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Sparse-Dense Motion Modelling and Tracking for
Manipulation without Prior Object Models

Christian Rauch1, Ran Long1, Vladimir Ivan1, Sethu Vijayakumar1

Abstract—This work presents an approach for modelling and
tracking previously unseen objects for robotic grasping tasks.
Using the motion of objects in a scene, our approach segments
rigid entities from the scene and continuously tracks them
to create a dense and sparse model of the object and the
environment. While the dense tracking enables interaction with
these models, the sparse tracking makes this robust against fast
movements and allows to redetect already modelled objects.

The evaluation on a dual-arm grasping task demonstrates that
our approach 1) enables a robot to detect new objects online
without a prior model and to grasp these objects using only a
simple parameterisable geometric representation, and 2) is much
more robust compared to the state of the art methods.

Index Terms—Perception for Grasping and Manipulation;
Visual Tracking; SLAM

I. INTRODUCTION

ROBOTIC grasping tasks typically require a detailed vi-
sual and geometric representation of all target objects

that the robot might interact with. These detailed represen-
tations are provided classically as textured mesh model [1],
[2] or in form of a trained segmentation or pose estimation
approach [3], [4]. In constrained environments with known
and fixed sets of objects, these approaches have proven very
efficient, which is supported by the large corpus of work in
this area.

However, these approaches do not scale well with a growing
number of objects. New models have to be created tediously
by manually defining the geometric shape and the texture, or
by manually labelling training data. Additionally, increasing
the set of possible objects that the robot might encounter in a
new scenario adds unnecessary redundancy and computational
costs when the actually encountered objects only make up a
fraction of the entire dataset.

We argue that instead of providing such specific object
models, we can acquire objects-of-interest online during a
particular task and thus create a task-specific set of target
objects that the robot can interact with.

In a robotic grasping application without prior models,
we have to consider a couple of additional challenges when
tracking and modelling objects online:
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• without an a-priori model we cannot rely on a given
reference frame as grasp target,

• the limited camera field-of-view restricts the long-term
tracking of objects,

• to expand the field-of-view (FoV), tracking must handle
large and fast view-point changes,

• to prevent the system from modelling each new object
separately, we must redetect previously and partially
reconstructed objects.

The problem of modelling and tracking borrows tools
from Simultaneous Localisation and Mapping (SLAM) and
applies those to multiple rigid entities in a scene, including
the environment itself. Dense SLAM methods with a dense
Iterative Closest Points (ICP) loss function typically suffer
from correspondence ambiguity between consecutive point
clouds. This restricts their application to slow motions or
high sensor update rates in combination with fast per-image
processing. Sparse methods with distinct keypoints on the
other hand provide more robust correspondences, but rely
on very accurate keypoint localisation and do not provide a
dense model as required by many robotic applications, such
as navigation and obstacle avoidance or manipulation tasks.

To overcome these limitations and enable a robot to build
a task-specific set of target objects online, we propose a
combination of dense and sparse tracking methods that directly
use the dense and sparse visual motion cues to robustly track
and densely model moving objects. To prevent the repetitive
modelling of previously seen objects, we further facilitate the
robustness of sparse features for redetecting partial models
for long-term modelling. In summary, this work contributes a
model-free tracking method for robotic grasping tasks that:

1) robustly initialises tracking between consecutive image
frames to handle fast view-point changes,

2) segments objects of interest directly by visual motion
cues instead of relying on geometric differences, and

3) redetects previously seen and partially modelled objects
to reuse information for long-term modelling.

II. RELATED WORK

A. Model-Based Tracking

While we are predominantly interested in model-free track-
ing without an a-priori model, we also borrow methods from
model-based approaches once an initial partial model has
been established. Classic 3D pose estimation and tracking ap-
proaches rely on a geometric [2] and visual [1] representation
of the target model in 3D. These models provide the gold-
standard reference for comparing the geometric and visual
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features with the actual sensor data for the tracking loss
function. More recent tracking methods directly incorporate
the tracking loss in a deep Convolutional Neural Network
(CNN) and formulate tracking as a classification or regres-
sion problem. Such semantic tracking methods initially use
a labelled training set of the target objects and eventually
represents them in a latent space [3], [4]. Hybrid methods can
use the geometric and visual model to generate such training
data [5].

These mesh and semantic model-based approaches have in
common that the information about objects has to be collected
manually and given a-priori. This bias towards user-chosen
object models does not scale to new scenarios and limits the
applicability by either providing too many or too few object
models to cover all potential objects or to provide an efficient
coverage, respectively.

B. Single and Multiple Transformation Estimation

SLAM methods are inherently model-free and focus on
localisation with respect to the environment, assuming it as the
only visible rigid entity in the scene [6], [7]. Similarly, object
modelling approaches use the same techniques, but usually
only focus on a single model at a time[8], [9], [10], [11].
This single-model assumption does not hold in many practical
applications where we have to deal with additional motion.
While ElasticFusion [6] accounts for drift via loop closure, it
does not handle additional motion explicitly. StaticFusion [12]
explicitly segments and neglects dynamic objects as outliers
by adapting a reprojection error threshold online. Co-Fusion
[13] and RigidFusion [14] further extend these approaches by
explicitly tracking additional rigid transformations to model
additional motion, with RigidFusion additionally relying on
kinematic motion priors.

Tracking multiple objects in parallel without an a-priori
model encompasses the need to segment a scene based on
the discrepancy of model transformations. Ideally, the residual
of the transformation estimation loss function can be used
as a metric for associating data to transformations, but we
will show that this approach is not reliable in some cases and
propose an alternative metric.

C. Dense and Sparse Representation

In parallel tracking and modelling approaches, the model
representation and the tracking loss function are tightly cou-
pled. This representation varies from sparse keypoints [15] to
dense point clouds [13]. While a dense reconstruction provides
the highest quality of the model for robotic applications, using
the distance between raw points as loss function leads to
ambiguity and many local minima. This ambiguity requires
that consecutive frames are close and thus limits the velocity
of the motion. Sparse points can encode much more visual
information from around a point’s neighbourhood to create
distinguishable points. Depending on how distinct the encoded
information is, the points can be used for short-distance
odometry [16] or longer-distance point matching [17]. Dense
feature points ideally provide such distinct points densely over
the image [3], [18], but only have been demonstrated so far

Fig. 1: Transformation between frames. The motion of an object
A between time 0 and 1 is described as the transformation T0→1

A

between the frames F0
A and F1

A. The spatial relation between two
objects A and B at time 1 is given by the transformation T1

A→B

between the frames F1
A and F1

B . The initial frame F0
A is defined as

the world frame.

on object-specific datasets and thus cannot be applied in a
model-free manner.

In aiming at combining the robustness of distinct keypoints
with the dense model representation as required by robotic
grasping tasks, we propose a combination of dense and sparse
representations with the ability to directly segment objects
of interest via visual motion cues and the ability to redetect
previously seen objects for long-term tracking.

III. METHODOLOGY

A. Problem Formulation

RGB-D multi-motion tracking operates on a continuous
stream of intensity I : RW×H 7→ R and depth D : RW×H 7→
R image pairs (I,D)t representing the scene S at a certain
point in time t. A 3D point p in the camera frame is projected
onto the 2D image plane as coordinate x using the pinhole
projection π : R3 7→ R2 × R. Chaining the projection and
a 3D transformation, we can formulate the rigid warp field
ω : R2 7→ R2 with ω(x,T) = π(Tπ−1(x,D(x))).

The aim of multi-motion tracking and segmentation is to
estimate the pose and visual representation of all M moving
entities O in a scene. At every point in time t, the scene
can then be represented as a set S : {Oi | 0 ≤ i < M}
of objects O : (T,R) with their current pose T ∈ SE(3)
and a 3D representation R. Each R is defined within a
coordinate frame F t

i for a specific object i and point in time
t (Figure 1). Tracking provides the pose of frames F t over
time by estimating T(t)→(t+1) between these frames, and the
segmentation provides the number of frames Fi at one point
in time. At t = 0, we assume that all initially observed data
belongs to R of the first object frame F t=0

i=0 and define the first
frame as the environment S : {O0}. All consecutive object
frames Fi>0 are then spawned from the frame in which a
new motion segment is detected.

All objects in S are represented by a combination of dense
and sparse 3D points as R : (P,K). The dense representation
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is an unordered point cloud P : {pi | 0 ≤ i < Np} with Np

points p ∈ R3. The sparse representation is a set K : {ki | 0 ≤
i < Nk} of Nk keypoints k : (p, f) with 3D coordinate p ∈
R3 and feature vector f ∈ R256. An example environment
point cloud P is visualised in Figures 4 and 5.

The segmentation S : RW×H 7→ N is defined in the image
frame and associates each pixel x ∈ R2 to a segment s if Oi

is visible at that pixel. At t = 0 we assume that only O0 is
visible, hence S(x) = 0∀x ∈ RW×H .

In summary, we are looking for a set of rigid objects whose
union of individual rigid motions and visual representation
explains all motion in the currently observed scene:

argmin
{(T,R)}

M∑
m

RW×H∑
x

∣∣∣Rt(x)−T
(t−1)→(t)
(m) Rt−1

(m)(x)
∣∣∣ . (1)

That is, given the current representation of the scene, as
observed by a RGB-D camera, we are looking for a set of
transformations {T} that, when applied to a corresponding
set of visual representations {R}, reconstructs the currently
observed scene representation. The problem in model-free
tracking is that we neither know how many objects or trans-
formations M exist nor do we know their full representation
or which pixel x belongs to which object m.

B. Overview

The proposed approach operates in four consecutive phases
on the individual image pairs to estimate the trajectory of
individually moving object frames (Figure 2):

1) Estimation: The sparse keypoints K of each model from
the model database S are associated to the keypoints of
the current image to estimate an initial transformation
Tinit via RANSAC (RANdom Sample Consensus). This
transformation is used to initialise a dense ICP method
on the dense point cloud P , to refine this transformation
as Ticp on all visible depth data and all tracked models.

2) Segmentation: The sparse reprojection error from the
estimated transformation on the last keypoint tracks and
the optical flow on the colour image is used in a CRF
(Conditional Random Field) to densely associate pixels
to models in the current segmentation S.

3) Modelling: The segmented sparse and dense points are
registered via the transformation T into the reference
frame of each model. This provides the time-indexed
visual model representation R.

4) Redetection: The time-indexed K for each inactive (not
tracked) model is compared to the currently segmented
keypoint sets to determine if a model is visible again, in
which case the previously inactive model will be tracked
and modelled again.

For the aim of providing an object representation that can
be used in typical robotic applications such as navigation and
manipulation, we are primarily interested in dense representa-
tions. While dense depth data provides a sufficient amount
of raw 3D information for this purpose, it does not have
sufficient discriminative information to distinguish between
different points or associate them directly. This ambiguity is a

Estimation

Segmentation

Redetection

Modelling

Fig. 2: Multi-motion estimation and segmentation pipeline. From
the previous or initial set of objects in S, we initially estimate all
transformations via keypoint correspondences followed by a dense
refinement via ICP. The estimated transformations T provide the key-
point reprojection error that is seeding the optical flow segmentation
S. The model representation R is created by registering the image
data in S using T. The history of all R is compared to the current
segmentation to detect previously seen models.

major limitation when operating at high velocities, estimating
motion, and when trying to associate separate point clouds
with each other, such as when determining if an object is
already present in the scene. For these reasons, we propose
to represent the object via sparse discriminative keypoints and
dense raw points and use this representation throughout the
estimation, segmentation and redetection phase.

C. Transformation Estimation

For each new colour and depth image pair, we first estimate
the transformation between each object’s reference frame to
the camera frame using the sparse keypoints for an initial
transformation and the dense point cloud for the refinement.
This model-to-frame alignment thus uses the history of the
object’s sparse and dense representation and aligns this with
the currently observed scene representation.

1) Sparse Estimation: The keypoints are extracted from
I using SuperPoint [17]. Given the grey-scale image I ∈
RW×H , the core keypoint network encodes the image into
a compressed representation B ∈ RW/8×H/8×128 which is
then further processed by two branches and upscaled to a
heatmap X ∈ RW×H and a featuremap D ∈ RW×H×256. The
heatmap represents the probability of a keypoint on that pixel
coordinate, while the featuremap provides the 256-dimensional
normalised feature vector for that pixel coordinate. To reduce
the amount of keypoints that are direct neighbours, we apply
non-maximum suppression by maximum pooling in a 3 × 3
neighbourhood and also remove all responses for values below
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0.015. The keypoint set is then

K : {(p, f) |p = π−1(x,D(x)), (2)
f = D(x),
∀x ∋ X (x) > 0.015} ,

where p denotes the back-projected keypoint coordinate in the
camera frame and f denotes the feature vector.

We are looking for a transformation T
(t−1)→(t)
(m)init of the

m-th model that minimises the average distance of the 3D
coordinates p and the 256D feature vectors f from keypoints
Kt−1 of the previous image to the keypoints Kt of the current
image. This is done in two stages: First, we exhaustively search
for Nm keypoint correspondences {(u, v)i | 0 ≤ i < Nm},
that individually minimise the feature vector distance between
keypoints in the model and the current image,

argmin
(u,v)

∥f t−1
u −Dt(v)∥2, (3)

s.t. coordinates u ∈ R2 and v ∈ R2 are associated only if their
feature vectors have mutually the closest distance in the set
of possible one-to-many matches. Here, fu denotes the feature
vector of the last model keypoint that was originally observed
at u. Second, with the the minimised feature vector distances,
we now minimise the sparse transformation loss:

argmin
Tinit

|K|∑
i

∥∥∥pt−1
ui
−T

(t−1)→(t)
(m)init pt

vi

∥∥∥2 (4)

where pt−1
ui

denotes the keypoint coordinate in the model’s
reference frame from K, originally observed at u, and pt

vi de-
notes the back-projection of correspondence v into the camera
frame. Note that the correspondences (u, v) are established
between the representation K of an object model and the
current image frame, not between consecutive image frames.
This reduces outliers within the correspondences but might
still retain wrongly associated keypoints due to ambiguity in
the feature space and an inaccurate segmentation. To robustly
estimate the model-to-frame transformation that minimises
(4), we apply RANSAC to repeatedly sample possible inliers
from the set of correspondences, least-squares optimise (4)
on the inliers subset, and finally select the transformation
that produces the lowest error with a minimum set of inliers.
This estimation provides an initial sparse transformation Tinit
between each model’s reference frame and the camera frame.

2) Dense Estimation: The sparse estimation only considers
a very small amount of data from the model representation
K, that might additionally not be equally distributed and
affected by quantisation errors of the pixel coordinates. To
mitigate such effects, we propose to refine the initial sparse
transformation using the raw dense data P , that provides a
much wider coverage. For this stage of the pipeline, we rely on
the dense ICP implementation of Co-Fusion [13]. The dense
transformation loss is formulated similar to (4) as the plane-
to-point loss:

argmin
Ticp

RW×H∑
x

((
pt−1
x −T

(t−1)→(t)
(m)icp pt

x

)
· nt−1

x

)2

(5)

with pt−1
x and nt−1

x as the 3D coordinate and the normal,
respectively, at pixel coordinate x of the dense object model
transformed into the camera frame and projected onto the
image plane. As before, the current point coordinates pt

x are
obtained from the back-projection of x in the camera frame.
Additionally to this depth derived loss, we also use the same
colour derived loss from the baseline ICP implementation [13].
In contrast to the sparse problem, this dense problem is solved
using an iterative gradient-based approach.

The ambiguity of raw depth data leads to many local
minima in this loss function and the optimisation thus has
to be initialised close to the solution. Assuming low object
motion or high camera sample rate, Ticp can be initialised at
identity. To avoid local minima, we propose to initialise Ticp
via the previously obtained sparse transformation Tinit by pre-
transforming the dense model representation P with Tinit. The
optimisation for the pre-transformed dense loss,

argmin
Ticp∗

RW×H∑
x

((
T−1

(m)initp
t−1
x −T

(t−1)→(t)
(m)icp∗ pt

x

)
· nt−1

x

)2

,

(6)

is then also initialised at identity. The original transformation
between the original model m at t− 1 and the camera frame
at t is then obtained by T

(t−1)→(t)
(m) = T

(t−1)→(t)
(m)init T

(t−1)→(t)
(m)icp∗ .

D. Segmentation

While the estimation stage operates on a fixed model
representation R for a fixed model set S, the aim of the
segmentation stage is to extend the set of known models and
their visual representation, if necessary, to explain all motions
in the scene.

One cue of motion is the sparse (4) and dense (5) reprojec-
tion error represented per pixel. The error signifies how well a
given transformation describes the observed motion in a scene,
assuming low errors belong to inliers and high errors belong to
outliers. As argued for the estimation before, this assumption
only holds if there is no ambiguity in the data. Similarly to
the local minima in the dense estimation, the ambiguity in the
raw depth and colour data leads to “false negatives”, where
the reprojection error is low when the object is indeed moving.
A trivial example of this effect is image plane parallel motion
where the depth distance to the image plane does not change.

To circumvent this issue, we propose to rely on the keypoint
reprojection error as the main cue of motion and propagate this
cue to nearby pixels using optical flow. We formulate this as
a Dense Conditional Random Fields (CRF) problem [19]:∑

i

ψi(si | θ) +
∑
i<j

ψij(si, sj | θ) (7)

with the keypoint 2D reprojection drift as the unary potential

ψi(si | θ) =
1

∆t

∥∥∥π (pt−1
ui

)
− π

(
T

(t−1)→(t)
(m)init pt

vi

)∥∥∥2 (8)

and the pairwise potential

ψij(si, sj | θ) =
∑

1[si ̸=sj ]g(fi − fj) (9)
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with g as a Gaussian kernel with diagonal covariance matrix
of the feature space. The 4D feature space is defined by the
2D coordinate of a pixel x and its optical flow displacement
vector between consecutive images d, hence f = [x,d]. We
use the drift ∆t = (t) − (t − 1) of a keypoint between
the previous and current image instead of the distance to
account for irregular framerates. While the unary potential
alone defines the probability that a keypoint belongs to one
of the tracked transformations, the pairwise potential forces
pixels with similar optical flow in the neighbourhood of a
keypoint to be assigned to the same transformation, hence
propagating the motion cue from the 2D keypoint reprojection
error towards the dense neighbourhood using the optical flow.

This CRF only provides a reasonable solution when there is
motion in the scene. To handle low motion and static objects,
we weight the motion probability with the flow magnitude
∥d∥2 and combine it with the probability inferred from the
dense reprojection in (5).

E. Modelling and Redetection

Given all objects’ estimated poses and corresponding seg-
ments over time, we can transform all Rt

(m) via Tt
(m) and

register them as R(m) into a common reference frame.
When the keypoint initialisation (4) fails or the object

segment (7) is too small, an object is flagged as lost and moved
from S to a new set Slost of untracked objects to prevent model
corruption in case of tracking failures.

The history of these lost objects’ K is continuously matched
to the current image keypoints, segmented into rigid parts via
St (Algorithm 1). The limited in-plane rotational invariance
of the feature descriptors (3) makes it necessary to store and
match the entire history of K. Because we match over all
models and all their history, the runtime of the redetection
grows over time.

After an object has been redetected, its currently tracked
duplicate is removed and the original object model is moved
back to S with the new pose. From thereon, the object is again
part of the regular tracking and modelling pipeline.

Algorithm 1 Object redetection procedure.
1: procedure DETECT(St,Slost)
2: for s ∈ St do ▷ current segments
3: for Om ∈ Slost do ▷ inactive “lost” models
4: for Km ∈ Om do ▷ keypoint history
5: (T, e)← RANSAC(Km,Ks) ▷ estimation (4)
6: if e < 0.01 then
7: Slost ← Slost \ {Om} ▷ remove from lost set
8: S ← S ∪ {Om} ▷ add to current set
9: Tm ← T ▷ reset object pose

IV. EVALUATION

A. Setup

The proposed model-free tracking approach for grasping is
evaluated on a Kawada Nextage robot (Figure 3). This robot
is equipped with two 6-DoF arms fitted with custom end-
effectors for dual-arm grasping. As RGB-D sensor, we use

(a) Nextage (b) Objects
Fig. 3: Experimental setup. (a) A stationary Nextage robot detects
moving objects (b) on a conveyor using a RGB-D camera mounted
on the head, picks these objects from a conveyor using custom end-
effectors and places them on a table. (b) Objects from top left to
bottom: jaffa, oats, netgear.

an Azure Kinect DK with a native resolution of 1280 × 720
after registering the depth to the colour frame. To reduce
the computational costs and align the input image with the
input size of the pretrained SuperPoint network, we crop and
downscale the image to 640× 480.

The ground-truth trajectory for the camera and object mo-
tion is provided by a Vicon system using markers attached
to the camera body and to the conveyor respectively. The
trajectory estimation error is quantified via the absolute tra-
jectory error (ATE) and the relative pose error (RPE) [20].
The ground-truth environment reconstruction is created from
the ground-truth camera trajectory and the reconstruction error
is quantified by the point distances between true and estimated
reconstruction. The robot links are not considered as moving
objects and filtered from the depth data.

B. Transformation Estimation

In a typical manipulation task, a robot has to change its FoV
between the pick and place targets. The stationary Nextage is
only capable to change the FoV by rotating the torso or head.
This rotation motion is especially challenging for dense ICP
approaches since the overlap between consecutive images is
small. We selected two sequences to evaluate our approach
MultiMotionFusion (MMF). In the manipulation sequence, the
robot rotates its FoV multiple times between different points
on the conveyor belt and the table. In the rotation sequence
the torso rotates two half rotations (180 deg) forth and back
in one go. The torso always rotates at maximum speed, albeit
the rotation sequence will have a higher peak speed and is
therefore more challenging.

We compare the proposed approach (MMF) to ElasticFusion
(EF [6]), StaticFusion (SF [12]), RigidFusion (RF [14]) and
Co-Fusion (CF [13]). Since estimation errors directly lead to
segmentation errors, we also run CF without a segmentation
using a single model. To investigate the benefit of additional
dense refinement in our approach, we compare the sparse
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seq. EF SF RF CF CF
(static)

MMF
(sparse)

MMF
(s+d)

manip. 67.03 81.83 1.83 63.26 30.35 3.66 1.68
rotation 49.04 73.18 8.80 59.79 42.77 7.79 2.25

(a) Transl. ATE RMSE (cm)

seq. EF SF RF CF CF
(static)

MMF
(sparse)

MMF
(s+d)

manip. 101.21 134.76 2.72 110.75 61.78 5.45 3.04
rotation 90.41 120.17 12.60 111.15 86.36 11.59 4.78

(b) Transl. RPE RMSE (cm/s)

seq. EF SF RF CF CF
(static)

MMF
(sparse)

MMF
(s+d)

manip. 33.13 40.72 1.94 44.66 21.00 2.40 2.50
rotation 39.50 51.51 3.74 65.74 47.88 4.12 3.60

(c) Rotat. RPE RMSE (deg/s)
TABLE I: ATE and RPE for manipulation and rotation sequences.
Dense approaches (EF, SF, CF) fail due to the high camera motion.
The proposed sparse approach (MMF) can handle this motion and
further improve the translational errors using the dense refinement.
The refinement slightly degrades the rotational alignment.

keypoint-only approach with the full proposed pipeline that
additionally does a dense refinement. The absolute trajectory
error (ATE) and the relative pose error (RPE) in Table I show
that dense ICP methods (EF, SF, CF) fail to track the fast
rotation motion of the camera. The proposed sparse keypoint-
only approach (MMF (sparse)) prevents these failures and the
additional dense refinement (MMF (s+d)) further improves
the tracking results. RF uses the robot kinematic as motion
prior and therefore performs much better than pure dense
approaches and also achieves the lowest rotational errors on
the manipulation sequence.

The qualitative comparison of the estimated camera trajec-
tory and the environment reconstruction in Figure 4 visualises
that the keypoint estimation mostly keeps the conveyor aligned
with the table, while the dense refinement further improves the
alignment in consecutive frames.

Finally, the quantitative comparison of the reconstructed
environment models in Figure 5 further demonstrates that the
sparse estimation coarsely aligns the point clouds, while the
dense refinement mostly improves the alignment in the vicinity
of the robot.

C. Motion Segmentation

The object tracking is evaluated separately from the camera
tracking using three different objects (Figure 3b) that are mov-
ing on a conveyor belt at 6.8 cm/s. We compare the tracking
results of the proposed approach MMF against RigidFusion
(RF) and Co-Fusion (CF) in two configurations. The box-
shaped objects can either stand up with the second largest
side orthogonal to the ground, or laying flat down with the
smallest side orthogonal to the ground.

For grasping, we are primarily interested in consistently
tracking a given frame in the object model. This reference
frame can be chosen arbitrarily and is typically set to the
camera frame at the point in time when this object is first
detected. For visualisation purposes, we set this frame to the
centre of the object segment when it is first detected.

The proposed approach provides a much more consistent
tracking of this reference frame (Figure 6) and also produces
a lower ATE (Table II) than the baseline approaches. The CF

seq. type RF CF MMF

jaffa up 16.04 37.50 1.31
down 17.43 — 1.02

oats up 14.94 31.48 1.02
down 17.99 — 1.19

netgear up 19.88 82.69 1.17
down 21.30 — 1.02

TABLE II: Transl. ATE (cm) for tracking the object centre from
where they are initially detected up to the grasping position. A dash
indicates that no object was detected.

segmentation via the dense reprojection error fails to detect
any object laying down flat on the conveyor.

This improved and consistent tracking is achieved by seg-
menting the object in one instance (Figure 7). The segmenta-
tion via the raw dense reprojection error only signifies motion
where a large error is observed, such as between the top of the
object and the ground plane, and thus never segments the entire
object. The proposed keypoint and optical flow segmentation
creates a larger motion segment, covering the entire object, and
thus provides instantly more data to align consecutive frames
using keypoint and dense data.

While our approach requires an initial motion, it is capable
of segmenting multiple objects with irregular motions (Fig-
ure 8) and continues tracking after the motion stopped.

D. Model Redetection and Grasping

A manipulation experiment applies the tracking, segmenta-
tion and redetection to a dual-arm grasping task to demonstrate
their feasibility to continuously track and interact with previ-
ously unknown objects over a longer time period.

In the sequence (Figure 9), the camera is facing the moving
conveyor (19.5 cm/s) and we initially place the jaffa 1 and
the oats 2 object on the conveyor. When moving in the FoV,
we extract an oriented bounding-box on the modelled dense
point cloud to extract the centre and width of the jaffa object.
The calibration of this new frame is stored as the new grasp
reference frame. We then place the jaffa box again on the
conveyor. Initially, this will be seen as a third object (green
segment 3 ). Shortly after, this segment is correctly matched
with the previous jaffa model and replaced (blue segment
4 ). With this restored model, we can also restore the grasp

reference frame in the object centre which is then tracked and
grasped once the object stops. See the supplementary video
for details.

E. Runtime

The evaluation runs on an Intel Core i9-9900KF with a
Nvidia GeForce RTX 2080 SUPER. The average runtime of
the individual stages are as follows: keypoint extraction and
matching, 18 ms and 17 ms respectively; sparse and dense
transformation estimation, 17 ms; optical flow, 9 ms; CRF
segmentation, 43 ms; re-detection, 2.3 ms. In total with other
minor stages, the full pipeline takes 126 ms per image (8 Hz).

V. CONCLUSION

This work motivated the use of model-free object tracking
approaches for robotic manipulation tasks, to overcome limi-
tations with model-based approaches and their biased dataset
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Fig. 4: Estimated (red) and true (green) camera trajectory with resulting reconstruction of the environment for two sequences. In our approach
(MMF) the keypoints (sparse) prevent a failure of the point cloud alignment, while the dense refinement (s+d) prevents drift.

Fig. 5: Point cloud reconstruction error for manipulation, left: reference via ground truth camera trajectory, centre: from sparse keypoints
only (MSE: 3.81 ± 2.97 cm), right: with dense refinement (MSE: 2.81 ± 3.35 cm). The dense refinement of the sparse keypoint estimate
improves the reconstruction specifically when facing the conveyor on the left side again.
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Fig. 6: Estimated (red) and true (green) object trajectory on conveyor
belt from the point where an object’s segment centre is first detected
(blue). The instant motion segmentation in MMF leads to a much
more consistent tracking of the reference frame.

selection where the scene and the manipulated objects are not
known in advance. We further argued and demonstrated that
a direct motion estimation via sparse keypoints provides a
much more robust transformation estimation and segmentation
in comparison to indirect motion inference from ambiguous
dense data. The combination of a sparse and dense model
representation enables robust tracking and segmentation of
previously unseen objects, and thus enables robotic manip-
ulation tasks without prior object models.

The keypoint association and the optical flow propagation
are the critical parts of our pipeline. While SuperPoints are
robust to large displacements, the descriptors are limited to
about 45 deg in-plane rotation which restricts the redetection.
Spurious keypoints have a negative impact on the unary CRF
potentials, resulting in “flooding” of segments into nearby
areas and thus an overestimation of the segment size. In future
work, we would like to combine the keypoint correspondence
and optical flow tasks to relate pixels over short and long
distances and mitigate some of these effects.
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Fig. 7: Segmentation of the environment (blue) and the object (red)
blended with the original image. The baseline (CF) looses track of
the object towards the end of the sequence.

Fig. 8: Segmentation of multiple static objects (red, green, yellow)
that are slid by a human on a table one-by-one.
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