque vector from the VSA given in the form:

τi (q,qm) = NT
i (q,qm)Fi (q,qm) (4)
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where Ni ∈ R
p×n(p ≥ n) is the moment arm matrix and Fi ∈ R

p is the forces gen-
erated by the elastic elements. The joint stiffness is defined by

Ki (q,qm) = −∂τi (q,qm)

∂q
. (5)

We model the servo motor dynamics in the VSA as a critically damped second order
dynamical system:

q̈m + 2αi q̇m + α2
i qm = α2

i u (6)

where αi determines the bandwidth of the servo motors2 and u ∈ R
m is the motor

position command [3]. We assume that the range of the control command u is limited
as umin � u � umax.

In order to formulate an optimal control problem, we consider the following state
space representation of the combined plant dynamics composed of the rigid body
dynamics (3) and the servo motor dynamics (6):

ẋ = fi (x,u) =

⎡
⎢⎢⎣

x2

M−1
i (x1) (−Ci (x1, x2)x2 − gi (x1) − Dix2 + τi (x1, x3))

x4

−α2
i x3 − 2αix4 + α2

i u

⎤
⎥⎥⎦ (7)

where x = [ xT1 , xT2 , xT3 , xT4 ]T = [ qT , q̇T , qT
m, q̇T

m ]T ∈ R
2(n+m) is the

augmented state vector consisting of the robot state and the servo motor state.

2.2.3 Composite Cost Function for Multi-phase Movement
Optimisation

For the given hybrid dynamics (1) and (2), in order to describe the full movement
with multiple phases, we consider the following composite cost function

J = φ(x(T f )) +
K∑
j=1

ψ j (x(T−
j )) +

∫ T f

T0

h(x,u)dt (8)

where φ(x(T f )) is the terminal cost, ψ j (x(T−
j )) is the via-point cost at the j-th

switching instance and h(x,u) is the running cost. When optimising multi-phase
movements, it is possible to optimise each phase in a sequential manner. However,
the total cost of such a sequential optimisation could result in a suboptimal solution
[30].

For the given plant dynamics (1) and state transition (2), the optimisation problem
we consider is to a) find an optimal feedback control lawu = u(x, t) which minimises

2α = diag(a1, . . . , am) and α2 = diag(a2
1 , . . . , a2

m) for notational convenience.
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the composite cost (8) and b) simultaneously optimise switching instances T1, . . . , Tk
and the final time T f . Note that in our formulation, we denote the final time separately
from switching instances for notational consistency with the case of single phase
optimisation. However, the final time can be absorbed as a part of switching instances,
e.g., T f = TK+1.

2.2.4 Spatio-Temporal Multi-Phase Optimisation Algorithm

In this section, we present an overview of our framework for spatio-temporal op-
timisation for multi-phase movements. First, the iLQR method [13] is extended in
order to incorporate timed switching dynamics with discrete and discontinuous state
transitions. Then, we present a temporal optimisation algorithm to obtain the optimal
switching instances and the total movement duration. For more detailed description,
we refer the interested readers to [21].

In brief, the iLQR method solves an optimal control problem of the locally linear
quadratic approximation of the nonlinear dynamics and the cost function around a
nominal trajectory x̄ and control sequence ū in discrete time, and iteratively improves
the solutions.

In order to incorporate switching dynamics and discrete state transition with a
given switching sequence, the hybrid dynamics (1) and (2) are linearised in discrete
time around the nominal trajectory and control sequence as

δxk+1 = Akδxk + Bkδuk (9)

δx+
k j

= Γk j δx
−
k j

(10)

Ak = I + Δt j
∂fi j
∂x

∣∣∣
x=xk

, Bk = Δt j
∂fi j
∂u

∣∣∣
u=uk

(11)

Γk j = ∂Δ
i j−1 ,i j

∂x

∣∣∣
x=x−

k j

(12)

where δxk = xk − x̄k , δuk = uk − ūk , k is the discrete time step, Δt j is the sampling
time being optimised for the time interval Tj ≤ t < Tj+1, and k j is the j-th switching
instance in the discretised time step. The composite cost function and the optimal
cost-to-go function are locally approximated and the local optimal control problem
is solved via modified Riccati-like equations as described in detail in [21]. Once
we have a locally optimal control command δu, the nominal control sequence is
updated as ū ← ū + δu. Then, the new nominal trajectory x̄ and the cost J are
computed by running the obtained control ū on the system dynamics, and the above
process is iterated until convergence (no further improvement in the cost within
certain threshold).

In order to optimise the switching instance and the total movement duration,
following our previous work in [30], we introduce a scaling parameter and sampling
time for each duration of between switching as
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Δt ′j = 1

β j
Δt j for Tj ≤ t < Tj+1 where j = 0, . . . , K . (13)

By optimising the vector of temporal scaling factors β = [ β0, . . . , βK ]T via gra-
dient descent, we can obtain each switching instance Tj+1 = (k j+1 − k j )Δt ′j + Tj

and the total movement duration T f = ∑K
j=0(k j+1 − k j )Δt ′j + T0, where k0 = 1 and

kK+1 = N .
In the complete optimisation, computation of the optimal feedback control law and

update of the temporal scaling parameters are iteratively performed in an alternate
manner until convergence. As a result, we obtain the optimal feedback control law

u(x, t) = uopt(t) + Lopt(t)(x(t) − xopt(t)) (14)

and the optimal switching instances T1, . . . , TK and the final time T f , where uopt is
the feedforward optimal control sequence, xopt is the optimal trajectory, and Lopt is
the optimal feedback gain matrix.

2.3 Brachiating Robot Dynamics with VSA

The dynamics of a two-link brachiating robot with a VSA shown in Fig. 2 take the
standard form of rigid body dynamics (3) where only the second joint has actuation
(underactuation):

Mi (q)q̈ + Ci (q, q̇)q̇ + gi (q) + Di q̇ =
[

0
τ(q,qm)

]
(15)

where q = [ q1, q2 ]T is the joint angle vector. The same definitions for the elements
in the rigid body dynamics are used as in (3). The index i in (15) is introduced to
specify the configuration of the robot to indicate which hand is holding the bar. Since
we assume that the robot has an asymmetric structure in the dynamics, we have two
sets of subsystems denoted by the subscripts i = 1 (hand of link 1 is holding) and
i = 2 (hand of link 2 is holding). In the multi-phase brachiation, the effective model
switches between i = 1 and i = 2 interchangeably at the switching instance when
the robot grasps the bar.

We use MACCEPA (Fig. 2) as our VSA implementation of choice [39], which
has the desirable property that the joint can be passively compliant. This allows
free swinging with a large range of movement by relaxing the spring, which is
highly suitable for the brachiation task we consider. MACCEPA is equipped with two
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Target barx

y

l1

l2
Gripper

lc2

lc1

m1, I1

m2, I2

q1

q2

τ

rd

A

qm2

qm1

B

C

q

κ

MACCEPA model

Fig. 2 Two-link brachiating robot model with the MACCEPA joint with the inertial and geometric
parameters. The parameters of the robot are given in Table 1

position controlled servo motors, qm = [ qm1, qm2 ]T which control the equilibrium
position and the spring pre-tension, respectively.3

The joint torque for the MACCEPA model is given by:

τ = BC sin(qm1 − q)

A︸ ︷︷ ︸
moment arm in (4)

F (16)

where A = √
B2 + C2 − 2BC cos (qm1 − q), q is the joint angle.4 F is the spring

tension
F = κs(l − l0) (17)

where κs the spring constant, l = A + rdqm2 is the current spring length, l0 = C − B
is the spring length at rest and rd is the drum radius (see Fig. 2). The joint stiffness
can be computed as k = − ∂τ

∂q . Note that the torque and stiffness relationships in
MACCEPA are dependent on the current joint angle and two servo motor angles in
a complicated manner and its control is not straightforward.

To formulate the multi-phase movement optimisation in brachiation, we use the
state space representation in (7). At the transition at handhold, an affine discrete state
transition x+ = Δ(x−) = Γ x− + γ is introduced to shift the coordinate system for
the next handhold and reset the joint velocities of the robot to zero, which is defined
as:

3We include position controlled servo motor dynamics as defined in (6). For the bandwidth para-
meters for the motors we use α = diag(20, 25). The range of the commands of the servo motors
are limited as u1 ∈ [−π/2, π/2] and u2 ∈ [0, π/2].
4In the brachiating robot model in Fig. 2, q = q2.
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Table 1 Model parameters of the two-link brachiating robot and the VSA. The index i in this table
denotes the link number in Fig. 2. The final column (numbers in in italic) in the robot parameters table
shows the change of parameters of the first link of the system under the changed mass distribution
described in Sect. 3.2

Robot parameters i=1 i=2 i=1
Mass mi (kg) 1.390 0.527 1.240

Moment of inertia Ii (kgm2) 0.0297 0.0104 0.0278
Link length li (m) 0.46 0.46 0.46

COM location lci (m) 0.362 0.233 0.350
Viscous friction di (Nm/s) 0.03 0.035 0.03

MACCEPA parameters value
Spring constant κs (N/m) 771

Lever length B (m) 0.03
Pin displacement C (m) 0.125

Drum radius rd (m) 0.01

Γ = diag(Γ1, . . . , Γ4), (18)

where:

Γ1 =
[

1 1
0 −1

]
, Γ2 =

[
0 0
0 0

]
, Γ3 = Γ4 =

[−1 0
0 1

]
(19)

and γ = [ −π, 0, . . . , 0 ]T . Note that in this example, we have Δ = Δ1,2 = Δ2,1.

2.4 Exploitation of Passive Dynamics With Spatio-Temporal
Optimisation of Stiffness

In this section, we explore the benefits of simultaneous stiffness and temporal opti-
misation for tasks exploiting the intrinsic dynamics of the system. Brachiation is an
example of a highly dynamic manoeuvre requiring the use of passive dynamics for
successful task execution [10, 20, 31, 32].

2.4.1 Optimisation of a Single Phase Movement in Brachiation Task

In this section, we consider the brachiation task of swing locomotion from handhold
to handhold on a ladder. A natural and desirable strategy for a swing movement
in brachiation would be to make good use of gravity by making the joints passive
and compliant. For a system with VSAs, our idea in exploiting passive dynamics is
to frame the control problem in finding an appropriate (preferably small) stiffness
profile to modulate the system dynamics only when necessary and compute the virtual
equilibrium trajectory to fulfil the specified task requirement.
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To implement this idea of passive control strategy, we consider the following cost
function to encode the task:

J = (y(T ) − y∗)TQT (y(T ) − y∗) +
∫ T

0

(
uTR1u + R2F

2
)
dt (20)

where y = [ r, ṙ ]T ∈ R
4 are the position and the velocity of the gripper in the

Cartesian coordinates, y∗ contains the target values when reaching the target y∗ =
[ r∗, 0 ]T and F is the spring tension in the VSA given in (17). QT is a positive
semi-definite matrix, R1 is a positive definite matrix and R2 is a positive scalar. This
objective function is designed in order to reach the target located at r∗ at the time
T , while minimising the spring tension F in the VSA. The term uTR1u is added
for regularisation with a small choice of the weights in R1, which is necessary in
practice since iLQG requires a control cost in its formulation to compute the optimal
control law.

2.4.2 Benefit of Temporal Optimisation

One of the issues in a conventional optimal control formulation is that the time horizon
needs to be given in advance for a given task. While on fully actuated systems, control
can be used to enforce a pre-specified timing, it is not possible to choose an arbitrary
time horizon on underactuated systems. In a brachiation task, determination of an
appropriate movement horizon is essential for successful task execution with reduced
control effort.

Consider the swing locomotion task on a ladder with the intervals starting
from the bar at dstart = 0.42 m to the target located at dtarget = 0.46 m. We opti-
mise both the control command u and the movement duration T . We use QT =
diag(10000, 10000, 10, 10), R1 = diag(0.0001, 0.0001) and R2 = 0.01 for the cost
function in (20). The optimised movement duration was T = 0.806 s.

Figure 3 shows the simulation result of (a) the optimised robot movement, (b)
joint trajectories and servo motor positions, and (c) joint torque, spring tension
and joint stiffness. In the plots, trajectories of the fixed time horizon ranging
T ∈ [0.7, 0.75, . . . , 0.9] s are overlayed for comparison in addition to the case of
the optimal movement duration T = 0.806 s. In the movement with temporal opti-
misation, the spring tension and the joint stiffness are kept small at the beginning
and end of the movement resulting in nearly zero joint torque. This allows the joint
to swing passively. The joint torque is exerted only during the middle of the swing
by increasing the spring tension as necessary. In contrast, with non-optimal time
horizon, larger joint torque and spring tension as well as higher joint stiffness can be
observed resulting in the requirement of increased control effort. This result suggests
that the natural plant dynamics are fully exploited for the desirable task execution
with simultaneous stiffness and temporal optimisation.
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(a) Movement of the robot (simulation)
with optimal variable stiffness control
(optimised duration T=0.806 s).

q2 with Topt

q1 with Topt

qm1 with Topt qm2 with Topt

nearly zero joint torque

small spring tension

(b) Joint trajectories and servo motor positions   (c) Joint torque, spring tension and joint stiffness

Fig. 3 Simulation result of the single phase brachiation task with temporal optimisation. In b and
c, grey thin lines show the plots for non-optimised T in the range of T = [0.7, 0.75, . . . , 0.9] s
and blue thick lines show the plots for optimised T = 0.806 s. With temporal optimisation, at the
beginning and the end of the movement, joint torque, spring tension and joint stiffness are kept
small allowing the joint to swing passively in comparison to the non-optimal time cases

2.5 Spatio-Temporal Optimisation of Multiple Swings in
Robot Brachiation

To demonstrate the effectiveness of our proposed approach in multi-phase movement
optimisation, we consider the following brachiation task with multiple phases of the
movement: The robot initially swings up from the suspended posture to the target
at d1 = 0.40 m and subsequently moves to the target located at d2 = 0.42 m and
d3 = 0.46 m. The composite cost function to encode this task is designed as:

J = (y(T f ) − y∗
f )

TQT f (y(T f ) − y∗
f ) +

K∑
j=1

(y(T−
j ) − y∗

j )
TQTj (y(T

−
j ) − y∗

j )

+
∫ T f

0

(
uTR1u + R2F

2
)
dt + wT T1 (21)

where K = 3 is the number of phases, y = [ r, ṙ ]T ∈ R
4 are the position and the

velocity of the gripper in the Cartesian coordinates measured from the origin at
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Fig. 4 Simulation result of the multi-phase brachiation task with temporal optimisation

current handhold, y∗ is the target values when reaching the target y∗ = [ r∗, 0 ]T
and F is the spring tension in the VSA. Note that this cost function includes the
additional time cost wT T1 for the swing up manoeuvre in order to regulate the dura-
tion of the swing up movement. We use QT f = QTj = diag(10000, 10000, 10, 10),
R1 = diag(0.0001, 0.0001) and R2 = 0.01 and wT = 1. In addition, we impose con-
straints on the range of the angle of the second joint during the course of the swing
up manoeuvre as q2min ≤ q2 ≤ q2max , where [q2min , q2max ] = [−1.745, 1.745] rad by
adding a penalty term to the cost (21). This is empirically introduced and adjusted
considering the physical joint limit of the hardware platform used in the experiments.

Figure 4a shows the sequence of the optimised multi-phase movement of the
robot using the proposed algorithm including temporal optimisation in numerical
simulations. The optimised switching instances and the total movement duration
are T1 = 5.259 s, T2 = 6.033 s and T f = 6.835 s, respectively, and the total cost is
J = 37.815. Figure 4b shows the optimised joint trajectories and servo motor posi-
tions.

To illustrate the benefit of the proposed multi-phase formulation, we performed
movement optimisation with a pre-specified nominal (fixed, non-optimal)



406 A. Radulescu et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

jo
in

t a
ng

le
s 

(r
ad

) joint angles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−2

0

2

time (sec)

an
gl

e 
(r

ad
)

servo motor positions

q
1

q
2

q
m1

q
m2

(a) Optimised movement of the robot (b) Joint trajectories and servo motor positions

Fig. 5 Experimental result of the single phase locomotion task on the brachiating robot hardware.
In b, red and blue think lines show the experimental data, and grey thin lines show the corre-
sponding simulation result with the optimised planned movement duration T = 0.806 s presented
in Sect. 2.4.2

time horizon with T1 = 5.2 s, T2 = 5.9 s and T f = 6.7 s using the same cost pa-
rameters both in sequential and multi-phase optimisation. With sequential individual
movement optimisation, large overshoot was observed at the end of the final phase
movement (distance from the target at t = T f was 0.0697 m) incurring a significantly
large total cost of J = 101.053. In contrast, for the same pre-specified time horizon,
by employing multi-phase movement optimisation, it was possible to find a feasible
solution to reach the target bars. The error at the final swing at t = T f was 0.0020 m,
which was significant improvement compared to the case of individual optimisation.
The largest error observed in this sequence was 0.0109 m at the end of the first swing
up phase. In this case, the total cost was J = 50.228. These results demonstrate the
benefit of the multi-phase movement optimisation in finding optimal control com-
mands and temporal aspect of the movement using the proposed method resulting in
lower cost.

2.6 Evaluation on Hardware Platform

This section presents experimental implementation of our proposed algorithm on a
two-link brachiating robot hardware developed in our laboratory [21]. The robot is
equipped with a MACCEPA variable stiffness actuator and the parameters of the
robot are given in Table 1.

Figure 5 shows the experimental result of a swing locomotion corresponding to
the simulation in Sect. 2.4.2 with the optimal movement duration. In the experiments,
we only use the open-loop optimal control command to the servo motors without
state feedback as in [3].

Figure 6 shows the experimental result of multi-phase movements consisting of
swing-up followed by two additional swings, which corresponds to the simulation
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(a) Movement of the robot (experiment)
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(b) Joint trajectories and servo motor positions

Fig. 6 a Experimental results of multi-phase locomotion task with the brachiating robot hardware.
In b, red and blue lines show the actual hardware behaviour, and grey lines show the corresponding
simulation results presented in Sect. 2.5

in Fig. 4 (Sect. 2.5). Note that at the end of each phase of the movement, switching
to the next phase is manually done by confirming firm grasping of the bar in order
to avoid falling off from the ladder at run-time.

The joint trajectories in the experiment closely match the planned movement in
the simulation. The observed discrepancy is mainly due to the inevitable difference
between the analytical nominal model and the hardware system. In the next section,
we introduce an adaptive learning algorithm to improve the accuracy of the dynamics
model used in optimisation.

These experimental results demonstrate the effectiveness and feasibility of the
proposed framework in achieving highly dynamic tasks in compliantly actuated ro-
bots with variable stiffness capabilities under real conditions.
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Fig. 7 The iLQG-LD learning and control scheme [16]

3 Optimal Control with Learned Dynamics

Classical optimal control is formulated using an analytical dynamics model, however,
recent work [1, 17] has shown that combining optimal control with dynamics learning
can produce an effective and principled control strategy for complex systems affected
by model uncertainties.

In [17], using online (non-parametric) supervised learning methods, an adaptive
internal model of the system dynamics is learned. The learned model is used after-
wards to derive an optimal control law. This approach, named iLQG with learned
dynamics (iLQG-LD),5 proved efficient in a variety of realistic scenarios including
problems where the analytical dynamics model is difficult to estimate accurately or
subject to changes and the system is affected by noise [16, 17]. The initial state and
the cost function (which includes the desired final state) are provided to the iLQG
planner alongside a preliminary model of the dynamics. An initial (locally optimal)
command sequence ū is generated together with the corresponding state sequence
x̄ and feedback correction gains L. Applying the feedback controller scheme, at
each time step the control command is corrected by δu = L(x − x̄), where x is the
true state of the plant. The model of the dynamics is updated using the information
provided by the applied command u + δu and observed state x (Fig. 7).

This iLQG-LD methodology employs a Locally Weighted Learning (LWL)
method, or more specifically, the Locally Weighted Projection Regression (LWPR),
to train a model of the dynamics in an incremental fashion. LWL algorithms are non-
parametric local learning methods that proved successful in the context of (online)
motor learning scenarios [1]. Incremental LWL was proposed in [33] (ReceptiveField
Weighted Regression (RFWR) method) in order to achieve fast learning and compu-
tational efficiency. RFWR works by allocating resources in a data driven fashion,
allowing online adaptation to changes in the behaviour. The LWPR [41] extends the
RFWR method by projecting the input information into a lower dimensional mani-
fold along selected directions before performing the fitting. Thus, it proves effective
in high dimensionality scenarios where the data lies in a lower dimensional space.
Consequently, iLQG-LD proved to be a robust and efficient technique for incremental
learning of nonlinear models in high dimensions [17].

5Hereafter, we use the term iLQG for the optimisation algorithm of our concern.
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We incorporate the iLQG-LD scheme into our approach involving learning the
dynamics of a brachiating robot with a VSA and employing it in planning for multi-
phase locomotion tasks [29]. The method proved capable of adapting to changes
in the system’s properties and provided a better accuracy performance than the op-
timisation without model adaptation. Based on these results, iLQG-LD could be a
strong candidate for optimal control strategy for more complex hardware systems.
We demonstrate the effectiveness of our adaptive learning approach in numerical
simulations (Sect. 3.2) and hardware experiments (Sect. 3.3).

3.1 Multi-Phase Optimisation with Adaptive Dynamics
Learning

In this section, we introduce the changes by the use of the LWPR method in the
context of iLQG-LD for integration within the multi-phase optimisation approach
described in Sect. 2.2. We assume that initially we have a nominal analytical dynamics
model that takes the form presented in (3) and (6) which has inaccuracies. We use
the LWPR method to model the error between the true behaviour of the system and
the initial nominal model provided. For this purpose, we replace the dynamics fi in
(7) with a composite dynamics model fci :

ẋ = fci (x,u) = f̃i (x,u) + f̄i (x,u), fci ∈ R
2(n+m), (22)

where f̃i is the initial nominal model and f̄i is the LWPR model to learn the discrepancy
between f̃i and the behaviour of the system.6

When using the composite model of the dynamics fc introduced in (22), the lin-
earisation of the dynamics is provided in two parts. The linearisation of f̃ is obtained
by replacing f with f̃ in (9) and (11). The derivatives of the learned model f̄ are
obtained analytically by differentiating the LWPR model with respect to the inputs
z = (x;u) as suggested in [1]. With these modifications, the developed optimisa-
tion methodology is applied as described in Sect. 2.2 to obtain the locally optimal
feedback control law.

3.2 Numerical Evaluations

In this section, we numerically demonstrate the effectiveness of the proposed model
learning approach on a brachiating robot model with a VSA used in Sect. 2.3. In the
nominal model, we introduce a mass (and implicitly mass distribution) discrepancy
on one of the links (i.e., the mass of the true model is smaller by 150 g located

6Note that the changes introduced by iLQG-LD only affect the dynamics modelling in (1), while
the instantaneous state transition map in (2) remains unchanged.
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at the joint on link i = 1). The changed model parameters are shown in the right
column of Table 1 (the numbers in italic). The introduced discrepancy affects the
rigid body dynamics in the joint accelerations (q̈1, q̈2). Thus, in the composite model
fc, the information from the nominal model f̃ requires correction only in those two
dimensions (i.e., the required dimensionality of the LWPR model output f̄ is 2, the
remaining dimensions can be filled with zeros).

We demonstrate the effectiveness of the proposed approach on a multi-phase
swing-up and brachiation task with a VSA while incorporating continuous, online
model learning. In the multi-phase task, we consider the same task of swing-up and
multi-swing locomotion presented in Sect. 2.5. Since the system has an asymmetric
configuration and the state space of the swing-up task is significantly different from
that of a brachiation movement, we proceed by first learning a separate error model
for each phase. This procedure contains two steps. The initial exploration phase is
performed in order to pre-train the LWPR model f̄i (as an alternative to applying
motor babbling), while the second phase is using iLQG-LD to refine the model
in an online fashion. In our evaluations, the training data are obtained by using a
simulated version of the true dynamics, which is an analytical model incorporating
the discrepancy.

3.2.1 Individual Phase Learning

As presented in Sect. 2.5, using our multi-phase spatio-temporal optimisation frame-
work with the correct dynamics model, we successfully achieved a multi-phase
brachiation task with a position error of as small as 0.002 m at the target bar in
numerical simulations. However, once the discrepancy is introduced to the nominal
model as described in Sect. 3.2, the planned solution is no longer valid and the final
position deviates from the desired target in each individual swing-up and locomo-
tion movement as illustrated in simulations (Fig. 8, blue line). We demonstrate the
effectiveness of the iLQG-LD framework in order to learn the characteristics of the
system dynamics and recover the task performance.

As a measure of the model accuracy, we use the normalised mean squared error
(nMSE) of the model prediction on the true optimal trajectory (if given access to the
analytical form of the true dynamics of the system). The evolution of the nMSE at
the stage of training for each movement phase is shown in Fig. 9.

In the first part (pre-training phase in Fig. 9), we generate (p = 7) random targets
around the desired xT . A movement is planned for these targets using the nominal
model f̃ . The obtained optimal feedback controller for the nominal model is then
applied to the simulated version of the true dynamics. We repeat this procedure for a
set of 10 noise added versions of the commands. The collected data are used to train
the model.

This pre-training phase seeds the model with information within the region of
interest prior to its use for planning. The aim is to reduce the number of iterations re-
quired for convergence in iLQG-LD. For each movement, at the end of the procedure,
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model in blue) and the final planning (composite model after learning in red). Intermediary solutions
obtained at each step of the iLQG-LD run are depicted in grey

the planned trajectory matched the behaviour obtained from running the command
solution on the real plant (the final nMSE has an order of magnitude of 10−4).

Overall, the discrepancy is found to be small enough to reach the desired end-
effector position within a tolerance of εT = 0.040 m. Figure 8 shows the effect of the
learning by comparing the performance of the planning with the inaccurate nominal
model and with the composite model obtained after training.

3.2.2 Multi-phase Performance

In order to evaluate the validity of the learned model, we optimise the multi-phase
brachiation task with the composite cost function given in (21) using the obtained
model from the individual phase learning procedure in Sect. 3.2.1. We use the optimal
solutions obtained for each individual phase above as an initial command sequence
for the multi-phase optimisation. The simulation result is shown in Fig. 10. The
planner is able to successfully achieve the intermediate and final goals, while the
expected behaviour provides a reliable match to the actual system’s behaviour.7 The
cost of multi-phase optimised solution (J = 35.13) is significantly lower than the
sum of the costs of the individual phase solutions (J = 44.45).

7We assume that if the position at the end of each phase is within a threshold εT = 0.040 m from
the desired target, the system is able to start the next phase movement from the ideal location
considering the effect of the gripper on the hardware.
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3.3 Hardware Experiments: Individual Phase Learning
for a Brachiating Robot

In this section, we perform hardware experiments to evaluate the simulation results
obtained in Sect. 3.2 on our two-link brachiating robot with a VSA. In the hardware
experimental set-up, we only have access to sensory readings from two IMU units
attached to each link, a potentiometer mounted on the main joint and the internal
potentiometers of the servo motors in the VSA. The outputs of the IMU units are
fairly accurate and adequate filtering provides reliable readings for estimating the
positions and velocities of the robot links. However, the internal potentiometers of
the servo motors suffer from significant amount of noise; with filtering, their readings
can be used as an estimation of the motor position, but they are not reliable enough
to derive the servo motor accelerations, which are needed for model learning. For
this reason, we reduce the dimensionality of the input for the model approximation
from 10 ([qT , q̇T ,qT

m, q̇T
m,uT ]T ) to 8 ([qT , q̇T ,qT

m,uT ]T ).8

In the pre-training phase, we generate random targets around the desired xT and
plan movements for those targets using the nominal model f̃ as in the numerical
simulations described in Sect. 3.2.1 (with 150 g of mass discrepancy introduced). We
apply the obtained solution to the hardware with a set of 10 noise added versions of
the commands. The collected data are used to train the model. In the second phase,
we apply iLQG-LD as described in Sect. 3.2. The evolution of the nMSE at the stage
of training for each phase is shown in Fig. 11.

For each phase of the movement, at the end of the procedure, the planned trajectory
matched the behaviour obtained from running the command solution on the real plant
(the final nMSE has an order of magnitude of 10−4 and 10−2, respectively).

In Fig. 12, we compare the performance of the system under the (i) solution ob-
tained from the nominal (incorrect) analytical model (blue) and (ii) solution obtained
after training the LWPR model (red). We can observe that the error in the position
of the end-effector (i.e., open gripper) at the end of the allocated time improved sig-
nificantly in both brachiation tasks from (i) 0.0867 m and 0.1605 m to (ii) 0.0161 m
and 0.0233 m, respectively. The final positions are close enough to allow the gripper
to compensate for the rest of the error by grasping it, thus resulting in the final error
of 0.004 m. Note that the true positions of the gripper are actually at the target as it is
securely locked on the target bar. The error comes from the variability of the sensor
readings. The experimental conditions for the individual phase learning in hardware
presented in this section correspond to the second and third phases of the movement
from the multi-phase brachiation task considered in this chapter.

Besides the mass change, we perform an additional experiment in which we also
modify the stiffness of the spring in the MACCEPA actuator from κs = 771 N/m
to κs = 650 N/m in the nominal model. As before, at the end of the procedure,

8With the reduced input dimensionality, practically, there could be the case that it is not possible
to predict the full state of the system particularly in the swing-up motion due to unobserved input
dimensions. Thus, we only considered the swing locomotion task in the hardware experiment with
model learning.
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the planned trajectory matched the behaviour obtained from running the command
solution on the real plant (the final nMSE ≈ 10−2, Fig. 13).

In Fig. 14, we observe the improvement in performance from an initial reaching
error (at the end of the planned time) of (i) 0.1265 m (blue line) to (ii) 0.0167| m
(red line). The robot was able to grab the bar located at the desired target with the
optimised control command using the improved model. The experimental results
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demonstrate the feasibility of the developed adaptive learning framework for the
application to real-world systems.

4 Summary

In this chapter, we addressed the optimal control problem of robotic systems with
VSAs including switching dynamics and discontinuous state transitions.

First, we presented a systematic methodology for movement optimisation with
multiple phases and switching dynamics in robotic systems with variable stiffness ac-
tuation with the focus on exploiting intrinsic dynamics of the system. Tasks including
switching dynamics and interaction with an environment are approximately modelled
as a hybrid dynamical system with time-based switching. We have demonstrated the
benefit of simultaneous temporal and variable stiffness optimisation leading to re-
duction in control effort and improved performance. With an appropriate choice of
the composite cost function to encode the task, we have demonstrated the effective-
ness of the proposed approach in various brachiation tasks in numerical simulations
and hardware implementation in a brachiating robot with VSA. In [21], we have
presented additional numerical evaluations of the proposed approach on the control
of a hopping robot model with a VSA having different mode of dynamics (flight and
stance) and impact with the environment. Simulation results on the hopping robot
control in [21] illustrated the feasibility of our approach and the robustness of the
obtained optimal feedback controller against external perturbations.

Next, we extended our approach by incorporating adaptive learning, which allows
for adjustments to the dynamics model, based on changes occurred to the system’s
behaviour, or when the behaviour cannot be fully represented by a rigid body dy-
namics formulation. The method employed (in the form of the LWPR algorithm)
is particularly suited for certain regression situations such as non-linear function
learning with the requirement of incremental learning. We demonstrated that the
augmented developed methodology was successfully applied in the case of underac-
tuated systems such as a brachiating robot. We provided results for a range of model
discrepancies in both numerical simulations and real hardware experiments.

In our previous work, we have addressed movement optimisation of variable
impedance actuators including damping [28], and our framework presented in this
chapter can be generalised to deal with such systems in a straightforward manner.
Our future interest is in the application of our approach to a broad range of complex
physical and robotic systems having interactions with environments.
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