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Abstract— For assisting humans in their daily lives, robots
need to perform long-horizon tasks, such as tidying up a
room or preparing a meal. One effective strategy for handling
a long-horizon task is to break it down into short-horizon
subgoals, that the robot can execute sequentially. In this paper,
we propose extending a predictive learning model using deep
neural networks (DNN) with a Subgoal Proposal Module (SPM),
with the goal of making such tasks realizable. We evaluate
our proposed model in a case-study of a long-horizon task,
consisting of cutting and arranging a pizza. This task requires
the robot to consider: (1) the order of the subtasks, (2)
multiple subtask selection, (3) coordination of dual-arm, and (4)
variations within a subtask. The results confirm that the model
is able to generalize motion generation to unseen tools and
objects arrangement combinations. Furthermore, it significantly
reduces the prediction error of the generated motions compared
to without the proposed SPM. Finally, we validate the generated
motions on the dual-arm robot Nextage Open. See our accom-
panying video here: https://youtu.be/3hYS2knRm5o

I. INTRODUCTION

Robots capable of performing daily activities, such as
cooking, will have to reason about long-horizon manipu-
lation tasks [1], [2]. One effective strategy of handling a
long-horizon task (goal) is to break it down into subtasks
(subgoals) and then organize them in a way that leads to
the desired outcome. For instance, cooking combines the
subtasks of peeling, cutting, stirring and so on, to achieve
the final goal of preparing a meal. Hence, the key question
we address in this work is: given a final goal requiring long-
horizon manipulation, how can robots propose subgoals,
without human assistance, to improve task completion?

There are several challenges with automatically setting
subgoals to achieve long-horizon manipulation tasks, that
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Fig. 1: Dual-arm robot cutting a pickle with a knife, and a
pizza with a pizza cutter.

require multiple subtasks namely conduct grasping and re-
leasing objects more than three times. First, the robot needs
to consider the order of the subgoals to pursue. For example,
we typically wash, then peel, then chop the vegetables.
Second, for each stage of the task, the robot has to select
the appropriate subgoal from multiple possible subgoals.
For instance, we select the vegetable knife instead of the
bread one to chop the vegetables, even though both of
them are possible choices. There are other works addressing
this specific topic of tool selection [3]–[6]. Third, at each
stage, the robot also needs to select the appropriate arm
or both for the subtask, which will depend on reachability
and avoiding interference between the arms [7]. Finally, due
to the interactive nature of manipulating objects, there is
some stochasticity associated with each individual subtask.
Therefore, for each subtask, the robot also needs to adjust the
motion to slight variations in the locations of the objects/tools
as well as the timing of each action.

A. Related Work

Lynch et al. [8] and Nair et al. [9] tackle the challenge of
achieving a manipulation task composed of several subtasks.
Lynch et al. [8] uses the pairs of current and goal images to
estimate the entire sequence of actions to achieve the goal,
by encoding the task in a latent space. Nair et al. [9] also
uses difference between a current image and a goal image
to infer the latent space, but to select the following action.
Florensa et al. [10] used Reinforcement Learning to learn
all feasible goal paths in the environment for locomotion.
However, all the works encode different subtasks as a single
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Fig. 2: The table setting through the robot eye camera, and the whole flow of the long-horizon cutting and arranging tasks.
In the right figure, the tasks of gray boxes require to be conducted by left arm, the white boxes by right arm, and the white
circles by dual arms.

task and, therefore, only tackle short sequences of subtasks.
Lin et al. [11] propose a method for learning a sequence

of subtasks from demonstration. They use a Variational Auto
Encoder (VAE) to infer a latent vector that represents the
subtasks in the latent space as intermediate goals. Pertsch et
al. [12] also learn a sequence of subtasks where, additionally,
they handle the possibility of multiple following subtasks
by using a distance metric in the latent space. Other sim-
ilar approaches of handling the multiple choice of subtask
are [13], [14]. However, these methods focus on the high
level reasoning of the subgoals, which ignores aspects of the
variations within the subtasks.

Junge et al. [15] addressed the problem of slight variations
in the time duration of each of the subtasks by optimizing
learnt parameters that relate with the subtask duration. Wang
et al. [16] and Holladay et al. [17] both address the challenge
of uncertain position of the object being manipulated. They
propose methods for generating robot motions based on
the confidence of the estimated object pose. Additionally,
Holladay et al. [17] took into account force constraints. All
the previous works focus on adaptations within a subtask,
given a pre-specified sequence of subtasks.

B. Problem Description

Previous works fail to address very long-horizon manip-
ulation tasks, requiring many intermediate subtasks, and the
use of dual-arm robots, which increases the combinations of
possible motions. Therefore, we aim to address the challenge
of generating long-horizon manipulation motions for dual-
arm robotic tasks, for which the introduction of subgoals can
benefit the task completion. For that, we need to consider:
(1) the order of the subtasks, (2) subtask selection, (3)
coordination of dual-arm, and (4) variations within a subtask.

As case study, we use the task of cutting and arranging
a pizza, whose assembly order is strict and needs multiple
grasping subtasks. Fig. 1 shows the dual-arm robotic setup,
and Fig. 2 shows the workspace board and the task flow.
The task consists in a robot picking a pickle and fixing on
the cutting board, cutting a pickle with a vegetable knife,
followed by placing a piece of it on a pizza dough and
returning the remaining to the storage box. Then picking the
box with pizza and moving it to the cutting board, cutting
the pizza with a pizza cutter, and finally placing the box
and knives in their initial positions. We increase the number

of combinations of possible motions by: having different
possible initial placements for the knives and the ingredients,
including being on the left side of the workspace, requiring
the robot to perform handover of the knives to be able to
always cut with the right arm. Given the interactive nature
of the task, the ingredients and knives inevitably end up in
slightly different positions throughout the task. Therefore,
the robot needs to consider: proper order to act, proper tool
selection, dual arm coordination, and adaptation to variations
in objects’ positions.

C. Contribution

In previous work [6], we proposed a DNN model consist-
ing of a Convolutional Autoencoder (CAE) [18] and a Mul-
tiple Timescales Recurrent Neural Network (MTRNN) [19]
for learning subtask selection and adaptation within subtask
variations. We applied our method to the problem of tool
selection in a stirring and pouring scenario according to the
ingredient properties. The CAE transforms images into small
dimensional features, while the MTRNN predicts next time
sensorimotor data and generates motions. We showed that
the MTRNN can integrate multimodal information, and the
robot could recognize tool-object relations from the visual
and tactile information. Additionally, the MTRNN’s slow
and fast context nodes allow it to learn fairly long time-
series data. However, we will show that for demonstrations
with longer time horizons and number of subtasks, such as
the ones described in the Section I-B, the prediction error
increases significantly.

In this work we improve the previous DNN model by
adding a Subgoal Proposal Module (SPM), which can pro-
pose subgoals to the MTRNN. At each time step, the SPM
predicts the following subgoal only by using the current
and the final goal images. We train both the SPM and
MTRNN by demonstration providing examples of the sub-
goals, which follow a specific rule to break the long-horizon
task. During the test, the MTRNN generates robot motions
using the subgoals predicted by the SPM. We evaluate our
proposed method using the task of cutting and arranging
pizza described in the Problem Description using the Nextage
open [20], where we test if the model can generalize to
unseen arrangement combinations of tools and food objects.
We compare the proposed method against our previous work,
to confirm the effectiveness of the SPM in improving motion



generation. In summary, our contributions are as follows:
• Proposing a method for learning long-horizon robot

motions with several possible subtasks, by adding a
Subgoal Proposal Module (SPM) to the CAE and
MTRNN architecture.

• Demonstrating that the encoding of the subgoals allows
the learnt model to generalize to unseen arrangement
combinations of tools and objects being manipulated.

• Validating the generated motions in a physical dual-arm
robotic setup.

II. METHOD

There are three steps for constructing the DNN model:
demonstration data collection, indicating subgoals of training
data, and training DNN modules.

A. Demonstration Data collection

For collecting the demonstration data, we control the
robot by teleoperation or replay of keyposes, for the whole
cutting and arranging process, and record time-synchronized
sensorimotor data, consisting of image, force, torque, end-
effector position, and gripper width. For teleoperation, we
use a 3D mouse controller to command the robot during
cutting, and pick and place subtasks. We use keyposes for
sending the robot to specific pre-specified positions, such as
above the knives and food objects.

B. Indicating subgoals

We set subgoals for training data according to the fol-
lowing the rules: the robot (a) changes the gripper width,
(b) arrives to the home position and (c) starts or finishes
cutting, which can divide the long-horizon task to short
subtasks. These rules correspond to the switches between
different types of actions; for example from a tool-selection
subtask to grasping subtask, from a tool bringing subtask to a
towarding to the board subtask, and from a towarding to the
board subtask to a cutting subtask. We hypothesise that, after
training, the SPM will be able to propose subgoals according
to the rules.

In our task, we indicate subgoals with images because they
can show the situations of workspace and tell the actions to
be conducted, that is one of the simplest ways to label the
subgoals.

C. Deep learning modules

Fig. 3 shows the overall DNN model, with the CAE and
the MTRNN, from our previous work [6], and the additional
SPM. There are 2 stages to train the DNN model. The first
is training the CAE. Then simultaneously training the SPM
and the MTRNN, while fixing the weights of the CAE.

1) CAE: We trained the CAE [18] to make the output
image data the same as the input image data. Then 30
nodes of the intermediate layer extracts the image features
(yImgFeature(t)). Table I shows the construction. As the activa-
tion function, we use sigmoid for the middle layer and ReLU
for the others, with kernel 4×4, stride 2 and zero padding
1. The module is trained 1000 epochs and thereafter, we add

noise of brightness, parallel translation and rotation to the
training image data and train additional 100 epochs.

TABLE I: Structure of the CAE and SPM (till line 7)

Input Output Processing
1 (96, 64, 3) (48, 32, 32) convolution
2 (48, 32, 32) (24, 16, 64) convolution
3 (24, 16, 64) (12, 8, 128) convolution
4 (12, 8, 128) (6, 4, 256) convolution
5 6144 600 fully connected
6 600 200 fully connected
7 200 30 fully connected
8 30 200 fully connected
9 200 600 fully connected
10 600 6144 fully connected
9 (6, 4, 256) (12, 8, 128) deconvolution
10 (12, 8, 128) (24, 16, 64) deconvolution
11 (24, 16, 64) (48, 32, 32) deconvolution
12 (48, 32, 32) (96, 64, 3) deconvolution

2) SPM: We construct the SPM encoder, for outputting
subgoal features using final goal and current image, whose
idea refers [9]. For training the module, we use indicated
ground truth subgoals mentioned in Section II-B. At first,
the images of indicated subgoals are converted to image
features by the CAE, which is ground truth subgoal image
features (yTruthSubFeature(t)). Then, we train the SPM inputting
difference between a current image (xImg(t)) and the final
goal image which is given in advance, and outputting sub-
goal image features (ySubFeature(t)). The module is trained
minimizing the error as

E =
1
N ∑

(
ySubFeature(t)− yTruthSubFeature(t)

)2
. (1)

The construction and setting are the same as the encoder part
of the CAE, shown in Table I.

3) MTRNN: We use the MTRNN to integrate all data
and predicts the next step from the current and context data.
Because of their large time constant (set 30, whose length
is almost the same as a subtask), slow context (Cs) nodes
learn data sequences, whereas fast context (Cf) nodes with a
small time constant (set 5) learn motion primitives. We set
the number of Cs nodes 50 and Cf nodes 150.

The input of the MTRNN (x(t)) is image features by the
CAE, subgoal features by the SPM, end-effector position and
gripper width, and force / torque sensor data. The forward
calculations of the internal value ui is as

ui(t) =
(

1− 1
τi

)
ui(t −1)+

1
τi

[
∑
j∈n

wi jx j(t)

]
, (2)

where n is the number of neurons, τi is the time constant,
and wi j is the weight. The output is then calculated as

yi(t) = tanh(ui(t)) . (3)

The robot is controlled using the output end-effector position
and gripper width. The value of yi(t) is then used as the next
input value as

xi(t +1) =

 β × yi(t)+(1−β )×T(t +1) i ∈ IO

yi(t) otherwise
,

(4)
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Fig. 3: Overall learning model. The CAE compresses image data to low-dimensional image features. The SPM proposes
subgoals by inputting the current and the final goal image. The MTRNN learns to generate the motions following subgoals.

where IO is Input-Output layer, and T(t) is the input datum,
which is training data-set during training, whereas test data-
set or real time data during evaluation experiments. The next
input value xi(t + 1) is adjusted by multiplying the output
of the preceding step yIO(t) and the datum T(t + 1) by the
feedback rate β (= 0.5). If the feedback rate is large, the
model stably predict the next step, whereas if it is small, the
model easily adapt to the input.

For the backward calculations, we add the error by SPM
(Eq. (1)) and MTRNN (Eq. (5)) and use back propagation
through time (BPTT) algorithm [21] to minimize it to update
SPM and MTRNN at the same time,

E = α ∑
t
(yIO(t −1)−T(t))2 . (5)

We train the SPM and the MTRNN for 2000 epochs in
a well-balanced manner by adjusting the parameter α(=
1/50,000) to make the amount of the error of MTRNN
similar to the one of SPM.

III. EXPERIMENTAL SETUP

A. Hardware design and data sampling

In the robot experiment, we use Nextage open, which has
6 DOF arms and 2 cameras on its head, and we use the left
one. We attach force and torque sensors named F/T Sensor
gamma and Robotiq 2f-140 grippers to its both wrists.

We record robot end-effector xyz-position and quaternion
of both arms (7 dim x 2), gripper width (1 dim x 2), force
and torque data (6 dim x 2), and RGB images (96 (width)
× 64 (height) × 3 (channels)) every 0.2 sec. The lengths
of motions are 118.6 - 155.0 sec, thus they are 593 - 775
steps. The values of image data is normalized to [0, 255] and
other sensorimotor data is normalized to [-0.9, 0.9] before
inputting to the model.

B. Object used and data variance

For experiments, we prepared an orange plastic vegetable
knife and a white pizza cutter. As for food objects, we made
the pickle whose length is 11 cm with 85 g green clay, and
the pizza whose diameter is 9 cm with 70 g orange clay.

TABLE II: Tool and object arrangement, with P: pizza, p:
pizza cutter, K: pickle, k: vegetable knife.

Object
LB P P K K P P K K P P K K
RB K K P P K K P P K K P P
Tool
L k - k - k - k - p p p p

R1 - k - k p p p p k - k -
R2 p p p p - k - k - k - k
Leave untrained for evaluation

1 - - - - - - 1 1 - - 1

The table setting is shown in Fig. 2. We put a tool holder,
2 squared boxes (LB, RB) and a cutting board on a table.
There are 4 places to put tools on the tool holder; L, M,
R1, R2. Both arms can reach the place M, which is used for
passing a tool from left to right hand or vice versa. Thus
there are 3 initial positions for 2 tools, in other words 6
combinations of tool arrangement. Whereas each food object
is put on the boxes, thus there are 2 combinations of initial
object arrangement. Thus there are 12 combinations (6 x 2)
of arrangements.

We used 8 different arrangements of tools and food objects
for training and left 4 for evaluation, given a total of 12
arrangement combinations, as shown in Table II. The 8 train-
ing arrangements cover all subgoals, to make sure the DNN
model experiences all possible actions. For each arrangement
of tools and objects we collected 3 demonstrations, resulting
in a total of 24 training data-sets. We collected all the
data-sets in advance, including the 4 unknown arrangement
combinations of tools and objects left for evaluation.

C. Evaluation

We validate if our model can predict subgoals according
to the rules in Section II-B and generate motions, using the
4 test arrangement combinations. Furthermore, we compare
the results of our model with the baseline, without the SPM.
Finally, we experimentally test the motion generation with
the physical robot, using either data collected offline or in an
online control loop, i.e. with sensory data being generated
online. Hence, the input datum T(t) in Eq. (4) originated
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either from a pre-recorded offline data-set (offline test) or
from online sensor readings (online experiment).

Decision of success or failure is based on the 3 factors; (1)
order of actions, (2) tool and object association, and (3) use
the correct arm (right, left and, dual arm(s)). We check if the
robot can conduct subtasks which matches all the factors.

IV. RESULTS AND DISCUSSION

In this section we present the results of evaluating both
the SPM and the MTRNN, using offline motion generation,
and discuss the case of online motion generation.

A. Analysis of SPM and proposed subgoals

For evaluating that the SPM can propose correct subgoals,
we decoded the subgoals’ features, generated for an unseen
data-set, and reconstructed the images using the decoder of
the CAE. The bottom row in Fig. 4 shows proposed subgoal
images produced while passing the knife from left to right.
The arms’ configuration and corresponding timing shown
in the proposed subgoal images follows the rules described
in Section II-B, indicating that the SPM was able to capture
the rules only from training data.

B. Analysis of MTRNN and motion generation

We compared the predicted end-effector positions gener-
ated by the MTRNN with (ours) and without SPM (baseline)
for the test data. Fig. 5 shows that our model generates
end-effector positions with significantly smaller error than
the baseline, specially towards the final part of the long-
horizon trajectory. Fig. 6 shows the median and 75 percentile
errors of the prediction of the end-effector positions and
angles for the full test data-set, which confirm the trends
in Fig. 5. Furthermore, we streamed the motion generated
by our model in the physical robot hardware, accomplishing
the desired goal, which would have been impossible with the
baseline, given the significant position and orientation errors.
The physical robot succeeded in accomplishing all the 4 test
arrangements, fulfilling correct (1) order of actions, (2) tool
and object association, and (3) use of the correct arm. The
upper row of Fig. 4 shows a part of the task.

To analyze internal state of the MTRNN and check if the
prediction could follow subgoals, we conducted PCA on Cs
nodes, which take a role of memorizing long sequential data
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Fig. 5: Each column corresponds to the output x and y posi-
tion trajectory of the right hand, generated by the MTRNN
using test data. The upper plots show our model predicted
trajectories and the bottom plots show the baseline, without
using the SPM.

BaselineOur DNN model with SPM BaselineOur DNN model with SPM

Fig. 6: The median and 75 percentiles of the prediction error
for the position and pitch and yaw angles (computed from
quaternions) of the right hand, using test data. Comparison
between our model and the baseline (without SPM).

and direct overall actions. The left and right columns of
Fig. 7 show the PCA result for different arrangements of
the tools and objects, where the numbers correspond to the
order of subgoals and the colors to different types of action.
Fig. 7 shows that, for our model and for both arrangements,
the path of the subgoals aligns according to the type of
action. For example, with our model, the subgoals related
with the cutting of the pizza and the cutting of the pickle
cluster in separate areas of the plot. This is an indication



Fig. 7: PCA on sequential internal value of Cs nodes in
MTRNN comparing our model and the baseline. The num-
bers correspond to the order of subgoals and the colors corre-
spond to different types of action. Each column corresponds
to different test arrangements of the tools and objects.

that the Cs nodes structurally represent the sequential nature
of the subgoals that the robot follows. In the case of the
baseline (bottom plots), the Cs nodes appear to be much
less sequentially organized. For example, the subgoals related
with cutting the pizza spread all over the plot. In Fig. 7, we
highlight with a red ellipse a repetition of the flow, which
might explain the repeating pattern of the baseline trajectory
in Fig. 5. We concluded the SPM critically supports MTRNN
for motion generation by sequentially proposing subgoals.

C. Online motion generation

The highly interactive nature of our case study, which
includes motions such as picking up tools and cutting
objects, makes reproducing motions on a physical robot
quite challenging. On one hand, those tasks require quite
precise control of the robot’s end-effectors; and on the other
hand, those interactions can change the objects positions
in unpredictable ways. So far, we discussed the results
corresponding to the case where we were able to use our
learnt model to offline generate a full motion and replay it
in the physical robot, which would have been unattainable
with the baseline model (see position error in Fig. 5). In this
section we investigate the case of deploying the learnt model
in an online fashion, i.e. each control step takes the sensory
data (camera, force/torque, position) from the physical robot
and predicts the next robot position using the learnt model.

When deploying our learnt predictive model in an online
control loop, we realized that there is a small and incremental
growth in the deviation of the robot motion. That compound

error propagation is significant enough that by the time
the robot attempts to pick up the tool for the second time
(corresponding to step 7 in Fig. 2), we have displacements
on the order of 1.5 cm in the xy-plane, consistently making
the robot fail the grasping. The accumulation of the error
in the offline case is less critical because the update of
the next state uses sensory information that is similar to
the one used for learning the model itself. Moreover, the
online experiments took place in a different season from
the data collection, which resulted in significant changes
in the lighting conditions. Furthermore, since we collected
trajectories (using keyposes with added noise) with a fairly
low variation across demonstrations, the training data fails
to cover a large portion of the workspace. Therefore, during
the online experiments, once the robot starts experiencing
different sensory information from the training data, the
error in the prediction increases further, both in the end-
effector’s pose and time of reach. The large range of motion
in our task and the need to synchronise commands of several
modalities/dimensions (such as position, orientation, and
time of grasping) also aggravate the problems previously
described. Although we are able to construct a predictive
model for offline use, we conclude that the problem of
online precise control of robots for long-horizon tasks raises
additional challenges, related with the incorporation of DNN
models in closed-loop systems.

V. CONCLUSION

In this paper, we proposed a DNN model which realizes
long-horizon motion task generation considering (1) the
order of the subtasks, (2) subtask selection, (3) coordina-
tion of dual-arm, and (4) variations within a subtask. The
model contains: the CAE which compresses images to low
dimensional features; the Subgoal Proposal Module (SPM)
which predicts following subgoal, from difference between
current and final images; and the MTRNN which generates
a motion according to the proposed subgoal. We tested
motion generation experiments with untrained tool and object
arrangement combinations, and confirmed the effectiveness
of subgoal proposal by comparing it against the baseline
without SPM.

As we discussed in Section IV-C, there are limitations
in precise manipulation and robustness to online motion
generation. To address this issue, we will investigate the
combination of DNN with motion planning, such that the
DNN generates higher-level decision and the motion planner
generates lower-level precise control.

In this task, we indicated the subgoal with images, which
can tell the situations and actions needed, however other
ways to label subgoals would be useful for other tasks. The
next work would be implementing other logical way to label
subgoals for other variety of tasks. In addition, our current
method requires a supervised learning phase where we pro-
vide examples of the ground truth subgoal images. For future
work, We would also like to investigate the application of
unsupervised learning methods for automatically extracting
subgoal images from sequential videos.
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