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Abstract Algorithms based on iterative local approximations present a practical ap-
proach to optimal control in robotic systems. However, they generally require the
temporal parameters (for e.g. the movement duration or the time point of reaching
an intermediate goal) to be specified a priori. Here, we present a methodology that
is capable of jointly optimizing the temporal parameters in addition to the control
command profiles. The presented approach is based on a Bayesian formulation of
the optimal control problem, which includes the time course of the movement as a
random variable. An approximate EM algorithm is derived that efficiently optimizes
both the time course of the movement and the control commands offering, for the
first time, a practical approach to tackling generic via point problems in a systematic
way under the optimal control framework. The proposed approach, which is appli-
cable to plants with non-linear dynamics as well as arbitrary state dependent and
quadratic control costs, is evaluated on realistic simulations of a redundant robotic
plant and on a simulated KUKA robotic arm.

Konrad Rawlik
University of Edinburgh, UK
e-mail: konrad.rawlik@roslin.ed.ac.uk

Dmitry Zarubin
University of Stuttgart, Germany
e-mail: dmitry.zarubin@ipvs.uni-stuttgart.de

Marc Toussaint
University of Stuttgart, Germany
e-mail: marc.toussaint@informatik.uni-stuttgart.de

Sethu Vijayakumar
University of Edinburgh, UK
e-mail: sethu.vijayakumar@ed.ac.uk

1

sethu
Text Box
In: Proc. International Symposium of Robotics Research (ISRR), Siestre-Levante, Italy (2015). 



2 Konrad Rawlik, Dmitry Zarubin, Marc Toussaint, and Sethu Vijayakumar

1 Introduction

Control of sensorimotor systems, artificial or biological, is inherently both a spa-
tial and temporal process. Not only do we have to specify where the plant has to
move to but also when it reaches that position. In some control schemes, the tem-
poral component is implicit. For example, with an infinite horizon, discounted cost
based controller, movement duration results from the application of the feedback
loop. In other cases it is explicit, like for example in finite horizon objective based
formulations, where the time horizon is set explicitly as a parameter of the problem
(Stengel, 1986).

Although control based on an optimality criterion is certainly attractive, practical
approaches for stochastic systems are currently limited to the finite horizon objec-
tive or the first exit time objective. The former does not optimize temporal aspects
of the movement, i.e., duration or the time when costs for specific sub-goals of the
problem are incurred, assuming them as given a priori. However, how should one
choose these temporal parameters? This question is non-trivial and important, even
when considering a simple reaching problem. The solution generally employed in
practice is to use an a priori fixed duration, chosen experimentally. This can result
in not reaching the goal, having to use an unrealistic range of control commands or
excessive (wasteful) durations for short distance tasks. The alternative first exit time
formulation, on the other hand, either assumes specific exit states in the cost func-
tion, and computes the shortest duration trajectory which fulfils the task, or assumes
a time stationary task cost function and computes the control which minimizes the
joint cost of movement duration and task cost (Toussaint and Storkey, 2006; Bar-
ber and Furmston, 2009; Kulchenko and Todorov, 2011). This formalism is thus
directly applicable only to tasks which do not require sequential achievement of
multiple goals. Although this limitation could be overcome by chaining together in-
dividual time optimal single goal controllers, such a sequential approach has several
drawbacks. First, if we are interested in placing a cost on overall movement dura-
tion, we are restricted to linear costs if we wish to remain time optimal. A second
more important flaw is that future goals should influence our control even before we
have achieved the previous goal.

In this paper, we extend standard finite horizon Stochastic Optimal Control
(SOC) problem formulation with additional cost terms on temporal aspects of a
control policy.

2 Problem formulation

2.1 Finite Horizon Stochastic Optimal Control Problem

Let us consider a general controlled process, with state x ∈ RDx and controls u ∈
RDu , given by the stochastic differential equation of the form
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dx = f (x,u) dt +dξ ,
〈
dξ dξ

>〉 = Q . (1)

with non-linear dynamics f and Brownian motion ξ . Fixing a finite time horizon
t f we denote by x(·) and u(·) the state and control trajectories over the interval
t ∈ [0, t f ]. For a given state-control trajectory we define the cost function as

C(x(·),u(·)) =
∫ t f

0
c(x(t),u(t), t) dt + c f (x(t f )) , (2)

where c(x,u, t) is a cost rate for being in state x and applying controls u at time t,
and c f denotes a final state cost term. The finite horizon stochastic optimal control
problem is to find the (non-stationary) control policy π∗ : (x, t)→ u that minimizes
the expected total cost given a start state x(0) and t f ,

π
∗ = argmin

π

〈
C(x(·),u(·))

〉
x(·),u(·)|π,x(0) . (3)

Here we take the expectation w.r.t. the distribution P(x(·),u(·) | π,x(0)) over state-
control trajectories conditional on the given start state and control policy.

2.2 Temporal Optimisation problem

In practical robotics applications cost can generally be divided into subgoals, these
being costs dependent only on state and incurred at intermediate time instances, and
stationary costs incurred throughout the movement. We express this by considering
a cost of the following form,

C(x(·),u(·),T ) =
∫ t f

0
c(x(t),u(t)) dt +

f

∑
i=1

ci(x(ti))+CT (T ) (4)

where T = {t1, .., t f } is a set of time instances—the time course—at which specific
subgoals, captured by the corresponding ci’s, are to be fulfilled. For instance, in a
reaching movement, a cost that is a function of the distance to the target is incurred
only at the final time t f , while intermediate costs may represent subgoals like the
alignment of an orientation some time before the reaching of a target. In our tem-
poral optimisation framework, our objective shall be the optimisation of the time
course T itself, including an explicit cost term CT (T ) that arbitrarily penalizes
these time intervals. Note that this objective is broader than the duration optimisa-
tion, i.e., choice of only t f , but of course includes it as the special case T = {t f }.

The problem now is to find the joint optimum for the control policy and the time
course T ,

(π∗,T ∗) = argmin
π,T

〈
C(x(·),u(·),T )

〉
x(·),u(·)|π,x(0) . (5)
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Fig. 1: Illustration of the notation used (in the case K/ f = 5).

2.3 Time discretization

While our approach can equally be described fully in a continuous time framework,
the presentation will be simplified when assuming a time discretization. Below we
briefly discuss a continuous time formulation.

We discretize the time interval [0, t f ] in K time steps, where each interval [ti, ti+1]
is discretized in K/ f steps of uniform length δk = (ti(k)+1 − ti(k))/K/ f , where
i(k) = b f k/Kc denotes the interval that the kth time step belongs to (see Figure
1 for illustration). Conversely, by k(i) = iK/ f we denote the step index that corre-
sponds to the ith intermediate cost ci. Choosing different numbers of time steps per
interval [ti, ti+1] of non-uniform step lengths is a straight-forward extension of all
the following.

In the discrete time case the problem takes the general form

xk+1 = f (xk,uk,δk)+ ε , ε ∼N (0,Q(δk)) (6)

C(x1:K ,u1:K ,T ) =
K

∑
k=0

c(xk,uk)δk +
f

∑
i=1

ci(xk(i))+CT (T ) (7)

although the ideas presented can be easily adapted to alternative forms. For nota-
tional convenience, we will absorb the task costs ci(xk(i)) in the running costs by
defining

c̃k(xk,uk,δk) = c(xk,uk)δk +[k%K = 0] ci(k)(xk) (8)

C(x1:K ,u1:K ,T ) =
K

∑
k=0

c̃k(xk,uk,δk)+CT (T ) , (9)

where k%K denotes the modulo operator.
If instead we would like to stay in a time continuous framework we would de-

fine d(t) as a function of time, thus augmenting the state space by a dimension. The
quantity d(t) can be regarded as a general resource variable and the general problem
formulation (4) reformulated as a first exit time problem - details can be found in
Rawlik (2013). Several algorithms applicable to problems with general non-linear
dynamics have been developed, e.g. DDP (Theodorou et al., 2010), ILQG (Todorov
and Li, 2005) to name a couple, all of which can be directly applied to this refor-
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mulation of the temporal optimisation problem. However, our experience has shown
that naive application of such algorithms, in particular those listed, to the problem of
temporal optimisation fails. This is generally due to the nature of these approximate
algorithms as local optimisers. With a poor initialisation, setting d(·) = 0,π(·, ·) = 0,
i.e., not moving for no time or close approximations thereof, often proves to be a
dominant local minimum. We are therefore compelled to seek alternative optimisa-
tion schemes, which avoid the collapse of the solution to such undesirable outcomes.
In the following we describe an approach based on alternate optimisation of the pol-
icy and T . This is formulated in the AICO framework, which frames the problem
as an inference problem, although a similar approach can be followed within classi-
cal stochastic optimal control formulations leading to similar results.

3 Approximate Inference approach

In previous work (Rawlik et al., 2012) it has been shown that a general SOC problem
can be reformulated in the context of approximate inference, or more precisely, as
a problem of minimizing a Kullback-Leibler divergence. This alternative problem
formulation is useful in particular for derivation of approximation methods which
would be non-obvious to derive in the classical formulation. In the following we will
adopt the approximate inference perspective to propose a specific approximation
method to solve the temporal optimization problem.

3.1 AICOT formulation

In the inference control formulation, given a stochastic control policy πk(uk|xk) we
define the process

P(x1:K ,u1:K |π,T ) = π(u0|x0)
K

∏
k=1

π(uk|xk)P(xk+1|xk,uk,δk) , (10)

where P(xk+1|xk,uk,δk) is given by the discrete time dynamics (6). We further in-
troduce an auxiliary (binary) random variable rk with the likelihood

P(rk = 1|xk,uk,T ) = exp{−η c̃k(xk,uk,δk)} , (11)

which can be interpreted as indicating (probabilistically) whether a task is fulfilled
(or rather whether costs are low). It is straight-forward to verify that

C(x1:K ,u1:K ,T )−CT (T ) =− logP(r1:K = 1|x1:K ,u1:K) , (12)

that is, we translated task and control costs into neg-log-likelihoods. In Rawlik
et al. (2012) it has been show how for fixed T computing the posterior process
P(x1:K ,u1:K |r1:K = 1,T ), that is, the distribution over state-control trajectories con-
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ditioned on always observing “task fulfillment” is related to solving the stochastic
optimal control problem. In particular, this posterior also includes the posterior pol-
icy P(uk|xk,r1:K = 1,T ), i.e. the posterior probability of choosing a control uk in
state xk conditioned on constant “task fulfillment”, which can be used in an interac-
tive procedure to find the optimal control policy.

In the context of temporal optimisation we are interested in the computation of
the posterior

P(T ,x1:K ,u1:K |r1:K = 1) ∝ P(x0)
K

∏
k=0

P(xk+1|xk,uk,T )exp{−C(x1:K ,u1:K ,T )} .

From this the MAP policy, and in this case MAP T , are extracted. As this problem
will in general be intractable, we proceed in two steps

T MAP = argmax
T

P(T | r1:K = 1) (13)

π
MAP = argmax

π

P(π |T MAP,r1:K = 1) (14)

Note that the second step reduces exactly to standard AICO and may be solved
with any of the methods proposed by Rawlik et al. (2012); Toussaint (2009). The
main focus in the following is therefore on solving (13). The proposed approach
is based on an iterative procedure alternating between approximation of the distri-
bution P(x1:K ,u1:K |T old,r1:K = 1) and utilisation of this distribution to obtain an
improved T new. We call this general method AICOT. Two alternative forms of the
improvement step are proposed, one gradient and one EM based. The relative merits
of these two methods are then discussed in 3.4

3.2 Gradient Descent

We first consider direct optimisation of (13) by gradient descent. Let

L (T ) = logP(T | r1:K = 1) (15)

and note that

∇L (T ) ∝
1

L (T )
·∇P(r1:K = 1|T )−∇CT (T )

In the general case P(r1:K = 1|T ) will not be tractable. We therefore propose taking,
similar to the standard AICO algorithms, a Gaussian approximation. For brevity, let
z1:K = (x1:K ,u1:K) denote the state-control trajectory. We define

p̃(z1:K |T )≈ P(r1:K = 1,z1:K |T )
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as the unnormalized Gaussian approximation to P(z1:K |r1:K = 1,T ). Using this ap-
proximation

∇T L (T )≈ ∇T

∫
z1:K

p̃(z1:K |T ) .

We derive the approximate gradient, assuming a state-control LQ approximation,
that is, we consider (6) and (9) are locally in the form

f (zk,δk)≈ ak(δk)+Ak(δk) zk +Bk(δk)uk , Qk = Qδk (16)

c̃k(zk,k)≈ [k%K = 0]
1
2

x>k Ck(T )xk− ck(T )>xk +
1
2

u>k Huk , (17)

where all terms may depend non-linearly on T , or δk. In the interest of an unclut-
tered notation we will not further note this dependence explicitly. Eq. (17) assumes
that the running costs are quadratic in u; as in Toussaint (2009) the squared control
costs can equivalently translated to a Gaussian prior over u that combines with the
process noise Qk to a an uncontrolled process with noise Qk +BkH-1Bk.

We can now write the unnormalized posterior p̃ as the product of an uncontrolled
process and a Gaussian likelihood,

p̃(z1:K |T ) = N (z1:K |µ,Σ)︸ ︷︷ ︸
dynamics prior

·N [z1:K |c,C]︸ ︷︷ ︸
cost likelihood

where N [x|a,A] ∝ exp{− 1
2 x>Ax+x>a} is a Gaussian in canonical form, with pre-

cision matrix A and mean A-1a, c = (c1, ...,cK)
> is as in (17) neglecting the u>k Huk

terms, and C = diag(C1, ...,CK). The elements of µ are given by

µ i = (A0 · · ·Ai−1)z0 +
i−1

∑
k=1

(Ak+1 · · ·Ai−1)ak

and Σ is the symmetric matrix with

Σi j = Σ
>
ji = (A j−1 · · ·Ai)

i−1

∑
k=0

(Ai−1 · · ·Ak)(Qk +BkH-1Bk)(A>i−1 · · ·Ak)
>

for i≤ j. In practise, given a local linearization the unnormalized posterior p̃(z1:K |T )
can be computed with same computational complexity as a Riccati or Kalman filter
iterating over k (Toussaint, 2009).

Now let us define ẑ to be the subset of z1:K which have an associated intermediate
cost, i.e., ẑ = {zk : [k%C = 0] = {zk : ck 6= 0,Ck 6= 0}}. (Note that, if we subsumed
the control costs u>k Huk in the uncontrolled process, only at [k%K = 0] we have
cost terms.) As we can marginalize the uncontrolled process for all zk 6∈ ẑ, we can
retrieve p̃(ẑ|T ) as

p̃(ẑ|T ) = N (µ̂|Ĉ−1ĉ, Σ̂ + Ĉ−1)
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where µ̂ and Σ̂ denote the appropriate sub-vector and -matrix of µ and Σ respec-
tively. Hence, with m := Ĉ−1ĉ and M := Σ̂ + Ĉ−1, the approximate derivatives take
the general form

∇

∫
z1:K

p̃(z1:K |T ) = N (µ̂|m,M)
[
g>[∇(m− µ̂)] −1

2
Tr
(
M−1

∇M
)
+

1
2

g>[∇M]g
]

where g = M−1(µ̂−m).
Combining the results, the overall approximation to the derivatives is obtained as

∇δk
L (T )≈−∇δk

CT (T )+
[
g>[∇δk

(m− µ̂)] (18)

−1
2

Tr
(
M−1

∇δk
M
)
+

1
2

g>[∇δk
M]g

]
.

The gradient ∇δk
M and ∇δk

(m− µ̂) are straight-forward by their definition. With
this we can use any gradient based scheme to obtain a new T new, which in turn
gives rise to a new approximation.

3.3 Expectation Maximisation

The solution to (13) can alternatively be obtained using an Expectation Maximisa-
tion approach. Specifically, we form the bound

L (T )>
∫

z1:K

P(z1:K |r1:K = 1,T )︸ ︷︷ ︸
p(z1:K)

logP(r1:K = 1,z1:K |T )

which is alternately maximised with respect to p and T , in an E- and M-step.

E-Step

In the E-Step we aim to calculate the posterior over the unobserved variables, i.e.
the trajectories, given the current parameter values δk,

p(z1:K) = P(z1:K |r1:K = 1,T ) .

We approximate this with p̃ using AICO as before.

M-Step

In the M-Step, we solve
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T new = argmin
T

〈
logP(r1:K = 1,z1:K |T )

〉
p̃︸ ︷︷ ︸

:=L̃ (T )

,

where p̃ is the approximation calculated in the E-Step based on T old. We may
expand the objective as

L̃ (T ) =
K−1

∑
k=0

(〈
logP(zk+t |zk,dk)

〉
−
〈
c̃k(zk,dk)

〉)
+C ,

where
〈
·
〉

denotes the expectation with respect to q̃ and C is a constant. The re-
quired expectations,

〈
c̃k(zk,dk)

〉
and

〈
logP(zk+t |zk,dk)

〉
=−Dz

2
log |Qk|−

1
2
〈
(zk+t − f (zk))

>Q−1
k (zk+1− f (zk))

〉
,

are in general not tractable. As previously, we therefore resort to a LQ approxima-
tion. This leads in the general case to an expression which can not be maximised
analytically w.r.t. T . However, if the approximation and discretization are chosen
such that the system is also linear in δ , i.e.,

f (zk)≈ (ak +Akzk)δk , Qk = Qδk , ck(zk,δk)≈ (
1
2

z>k Ckzk− c>k zk)δk

it can be shown that,

∂

∂dk
L̃ (T ) = δ

−2
k g2 +δ

−1
k g1 +(g0 +2

d
dδ

CT

∣∣∣∣
dk

) , (19)

with

g2 =
1
2

Tr
(

Q−1
k (
〈
zk+1z>k+1

〉
−2
〈
zk+1z>k

〉
+
〈
zkz>k

〉
)
)

g1 =−
D2

z

2

g0 =−
1
2

[
Tr(AkQ−1

k A>k
〈
zkz>k

〉
)+a>k Q−1

k ak

+2a>k Q−1
k Ak

〈
xk
〉
+Tr(Ck

〈
zkz>k

〉
)−2c>k

〈
zk
〉]

.

In the general case we may use an efficient gradient ascent to compute the M-step
(for fixed p̃) and improve on δk’s. However, in the specific case where CT is a
linear function of δk’s, (19) is quadratic in δ

−1
k and the unique extremum under the

constraint δk > 0 can be found analytically.
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3.4 Discussion

The two proposed methods have different merits. From the point of view of com-
putational complexity the EM based updates are preferable as they only require
computation of the pair marginals (zk,zk+1) and operate entirely on matrices which
are the size of zk’s dimension. The gradient method instead requires computation of
the covariance of all cost conditioned states and controls. Due to the inversion of
this matrix, gradient updates are usually more expensive to compute.

While computationally attractive, EM updates suffer from numerical instability
in many problems. In general, the deficiency of EM algorithms in near determinis-
tic regimes is a well known problem, e.g., Barber and Furmston (2009). In our case
it leads to instability when Q ≈ 0 or if the posterior trajectories are severally con-
strained by the cost terms. The problem arises in the M-Step, which may be written
as

argmax
T
−KL

(
p(z1:K |T old)||P(z1:K |r1:K = 1,T )

)
+ log

∫
z1:K

P(r1:K = 1,z1:K |T )

It is now apparent that for deterministic dynamics no change in δk is possible, lest
the KL divergence becomes infinite.

4 Experiments

4.1 Evaluation on basic via-point tasks

We first evaluate the proposed method in simulation on a simple plant. As a basic
plant, we used a simulation of a 2 degrees of freedom planar arm, consisting of two
links of equal length. The state of the plant is given by x = (q, q̇), with q ∈ R2 the
joint angles and q̇ ∈ R2 associated angular velocities. The controls u ∈ R2 are the
joint space accelerations. We also added some noise with diagonal covariance.

For all experiments, we used a trajectory cost of the form

C(x1:K ,u1:K ,T ) = c(x1:K)+
K

∑
k=0

δk u>k Cuuk +αδk(T ) (20)

where Cu = 104 · I. Note that α ∑
K
k=0 δk, where δk depends on T , penalizes the total

movement duration linearly. The state dependent cost was

c(x1:K) =
f

∑
i=1

(φn(xk̂i
)− y∗i )

>
Λi(φn(xk̂i

)− y∗i ) , (21)

where the tuplets (k̂i,φi,Λi,y∗i ), consisting of a time step, a task space mapping, a di-
agonal weight matrix and the desired state in task space, define goals. For example,
for point targets, the task space mapping is φ(x) = (x,y, ẋ, ẏ)>, i.e., the map from x
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Fig. 2: Temporal scaling behaviour using AICOT. (a) Schematic of plant together
with mean start position and list of targets (b) Comparison of reaching costs
(control + error cost) for AICOT and a fixed duration approach, i.e. AICO. (c)&(d)
Effect of changing time-cost weight α , (effectively the ratio between reaching cost
and duration cost) on duration and reaching cost (control + state cost).

to the vector of end point positions and velocities in task space coordinates, and y∗

is the target coordinate.

Variable Distance Reaching Task

In order to evaluate the behaviour of AICOT we applied it to a reaching task with
varying start-target distance. Specifically, for a fixed start point we considered a se-
ries of targets lying equally spaced along a line in task space. It should be noted
that although the targets are equally spaced in task space and results are shown
with respect to movement distance in task space, the distances in joint space scale
non-linearly. The state cost (21) contained a single term incurred at the final discrete
step with Λ f = 106 ·I. 2(c)&(d) shows the movement duration (= ∑

K
k=0 δk) and stan-

dard reaching cost1 for different temporal-cost parameters α (we used α0 = 2 ·107),
demonstrating that AICOT successfully trades-off the movement duration and stan-
dard reaching cost for varying movement distances. In 2(b), we compare the reach-
ing costs of AICOT with those obtained with a fixed duration approach, in this
case AICO. Note that although with a fixed, long duration (e.g., AICO with du-
ration T=0.41) the control and error costs are reduced for short movements, these
movements necessarily have up to 4× longer durations than those obtained with
AICOT. For example for a movement distance of 0.2 application of AICOT results
in a optimised movement duration of 0.07 (cf. 2(c)), making the fixed time approach
impractical when temporal costs are considered. Choosing a short duration on the
other hand (AICO (T=0.07)) leads to significantly worse costs for long movements.
We further emphasis that the fixed durations used in this comparison were chosen
post hoc by exploiting the durations suggested by AICOT; in absence of this, there
would have been no practical way of choosing them apart from experimentation.
Furthermore, we would like to highlight that, although the results suggests a simple

1 n.b. the standard reaching cost is the sum of control costs and cost on the endpoint error, without
taking duration into account.
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Fig. 3: Comparision of AICOT ( ) to AICO with the common modelling ap-
proach ( ) with fixed times on a via point task. (a) End point task space trajectories
for two different via points obtained for a fixed start point . (c) The correspond-
ing joint space trajectories. (b) Movement durations and reaching costs (control +
error costs) from 10 random start points. The proportion of the movement duration
spend before the via point is shown in light gray (mean in the AICOT case).

scaling of duration with movement distance, in cluttered environments and plants
with more complex forward kinematics, an efficient decision on the movement du-
ration cannot be based only on task space distance.

Via Point Reaching Task

We also evaluated the proposed algorithm in a more complex via point task. The task
requires the end-effector to reach to a target, having passed at some point through a
given second target, the via point. This task is of interest as it can be seen as an ab-
straction of a diverse range of complex sequential tasks that requires one to achieve
a series of sub-tasks in order to reach a final goal. This task has also seen some in-
terest in the literature on modelling of human movement using the optimal control
framework (Todorov and Jordan, 2002). Here the common approach is to choose the
time point at which one passes the via point such as to divide the movement duration
in the same ratio as the distances between the start point, via point and end target.
This requires on the one hand prior knowledge of these movement distances and on
the other, makes the implicit assumption that the two movements are in some sense
independent.

Here, we demonstrate the ability of our approach to solve such sequential prob-
lems, adjusting movement durations between sub-goals in a principled manner, and
show that it improves upon the standard modelling approach. Specifically, we ap-
ply AICOT to the two via point problems illustrated in 3(a) with randomised start
states2. For comparison, we follow the standard modelling approach and apply
AICO to compute the controller. We again choose the movement duration for the
standard case post hoc to coincide with the mean movement duration obtained with

2 For the sake of clarity, 3(a)&(c) show mean trajectories of controllers computed for the mean
start state.
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AICOT for each of the individual via point tasks. Each task is expressed using a
cost function consisting of two point target cost terms. Specifically, (21) takes the
form

c(x1:K) = (φ(x K
2
)− y∗v)

>
Λv(φ(x K

2
)− y∗v)+(φ(xK)− y∗e)

>
Λe(φ(xK)− y∗e) ,

with diagonal matrices

Λv = diag(λpos,λpos,0,0)
Λe = diag(λpos,λpos,λvel ,λvel) ,

where λpos = 105 & λvel = 107 and vectors y∗v = (·, ·,0,0)>, y∗e = (·, ·,0,0)> desired
states for individual via point and target, respectively. Note that the cost function
does not penalise velocity at the via point but encourages the stopping at the tar-
get. While admittedly the choice of incurring the via point cost at the middle of the
movement ( K

2 ) is likely to be a sub-optimal choice for the standard approach, one
has to consider that in more complex task spaces, the relative ratio of movement
distances may not be easily accessible and one may have to resort to the most intu-
itive choice for the uninformed case as we have done here. Note that although for
AICOT this cost is incurred at the same discrete step, we allow δk before and after
the via point to differ, but constrain them to be constant throughout each part of
the movement, hence, allowing the cost to be incurred at an arbitrary point in real
time. We sampled the initial position of each joint independently from a Gaussian
distribution with a variance of 3◦. In 3(a)&(c), we show mean trajectories in task
space and joint space for controllers computed for the mean initial state. Interest-
ingly, although the end point trajectory for the near via point produced by AICOT
may look sub-optimal than that produced by the standard AICO algorithm, closer
examination of the joint space trajectories reveal that our approach results in more
efficient actuation trajectories. In 3(b), we illustrate the resulting average movement
durations and costs of the mean trajectories. As can be seen, AICOT results in the
expected passing times for the two via points, i.e., early vs. late in the movement for
the near and far via point, respectively. This directly leads to a lower incurred cost
compared to un-optimised movement durations.

Sequential and Joint Planning

In order to highlight the shortcomings of sequential time optimal control, we com-
pare planning a complete movement, referred to as joint optimisation, to planning a
sequence of individually optimised movements. We again use the via-point task of
the previous section and performed (i) planning using AICOT on the entire task (ii)
using AICOT to plan for to reaching tasks – start point to via-point and via-point
to final target – by splitting the cost function. In the latter the end state of the first
reaching movement, rather then the via-point, was used as initial state for the second
sub-task. 4 summarises the results. As can be seen in 4(a) the two approaches lead
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Fig. 4: Joint ( ) vs. sequential ( ) optimisation using our approach on a via-point
task as descibed in the main text. (a) Task space trajectories for the fixed start point

. Via-point and target are indicated by and , respectively. (b) The movement
durations and reaching costs for 10 random start points. The mean proportion of the
movement duration spend before the via point is shown in light grey.

to solutions with substantially different end-effector trajectories in task space. The
joint optimisation, accounting for the need to continue to the eventual target after
the via-point, yields a different approach angle. The profound effect this has on the
incurred cost can be seen in 4(b). While the joint planning incurs higher cost before
the via-point the overall cost is more than halved. Importantly, as the plot of the
movement durations illustrates, this reduction in cost is not achieved by an increase
in movement duration, with both approaches leading to not significantly different
durations. However, one should note that this effect would be less pronounced if the
cost required stopping at the via-point, as it is the velocity away from the end target
which is the main problem for the sequential planner.

4.2 7-DOF robotic manipulation tasks

We now turn to evaluating the method for planning with the 7-DOF Kuka lightweight
robot. Our aim is two fold, on the one hand to demonstrate scalability to practical
applications, and on the other hand, to demonstrate that in practical tasks temporal
optimisation can significantly improve the results compared to naive selection of the
movement durations.

The state of the plant is given by x = (q, q̇), with q ∈ R7 the joint angles and
q̇ ∈R7 the associated angular velocities. The controls u ∈R7 are the joint space ac-
celerations. We also added some i.i.d. noise with diagonal covariance. The trajectory
cost takes the general form
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(a) (b)

Fig. 5: Example configurations for the tasks used with KUKA 7-DOF robotic sys-
tem in simulation. (a) The simple obstacle task. The manipulator has to reach with
it’s end-effector to the target whilst avoiding the obstacles . The task is ran-
domised by sampling both the target and the obstacle positions. (b) The complex
obstacle task. The manipulator starts in one hole and has to reach for the target
in the other, whilst avoiding collisions with the wall. The position of the wall is
randomised.

Method Simple Obstacles Complex Obstacle
AICO 1 1
AICOT (end cost) 0.585 (± 0.337) 0.635 (± 0.085)
AICOT (full) 0.549 (± 0.311) 0.123 (± 0.047)

Table 1: Results for application of AICOT to the robotic manipulation with obsta-
cles in the reaching tasks illustrated in 5. Shown are the mean ratio of expected cost
relative to AICO and it’s standard deviation.

C(x1:K ,u1:K ,T ) =
K

∑
k

( M

∑
m=1
‖φm(xk)− y∗m‖2

Λm,k
+u>k δkCuuk

)
(22)

where the tuplets (φm,Λm,k,y∗m) define the task variables, consisting of a task space
mapping, a time varying diagonal weight matrix and the desired state in task space.

In each task we compare three methods:

• AICOT(full) is the complete algorithm as described in 3.2.
• AICOT(end cost) is the algorithm as described in 3.2. However, the gradient is

calculated taking only the reaching cost into account, i.e., ignoring joint limit and
obstacle costs. The intention is to illustrate that selection of duration needs to take
into account the entire problem and can not be simply based on a target-distance
law as could be derived from, e.g., 2.

• AICO is the algorithm with fixed duration. This is to provide a comparison to the
naive approach prevalent in the literature. Note however that, we set the duration
the mean duration obtained by AICOT(end cost). Hence it was in some sense
adapted to the task distribution. Without AICOT, selection would have, at best,
relied on manual selection based on an individual task instance or, at worst, a
random guess. Both approaches lead to substantially worse results.
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Simple Obstacle Reaching Task

We first consider a standard reaching task with obstacles. The task is defined via the
following set of task variables

• Reaching: with φ1(x)∈R6 the arm’s end effector position and velocity. The cost
is incurred in the final time step only, i.e., Λ1,k 6=K = 0, and y∗ indicates the desired
state end-effector positions with zero velocities.

• Joint Limits: with φ2(x) ∈ R a scalar indicating danger of violating joint limits.
Specifically,

φ2(x) = ∑
j

H (d j− ε)2 , (23)

with d j the distance to the joint limit between of joint j, H the heavy-side func-
tion and margin ε = 0.1rad. This task variable is considered throughout the tra-
jectory, i.e. Λ2,1 = Λ2,1 = · · ·= Λ2,K .

• Collisions: with φ2(x)∈R a scalar indicating proximity of obstacles. Specifically
φ2 takes the general form (23) with d j the shortest distance between a pair j
of collidable objects, i.e. the set of links of the arm and obstacles, and margin
ε = 0.02m. Like the joint limits, this task variable is also considered throughout
the trajectory.

Although the resulting finite cost functions can not guarantee that collisions with
obstacles or joint limits will not occur, such approximations are typical in the litera-
ture (e.g., (Toussaint, 2009; Ivan et al., 2013)) and lead, under appropriate weighting
between the reaching and collision components, to good results with low collision
probability.

We consider a randomised task with two spherical obstacles, an example config-
uration being illustrated in 5(a). Specifically, both the target and obstacle positions
are randomly sampled, the latter so that they lie near the direct path to the target
so as to influence the solution. The results are summarised in 1. As different task
instances can give rise to very different expected costs, we compare expected costs
relative to AICO, i.e., the improvement of the methods over the baseline without
temporal optimisation. The expected costs are estimated from sampled trajectories
and we consider 50 task instances. As can be seen, temporal optimisation improves
upon the naive application of AICO. In particular note that, instance specific dura-
tions as given by AICOT(end cost) improve significantly on selecting an informed
constant duration (the mean duration over task instances). Furthermore, taking the
entire problem into account leads to increasing gains as the problem complexity
increases.

In general we note that a possible straightforward extension of the gradient based
algorithm whereby we solve the problem incrementally, by using the solution of
a reduced problem with intermediate cost terms removed, i.e., the AICO-T (end
cost) approach, as an initialization of AICO-T (full) can significantly improve the
computational complexity of the gradient based method for problems with many
intermediate costs terms.
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Complex Obstacle

We now consider a generic instance of a task involving manipulation in constrained
spaces. It comprises the same basic task variables as used with the simple obstacle
above. However instead of using spherical obstacles we use a wall with two holes
as illustrated in 5(b). The end-effector starts reaching through one of the holes and
the reaching target lies in the other hole. Due to their local nature direct application
of AICO fails in this task, as do alternative local solvers like, e.g., ILQG. However,
in the context of AICO (Zarubin et al., 2012) suggested using parallel inference in
the normal state space and a abstract topological representations to overcome lim-
itations of local planning in such tasks. With a suitable topological representation
the task becomes nearly linear in the alternative representation, which then serves
to regularise further inference in the plant’s state space. Here we use the interac-
tion mesh representation suggested by Zarubin et al. (2012), a scale and position
invariant representation of relative positions of the plant and markers in the environ-
ment. This representation has been used for this task by Ivan et al. (2013) who also
used AICO. For this experiment we again sampled the position of the wall relative
to the manipulator and compared the relative expected costs averaged over 50 task
instances. The results are shown in the second column of Table 1.

5 Conclusion

The contribution of this paper is a novel method for jointly optimizing a trajec-
tory and its time evolution (temporal scale and duration) in the stochastic optimal
control framework. In particular, two extension of the AICO method of Toussaint
(2009) with complementary strength and weaknesses are presented. The gradient
based approach, on the one hand, is widely applicable but can become computa-
tionally demanding. Meanwhile, the EM method provides an algorithm with lower
computational cost, is however only applicable for certain classes of problems.

The experiments have concentrated on demonstrating the benefit of temporal op-
timisation in manipulation tasks. However, arguably it is dynamic movements which
can benefit most from temporal adjustment. An example of this was seen in the
brachiation task of (Nakanishi and Vijayakumar, 2012), where our framework was
applied to brachiation with variable stiffness actuation, showing that an coordinated
interplay of stiffness and temporal adjustment gives rise to gains in performance.
We anticipate that, with the general rise of interest in variable impedance, e.g., in
throwing (Braun et al., 2012), locomotion (Enoch et al., 2012) or climbing robots
(Long et al., 2011), temporal optimisation will become a necessity if the capabil-
ities of the dynamical system are to be fully exploited. Our framework provides a
principled step in this direction.
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