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Abstract

In many everyday situations, humans must make precise decisions in the presence of uncertain sensory information. For
example, when asked to combine information from multiple sources we often assign greater weight to the more reliable
information. It has been proposed that statistical-optimality often observed in human perception and decision-making
requires that humans have access to the uncertainty of both their senses and their decisions. However, the mechanisms
underlying the processes of uncertainty estimation remain largely unexplored. In this paper we introduce a novel visual
tracking experiment that requires subjects to continuously report their evolving perception of the mean and uncertainty of
noisy visual cues over time. We show that subjects accumulate sensory information over the course of a trial to form a
continuous estimate of the mean, hindered only by natural kinematic constraints (sensorimotor latency etc.). Furthermore,
subjects have access to a measure of their continuous objective uncertainty, rapidly acquired from sensory information
available within a trial, but limited by natural kinematic constraints and a conservative margin for error. Our results provide
the first direct evidence of the continuous mean and uncertainty estimation mechanisms in humans that may underlie
optimal decision making.
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Introduction

Uncertainty is a fundamental property of the world, as any avid

butterfly collector will attest. To anticipate the fluttering flight of

papilionoidea, one must wait patiently, accumulating evidence about

the underlying statistics of its rapid and unpredictable movements.

Success is only achieved when one is prepared with a large enough

net to accommodate the variability in both the butterfly’s

trajectory and the movement of one’s arm.

To handle the inevitable uncertainty in the world, people make

decisions based on previous experience, as well as statistical

information acquired directly from stimuli. For example, the

statistics of the environment govern our perceptions and our

decision making processes when we reach for targets [1,2],

interpret visual scenes [3–5] and combine multiple sensory

modalities [6–9]. This growing body of psychophysical experi-

ments supports the proposition that some aspects of perception are

statistically-optimal, in the sense that decisions made are often

quantitatively indistinguishable from a maximum-likelihood ideal

observer (although some studies are inconsistent with this theory

[10–13]). To achieve optimality when combining multiple sensory

cues, the nervous system requires an estimate of the reliabiliy of

the sensory information [3,14]. However, despite its fundamental

importance to the theory, the question of how humans gather the

relevant statistical information to make their optimal decisions

remains largely unexplored [15].

The theory of statistical optimality in the brain relies crucially

on the fact that humans must somehow accumulate statistical

information from unpredictable stimuli. For example they may

need to estimate not only the mean, but the expected variability in

this estimate of the mean (or their confidence). Recently, it was

shown that humans are not only able to predict the position of

objects moving along random or noisy trajectories, but also that

they are able to report a level of confidence in this prediction [16].

This is not a uniquely human capacity: rats are also capable of

uncertainty-based decisions [17]. It has been shown that subjective

perception of uncertainty is closely related to the objective

uncertainty (the measured variability in performance) [15],

indicating that subjects are, indeed, acutely aware of the

uncertainty in their decisions.

The forced-choice paradigm is classically used to compare

decisions under uncertainty (e.g. [6,18]). However, it has been

argued that uncertainty may indirectly modulate behaviour in

such designs (see [19] and discussion), and a direct approach is

preferred [16]. In this study we focus on a continuous decision-

making task in which we require subjects to actively report their

estimates of the mean and confidence of uncertain visual stimuli.

We will ask the question of how these estimates are formed from

the evidence provided, specifically addressing how the visual cues

that comprise the stimulus are integrated to form a robust percept

of its mean and variance.
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To achieve these aims we present a novel experimental

paradigm that requires subjects to explicitly track the mean and

variance of noise-perturbed visual cues. We control the arrival of

noisy visual stimuli over time, allowing us to monitor the

behavioural consequences as sensory evidence accumulates. In

two variants of our ‘‘butterfly catching’’ task we ask subjects to (i)

track the mean of ‘‘fluttering’’ visual cues (viz. localising a butterfly);

and (ii) indicate the range in which they believe the mean of the

cues to lie (viz. choosing an appropriate size of net).

From trial-to-trial we modulate the underlying distribution of

the cues, allowing us to observe the evolution of mean and

confidence estimates with respect to the visual cues responsible for

their formation. Using a sensorimotor model we show the extent to

which the observed trajectories are statistically-optimal under the

kinematic limitations of human motion, while computation of the

weights allocated to each visual cue over time allows us to expose

the mechanisms of sensory integration underlying the processes of

continuous estimation.

Results

Experimental Paradigm
In this paper we introduce the ‘‘butterfly catching’’ paradigm,

illustrated in figure 1. Subjects are required to judge the statistical

properties of a ‘‘fluttering’’ temporal sequence of visual stimuli

which are projected onto the line of their left forearm. Subjects

localise the stimuli with a variable sized ‘‘net’’, indicated by lines

projected from the forefinger and thumb of their right hand. They

are successful in a given trial if the mean of the stimuli lies within

the aperture of their net, and are given points at the end of each

trial if successful. For a complete description of these details see

Materials and Methods.

The fluttering visual cues are a sequence of blurry dot-clouds,

with cloud locations distributed in time according to a pseudo-

Normal distribution with mean m and variance s2 (see figure 1C

and Materials and Methods). The perceived uncertainty of clusters of

noisy visual samples changes as a predictable function of their

number [12], but in the present study the noisy clusters are

distributed in time rather than space so that we can examine the

continuously evolving perception of the mean and uncertainty of

the stimuli as evidence arrives over time.

In Task 1 we examine subjects’ ability to estimate the mean, m,

of the visual stimuli using a cursor with small fixed aperture

(figure 1D, left). We modulate the variance of the visual cues,

s2,from trial-to-trial. The maximum score is attained when

subjects navigate to the true mean of the stimuli.

In Task 2 subjects must instead indicate the range of values in

which they believe the mean to lie, using a variable cursor aperture

(figure 1D, right), with width determined by the distance between

the thumb and forefinger. From Task 1 we establish a linear

mapping from s to mean endpoint error to provide performance

feedback in Task 2 that forces subjects to report their objective

uncertainty (by optimising the trade-off between accuracy and point-

scoring). We assume subjects can acquire this mapping during the

450 trials preceding Task 2.

Task 2 demands subjects to report their mean and confidence

estimates simultaneously, providing a unified paradigm to evaluate

the mechanisms underlying the formation of these statistical

estimators. To expose these mechanisms we manipulate the

distributions of the stimuli from trial-to-trial in two ways: (i) we

modulate the variance of the visual cues, s2; and (ii) we add

perturbations to subsets of the cues, (block b, direction p). s2, b

and p are chosen randomly from trial-to-trial.

In manipulating the cue variance (s2[ low, medium and high) we

hypothesised that subjects would estimate the mean and (based on

[15,20]) report the objective variability in their performance. An

increase in cue variance should be reflected in both an increased

distribution of errors in localising the mean and decreased

confidence.

To induce perturbations we divided the sequence of cues on a

given trial into three blocks (b[ early, middle, late) and shifted cues in

a given block by 0:2s in a chosen direction (p[ negative, positive,

neutral). All other cues were shifted in the opposite direction by

0:1s, so that the overall mean remained the same. We

hypothesised that subjects would integrate the cues over time to

compute mean and confidence estimates. By inducing within-trial

cue perturbations we can infer the contribution of each cue in the

sequence to the final decision.

We found that subjects were equally good at mean estimation in

both tasks, shown in Figure S1. To compare the two tasks

(excluding trials with perturbations) we conducted a within-

subjects analysis of variance (ANOVA) on the mean endpoint

error (the mean absolute deviation of the final mean estimate from

the target), with a two-level factor of task (Task 1 and Task 2) and

three-level factor of s2 (low, medium, high). This revealed a

significant main effect of s2 (F (2,12)~270, pv0:001) but no

main effect of task (F (2,12)~0:022, p~:86) and no interaction

(F (4,12)~0:11, p~:90). The significant effect of s2 confirms that

the variance manipulation increases the task difficulty as expected.

The absence of task effect indicates that Task 1 performance

variability is a reliable predictor of Task 2 performance variability,

justifying the score function used in Task 2.

Continuous Estimation of the Mean
In figure 2 we present the resulting trajectories for a typical

subject performing Task 2. Figure 2A shows four example

trajectories which illustrate the consequence of early, middle and

late-onset perturbations on decisions. From the smooth trajectories

it appears that subjects gradually accumulate sensory evidence,

responding (after a delay) to perturbations. Though there is high

variability across trials (figure 2C) we observe distinct trajectories

for the different experimental manipulations (figure 2B).

In figure 3 we present the results averaged across subjects. The

distinguishing features of the empirical trajectories (figure 3A) are

(i) high initial variability (arrow a); (ii) trajectory deviations shortly

after the onset of the perturbation (arrows b, d and f); (iii)

spontaneous changes in direction (i.e. inflexions, arrows c and e);

and (iv) endpoint errors (deviations of the final estimate from the

target, figures 3B, 3C and 3D); From the interval of the standard

error across subjects it is apparent that these phenomena are

robust. Note that in figure 3A the trajectories are centred on the

true target location (the average of all cues in the sequence,

including those which are perturbed). Recall that the perturbation

of a given block is balanced by perturbations of half-magnitude of

the remaining blocks in order to preserve the overall mean. This

results in deviations that oppose the larger perturbation prior to its

onset and follow the larger perturbation after its onset (for

example, note that that a rightward perturbation in block 3 is

balanced by a leftward perturbation of blocks 1 and 2). Responses

to perturbations demonstrate the within-trial contribution of cues

to perception.

We devised a model of motor behaviour to account for the

latencies observed in decisions (see Materials and Methods). The

model observer integrates the visual cues in a statistically optimal

fashion (by computing the maximum likelihood mean estimate).

This estimate manifests itself through the movement of the cursor,

which we constrain by introducing three parameters, namely

Continuous Estimation for Optimal Decision-Making
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sensorimotor latency, d, maximum speed, b and momentum a (see

Materials and Methods). This model accounts both qualitatively and

quantitatively for the key features of the empirical data, such as the

magnitude and timing of direction changes, and the magnitude of

endpoint deviation and endpoint error (figure 3C and 3D). The

model parameters were optimised per-subject to ensure the best

possible fit to the data (see Materials and Methods), but these

parameters are global to all conditions and have no capacity to

explain the role of individual cues on decisions, nor the effects of

cue perturbations or variance (see Discussion). In figure 3C we see

that the empirical data is biased in the positive direction. For the

unperturbed condition, the model predicts an average deviation of

zero but the empirical data shows a +6 pixel deviation. It is

unlikely that this small systematic error is due to an alignment issue

between the visual stimuli and the hand, as the apparatus was

carefully calibrated and the effects of visual-spatial mismatch on

task performance are expected to be minimal [19]. We suspect

that the systematic error may be due to subjects’ preference for

certain limb configurations and is an unavoidable consequence of

the task. Nevertheless, the timing and magnitude of the key

features of the empirical data are accurately predicted by our

model. This indicates that subjects can form a continuous estimate

of the mean which evolves over time as evidence arrives.

Mechanisms of Temporal Cue Integration
To understand the mechanisms by which subjects estimate the

mean we can infer the contribution of each of the visual cues to the

evolving estimates. These are computed per-subject by linearly

regressing the cue locations to the decision made at each time-step,

over all trials (for full details see Materials and Methods).

Figure 4 shows the resultant cue weights for the empirical

trajectories (figures 4A–4D) and the model trajectories (4E–4H).

Our regression method assigns a weight to each cue (including

cues that have not yet been observed), quantifying its contribution

to the decision at each time step. The weight assigned to future

cues provides useful validation that the regression method is

successfully discriminating the contributions of each cue and not

fitting noise. During the initial 0.5 s of the trajectory we see that

causality can not be reliably discerned, and therefore all cues

(including future ones) are equally weighted (figure 4C). However,

after this brief initial stage we see that the weight assigned to future

cues declines, indicating that empirical decisions are correctly

attributed to only the observed cues.

In figure 4A we plot the ‘‘integration window’’ at different times

within the trial - this illustrates theweights assigned to all of the the

observed cues at each time-step. We notice that each line is

approximately horizontal, indicating that each cue contributes

equal weight to the decision at each time step. In figure 4B we plot

a curve for each cue to show how each cue’s weight rises after it

has been seen, then gradually decays as more evidence arrives to

share equal weight with the other cues. This can be visualised in

Video S1.

The systematic component of the weight regression (figure 4D)

reveals an initial bias of +20 pixels, but this subsides after 1 second.

The large initial variability is due to the randomisation of the

target location m, which subjects quickly navigate towards. A slight

positive bias of around +6 pixels remains for the entire trajectory,

which is also observed in trajectory data (figure 3C). The weight

regression confirms that this is not a cue-driven error but indeed a

systematic error.

Figure 1. Experiment Setup. Illustration of the butterfly-catching experiment setup. (A) Projection Rig. Subjects placed their left forearm under a
mirror, and used their right hand to localise 2D visual stimuli that appeared at a random target location, m, along the forearm. (B) Cursor Control.
Using a mirror aligned with a rear-projection screen we presented visual feedback onto the horizontal plane of the arm. We used a 3D magnetic
tracking system to record forearm and finger positions. Finger positions were represented by a 2D visual cursor and the arm by a target line. Visual
cues (top half of figure) were aligned veridically with tactile and proprioceptive cues (bottom half of figure). (C) Manipulations. A total of 15 visual
cues were presented in each trial. Each cue, lasting 250 ms, was chosen from an underlying distribution with mean m and variance s2 . On each trial
we randomly varied s to manipulate the uncertainty of the cue distribution. On each trial we randomly perturbed the mean of one-third of the cues
by +0:2s (and shifted the remaining cues by +0:1s, preserving the overall mean). In the figure we show a negative perturbation of the second
block, exaggerated in magnitude for illustrative purposes. (D) Tasks. Subjects performed two tasks: (i) In Task 1, subjects were asked to estimate the
mean of the stimuli with the position of their right hand, indicated by a fixed-aperture visual cursor; (ii) in Task 2 they were asked to indicate the range
in which they believed the mean to lie with the spacing of their thumb and forefinger, indicated by a variable aperture visual cursor. (E) Visual Cues.
Each visual cue is composed of a sequence of 5 random dot clouds, one of which is shown for illustration.
doi:10.1371/journal.pone.0037547.g001
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Figure 2. Data for a single subject in Task 2. (A) Typical trajectories for four experimental conditions. On each trial the subject’s estimates of
the mean (solid line) and confidence (dotted line) are affected by the sequence of cues (black dots). From left to right we plot the no perturbation,
early, middle and late-onset perturbation conditions. Perturbation of different blocks (shaded and with arrow) results in corresponding trajectory
deviations. (B) Average trajectories for one subject. We plot the average trajectories for one subject for negative (blue), zero (purple) and
positive (red) perturbations, for each s2. The averages for each condition (darker lines) highlight the main trends. (C) Endpoint Variability. There is
a high level of variability in the trajectories in B, though much of this may be explained by the added variance and perturbations. We plot the mean
(solid line) + the variance (dotted line) of the endpoint of the trajectory for each experimental condition to illustrate this. Late-onset perturbations
result in greater endpoint errors and endpoint variability scales with s.
doi:10.1371/journal.pone.0037547.g002
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We use the same regression method to plot the weight matrix

for the ideal-observer model subject to kinematic constraints (see

Materials and Methods). We find a close qualitative and quantitative

match (figure 4E–4H), except that the model does not reveal an

overall systematic bias.

Continuous Estimation of the Uncertainty
Thus far we have analysed continuous mean estimation

behaviour. In this section we analyse subjects’ ability to estimate

sensory uncertainty. . In figure 5 we compare the objective error range,

equal to twice the mean absolute error (equation 3, in Materials and

Methods), to the reported (subjective) confidence window. These

quantities are identical for the ideal-observer.

To assess the effect of task manipulations (objective uncertainty),

we conducted an ANOVA on the objective error range with

within-subject factors of perturbation (unperturbed vs perturbed,

grouping over the perturbation conditions) and s2 (low, medium

and high). This revealed a significant main effect of s2

(F (2,12)~261, pv:001), a significant main effect of perturbation

(F (2,12)~110, pv:001), as well as a significant interaction

between s2 and perturbation (F (4,12)~30:7, pv:001). The

interaction was expected since the perturbation magnitude is a

fraction of s.

To assess the subjective effect of task manipulations (perception

of uncertainty), we also conducted an ANOVA on the confidence

window range, with within-subject factors of perturbation

(unperturbed vs perturbed, grouping over the perturbation conditions)

and s2 (low, medium and high). This revealed a significant main

effect of s2 (F (2,12)~29:5, pv:001), a significant main effect of

perturbation (F (2,12)~37:6, pv:001), as well as a near-signifi-

cant interaction between s2 and perturbation (F (4,12)~3:26,

p~:074). The magnitude of the interaction was less than expected.

The ANOVA results above indicate that the task manipulations

have significant behavioural consequences, modulating both the

objective uncertainty as well as perception of this uncertainty. We

conducted t-tests to compute the differences between conditions,

and found that unperturbed trials resulted in fewer errors than

perturbed trials (measure: objective error range, pv:001 for all s2)

which was reflected in increased confidence (measure: confidence

window, pv:001 for all s2). Likewise, the increase in error for s2

between low to medium and medium to high conditions (measure:

mean error range, pv:001 for both perturbation conditions) were

reflected by reduced confidence (measure: confidence window,

pv:001 for both perturbation conditions). Figures 5A and 5B

provide a graphical representation of these findings.

We consolidated figures 5A and 5B to examine the relationship

between objective variability and subjective perception. In

figure 5C we show the results per-subject, and see from the

positive slope of each line that subjects were able to discriminate

the level of sensory uncertainty in each condition, although with

much variability across subjects. 96% of the data lies above the

line y~x, indicating that subjects’ confidence windows consis-

Figure 3. Continuous mean estimation data grouped across subjects. (A) Average Trajectories. We show the average empirical
trajectories across subjects compared to our model predictions. Trajectories are computed for each subject by averaging over all trials for each
condition. From left to right we plot the no perturbation, early, middle and late-onset perturbation conditions (shaded). The empirical trajectories for
negative (blue), zero (purple) and positive (red) perturbations are plotted for each value of s (labelled). Each trajectory shows the mean across
subjects + the standard error of the mean (SEM). Key features of the empirical data include cue-induced deviations (arrows b, d and f) and
subsequent corrections as further evidence arrives (arrows c and e). Note the qualitative and quantitative nature of the model fit to the data (dashed
line). (B) Endpoint mean and variability. At the end of each trial the position of the cursor represents subjects’ final estimate of the mean, and the
width of the cursor represents subjects’ final estimate of the confidence. For each of the experimental conditions we plot the mean across subjects +
SEM of the left bound of the confidence estimate, the mean estimate and the right bound of the confidence estimate. Subjects show increasing
confidence windows for larger values of s (from top to bottom) and show deviations from the target as a result of the perturbations (red and blue).
(C) Endpoint Error. For each of the experimental conditions we show how the final deviation of the mean from the target is a predictable function
of variance s, perturbation magnitude p and block b. The model makes a reasonable quantitative fit for all conditions, though note that it does not
capture the asymmetry in the empirical data (which is slightly positively biased) (D) Absolute Endpoint Error. The final absolute deviation of the
mean from the target captures the average error in the task. This error increases with s and with perturbations, the magnitude of which is also
explained by the model.
doi:10.1371/journal.pone.0037547.g003
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tently over-estimate the objective variability. In figure 5D we show

the average data across subjects.

We have seen above that subjective confidence can reliably

discriminate perturbation-induced and variance-induced objective

uncertainty at the end of the trial. This behaviour also holds for

continuous confidence perception. In figure 6A we plot the

average confidence estimate trajectories across subjects. The

distinguishing features of the empirical trajectories are (i)

trajectories are indistinguishable for the first 0.5 seconds, but then

diverge; (ii) low, medium and high variance result in correspond-

ingly-scaled confidence windows after divergence; (iii) sudden

increases (inflexions) in confidence window occur as a result of

early-, middle- and late-onset perturbations (arrows b, c and d); and

(iv) final decisions vary with variance and perturbation onset (6B

and 6C). From the interval of the standard error across subjects it

is apparent that these phenomena are robust.

We devised a kinematic model to account for these observations

(see Materials and Methods and figure 7). The modelled observer

optimally integrates the deviations of cues from the current mean

estimate so as to maximise the expected reward (which is achieved

when the confidence window equals one standard deviation of the

objective uncertainty either side of the sample mean). Similar to

the previous analysis for mean estimation, we maintain the three

parameters of sensorimotor latency, d, maximum speed, b and

momentum a. Owing to the consistent over-estimation of

uncertainty discussed previously, we include an additional safety

margin parameter, y0.

This model accounts both qualitatively and quantitatively for

the key features of the empirical data, such as the magnitude and

shape of variance-induced differences, the magnitude and timing

of perturbation-induced inflexions, and the magnitude of the final

decision for each condition. The per-subject model parameters

were optimised to ensure the best possible fit to the data, but

nevertheless have no capacity to explain the within-condition

effects of perturbations or variance. While the safety margin

parameter y0 does have the capacity to explain the overall

magnitude of decisions, it is simply a per-subject constant and can

not explain the differences between the trajectories (see Discussion).

It is interesting to note that the increase in perceived uncertainty

resulting from cue perturbations (figure 6A, arrows b, c and d),

occur at the same time as mean estimation changes of direction

(figure 3A arrows c, d and g). The mean estimation and uncertainty

estimation tasks appear to be coupled, though our model treats

them separately. This could explain the initial discrepancy

between our model and the data (figure 6A, arrow a): presumably

subjects do not adjust their confidence window until they have first

navigated toward the target (after about 1 second). The model

provides a good fit to the remainder of the trajectory.

Figure 4. Mean Estimation Cue Weight Evolution. To measure the evolution of weights assigned to each visual cue we perform a linear
regression of the position of each cue in the sequence to the measured trajectory, using data over all trajectories for each subject (see Materials and
Methods). In this figure we illustrate the match between the empirically observed weights and the model predictions. (A) Empirical Data
Integration Window. At each time-step in the trial we infer the weight assigned to each cue in the sequence. These weights define a window of
cue integration which changes over time as evidence arrives. We plot the weights assigned to the cues seen so far (solid lines) + SEM across subjects
(shaded), omitting weights assigned to future cues for clarity (but see C and main text). Coloured arrows indicate the time-step at which the
corresponding integration window applies. At all time steps we see that the observed cues are given approximately equal weight, with the exception
of a 0.5 s time lag. This weight equality is indicative of optimal integration (as we see in E). (B) Empirical Data Cue Evolution. In an alternative
visualisation of A we plot the weight allocated to each cue (solid line) + SEM (shaded) as it evolves over the time-course of a trial. Each curve
corresponds to the cue arising at the time marked by the corresponding coloured arrow. For clarity we do not show the weight allocated to the cue
prior to it being seen (but see C and main text). This plot reveals that shortly after being seen, each cue’s weight suddenly increases as it contributes
to the estimate, settling at a weight that is the same across all cues. These weight profiles are indicative of optimal integration (as we see in F). (C)
Empirical Weights. The weight matrix W , excluding the systematic component, captures the evolution of cue weights over time (see Materials and
Methods). When visualised in this way, using colour to represent cue weight, we can see the initial response delay and the evolution of cue
combination, as summarised in A and B. The regression method can not establish the cause of the initial 0.5 seconds of the trajectory, indicated by

equal weights assigned to all cues (including future cues). This weight matrix is indicative of optimal integration (as we see for the optimal matrix ŴW
in G) (D) Empirical Systematic Bias. In computing the regression of cue to decision we allow for a systematic component to capture the variability
in the trajectory that is not explained by the cue weights. We observe empirically a non-zero systematic bias in the positive direction, especially for
early time steps. Our optimal model predicts the initial bias (as we see in H), but the overall bias observed is sub-optimal. We believe this to be an
unavoidable consequence of the configuration of the experiment (see text) (E-F) Model Predictions for comparison, with three parameters (a, b

and d) optimised to minimise the difference between W and ŴW (plots C and G).
doi:10.1371/journal.pone.0037547.g004
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In computing the weight matrix to explain the evolution of cue

weights (see Materials and Methods) we find that the empirical

weights do not reflect optimal performance (see Figure S3). We see

empirically that each cue deviation contributes to the final

decision, but the resultant weight profiles are noisy and difficult

to interpret. This may indicate that subjects are sub-optimal at

estimating uncertainty from time-evolving visual cues (but see

Discussion for alternative interpretations).

Discussion

We have shown that subjects estimate the mean of time-varying

stimuli in a predictable manner. By manipulating the variance as

well as the onset and direction of perturbations we have shown

that this estimate is computed in a statistically-principled way that

assigns equal weight to all observed cues to form a final estimate.

We devised an ideal-observer model that is subjected to kinematic

constraints. We find a close match between the empirical data and

our statistically-optimal model, suggesting that subjects can

accumulate evidence over time to form optimal continuous estimates

of the mean of noisy visual stimuli.

By manipulating the variance of the underlying stimuli we

examined the relationship between objective uncertainty and subjective

uncertainty, showing that the two are closely, but not directly

coupled. By manipulating subsets of the cues through perturba-

tions we also evaluated the respective weighting given to each cue

Figure 5. Uncertainty Estimation Performance. In this figure we show that subjects are able to discern the different levels of uncertainty added
to the cues. (A) Objective Uncertainty. We plot the mean error range (twice the mean absolute deviation of the final mean estimate) + SEM, for
different levels of s (solid blobs and error bars), for perturbed (red) and unperturbed (blue) trials. In addition we overlay the average results for each
subject (faded lines). Subjects show statistically significantly increased errors as a result of both cue uncertainty and the presence of perturbations.
Between-subject variability is low, as indicated by the distinct separation between red and blue lines and the consistency of the gradient. (B)
Subjective Uncertainty. We plot the average width of subject’s confidence window at the end of the trial for each s and perturbation, similar to A.
Subjects show a statistically significantly increased confidence window as a result of both cue uncertainty and the presence of perturbations,
mimicking the objective uncertainty. However, between-subject variability is high, indicating that different subjects have widely differing abilities at
estimating uncertainty. (C) Subjective-Objective Mapping. We combine per-subject data from A and B, plotting the mean error for each
condition versus the confidence reported. The ideal mapping is shown by the dotted line. Subjects consistently over-estimate the objective
uncertainty. (D) Grouped Subjective-Objective Mapping. We plot the average mapping across subjects + the SEM in each direction. This
demonstrates the consistency with which subjects over-estimate their objective uncertainty.
doi:10.1371/journal.pone.0037547.g005
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Figure 6. Continuous uncertainty estimation data grouped across subjects. This figure illustrates the quantitative match between the
model and the data. (A) Average Trajectories. In this figure we show the average empirical trajectories across subjects compared to model
predictions. Trajectories are computed for each subject by averaging over the trials for each condition. From top-to-bottom we plot the early, middle
and late-onset perturbation conditions (indicated by shaded region), and from left-to-right we plot negative (blue), zero (purple) and positive (red)
perturbation directions. The resultant trajectory for each s (labelled) shows the mean across subjects + SEM. The model fit to the data is shown using
a dashed line. Note that the model does not explain the initial part of the trajectory (arrow a), but does reasonably well at explaining the timing of
deviations in uncertainty perception that arise as a consequence of perturbations (arrows b, c and d) (B and C) Confidence Reported. For each of
the experiment conditions we show how the endpoint subjective uncertainty is a predictable function of variance s, perturbation magnitude p and
block b. We plot the same results grouped in different ways for comparison. The model makes a good quantitative fit for all conditions, but note that
the model contains a systematic safety margin parameter y0 which may explain some aspects of the data fit (see text).
doi:10.1371/journal.pone.0037547.g006

Figure 7. Model of Sensorimotor Kinematics. In order to explain subject’s evolving trajectories over time we model the inevitable kinematic
constraints on movement. In the model we assume that, other than these limitations, subjects will behave as ideal observers. We discretise
movement into 50 ms time-steps. At time-step t, for an observer aiming to reach a target yt they make a displacement of Dt , moving them from
position xt{1 to xt. This figure illustrates the parameters of the model. (A) Bias and Delay. We assume that there is some delay, d, before subjects
initiate their movement. This captures sensory, processing and motor delays. Subjects may also have some inherent bias in one direction or another,
due to the configuration of the experiment or otherwise, so we introduce a bias parameter y0 . (B) Speed Constraint. We assign a maximum speed,
b, to limit the displacement in a given time step. (C) Momentum Constraint. We assume that subjects can not accelerate instantaneously by
introducing a smoothing parameter a on Dt.
doi:10.1371/journal.pone.0037547.g007
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for confidence estimation, and showed that, with the addition of a

conservative safety-margin, we can reliably predict responses to cue

variance and perturbations. While the evolution of cue weights

was not well explained by our model, possibly indicative of sub-

optimal integration, subjects were clearly capable of accumulating

evidence over time to continuously discriminate different levels of

uncertainty due to to cue variance and cue perturbations.

In making decisions, subjects must make a trade-off between

allocating time to perception, and time to action [2]. Since there is

a considerable time delay between sensing the world and initiating

motor actions, subjects often make decisions while sensory

information is arriving. Discrete events (such as subjects ‘‘changing

their mind’’) may be based on the time-delayed accumulation of

evidence [21]. In this paper we show how subjects form decisions

based on visual cues and update their estimate as evidence arrives,

as indicated by deviations in trajectories under different levels of

perturbation. In our continuous task these inflexions are not

discrete ‘‘changes of mind’’ but in fact continuous decisions related

to the subject’s evolving perception of uncertainty.

The approach presented in this paper utilises a continuous time-

varying task, providing a window into the processes of mean and

uncertainty acquisition. The modulation of uncertainty in

alternative designs, such as the two-interval forced-choice para-

digm, may induce ‘‘apprehension’’ in proportion to the imposed

uncertainty [19], which may indirectly provide a measure of

stimulus uncertainty that does not require an explicit representa-

tion of uncertainty [19]. Experimental manipulations to increase

uncertainty, such as decreasing stimulus contrast or adding

uncorrelated noise, may increase the latency with which subjects

can react to stimuli, again providing interpretations absent of

explicit uncertainty awareness. Even our method of time-varying

jittering cues may trigger mechanisms that could indirectly

account for uncertainty judgements. It has therefore been argued

that much research on statistical optimality includes situations in

which an implicit internal representation of uncertainty may

explain task performance (see [19] and e.g. [5,6,10,18,22,23]).

However, by asking subjects to report their uncertainty one can

directly tackle the question of whether subjects can explicitly acquire

representations of sensory uncertainty, applicable to reaching tasks

[16], numerical estimation tasks [24] and visual perception tasks

[15]. In this paper we have extended this idea further to consider

the continuous estimation of uncertainty as evidence arrives.

To what extent are the observed continuous trajectories

optimal? The global parameters of the model are optimised to

achieve the best fit for each subject, but as these parameters are

fixed across all trials they can not explain the differences in the

trajectories observed for each condition - these can only be

explained by the contribution of individual cues to the decisions

(although the parameters can explain the general shape of the

trajectories and the latency after which cues contribute to the

trajectories). In the mean estimation model the cue contributions

are chosen optimally (i.e. according to the ML estimate of the

mean). The resultant close match between the empirical and

observed trajectories for each of the conditions indicates optimal

cue weighting. In contrast, in the confidence estimation model a

suboptimal ‘‘safety margin’’ is used to explain the magnitude of the

estimate and thus a match between empirical and model

trajectories does not indicate optimality. This safety margin causes

subjects to significantly over-estimate uncertainty, resulting in less

than optimal performance in the task.

Could the finding of optimal mean estimation and suboptimal

confidence estimation be explained by subjects relying on a

simpler heuristic? For example, subjects may position their thumb

and forefinger on the extremes of the cues seen so far, or choose an

aperture size proportional to this range. This was our primary

motivation for computing the weights assigned to each cue in the

sequence, which revealed that each cue was approximately equally

weighted for the mean-estimation task. This would not be the case

for subjects relying on subsets of the cues: as the mean of the cues

is not equal to the median due to perturbations, the suboptimal

heuristic strategies would result in different endpoint decisions,

different trajectories and different weight profiles. We therefore

posit that mean estimation trajectories are indeed based on

optimal cue weighting. In contrast, uncertainty estimation

empirical weights do not match the optimal model weights. The

presence of a consistent overestimation of uncertainty indicates

that subjects may be relying on a subset of the observed cues to

form their estimate. Nonetheless, subjects still increase their

aperture in response to uncertainty increases and perturbations,

indicating that subjects do have access to some measure of their

objective uncertainty.

A number of studies have observed underconfidence in forced-

choice tasks (e.g. see [15,25]), consistent with the present finding of

subjective overestimation of objective uncertainty. In a recent

study in which subjects were asked to report a confidence window

when predicting the magnitude of random samples from a time-

varying distribution, subjects showed perceptual biases when

estimating the uncertainty [24]. This was attributed to a pre-

learned bias and was otherwise consistent with a Bayesian observer

model, although could equally be explained by an inability to

accurately gauge the magnitude of the uncertainty, as in the

present study.

In addition to the possibility of suboptimal uncertainty

estimation, from the present results there are a number of

alternative potential causes of over-estimated uncertainty: (i) It is

not known if subjects fixate on the jittering stimuli or on the

cursor, which may effect their ability to accurately judge (or

anticipate) the stimulus location (see [26]); (ii) Subjects may not

have been able to maximise their expected gain (in contrast to

[27]), due to differences in experimental design; (iii) The kinematic

model fit to the data may be insufficient to describe behaviour; (iv)

The data collected may have been too noisy for reliable model

fitting. To address points (i) and (ii) further research is needed to

decouple the factors that determine objective variability and

performance maximisation. For example, subjects were not aware

of the exact functional form of the score function (in contrast to

[27]) adding additional learning demands. Whilst the effects of

learning were not observed in the data these potential limitations

of the scoring system should be noted. To address points (iii) and

(iv) we must evaluate the viability of our kinematic model (See

Materials and Methods, and figure 7). In our model the delay

parameter captures the combined effect of sensory and motor

latency and motor kinematic limitations are captured by speed and

momentum parameters, which affect the overall shape of the

trajectories. It was found that these three parameters were

sufficient to explain the average empirical data for mean

estimation. Alternative models may introduce additional param-

eters to explain different aspects of the data, such as the addition of

sensory and motor noise or separate sensory and motor delays.

Further experiments would be required to test such models.

Our experiment design utilised a grasping task within a fixed

plane. As the task does not abstract the cursor or targets to a

computer screen, it maintains many aspects of ordinary grasping

(visual feedback, proprioceptive feedback, feedforward control

etc.), keeping the task as natural as possible. As detailed in the

methods, feedback of the fingers was aligned with the true finger

locations (see [22]). The design relied on the fact that subjects

could independently control their grasp aperture and hand
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position, which we felt was likely (although see [28]; independent

finger and thumb control has not been conclusively demonstrated).

Target stimuli were presented along the line of the left forearm,

though it could also have been achieved by presenting stimuli

along any fixed line in the plane. We chose to use the arm as a

reference because (i) this design lends itself to a number of follow-

up experiments in which the cues may be tactile rather than visual;

and (ii) it allows subjects to position both the target line (with their

left arm) and the cursor (with their right arm) in any comfortable

configuration of their choosing.

Our results are consistent with a number of studies that report

optimal multisensory integration, (e.g. audio-visual [7,18], visuo-

haptic [6,19,22] visuo-proprioceptive [29] and visual [4,30]

integration). However, these results provide indirect evidence of

subjective representation of objective uncertainty [15]. In the

present study we find that subjects are able to form an optimal

estimate of the mean and an overestimate of the uncertainty,

providing direct evidence of continuous mean- and confidence-

estimation mechanisms that may underlie the observation of

optimal integration. In contrast, there are a number of studies in

which optimal behaviour was not observed. Multisensory integra-

tion studies have demonstrated a significant under-weighting of

sensory uncertainty for texture information [10] and auditory

information [13] and in a third study it was found that visuo-

haptic integration performance was inconsistent with maximum

likelihood estimation in more than 80% of the data [11]. However,

the authors conceded that subjects may have attempted to

combine cues optimally but did not have an accurate estimate of

the variance of the individual cues. Consistent with this finding, in

the present study we have observed a suboptimal safety-margin in

subjects estimating their uncertainty. By extending our experi-

mental paradigm to multiple sensory modalities we would predict

different integration weights for subjects using either subjective or

objective uncertainty to form multimodal estimates. By allowing for

simultaneous measurement of mean and confidence our experi-

mental paradigm readily lends itself to the testing of such

hypotheses.

There is a growing body of research which aims to understand

the neural substrate of uncertainty representation. For example,

neural firing activity in orbitofrontal cortex in rats is an accurate

predictor of olfactory discrimination uncertainty [17], and neurons

in parietal cortex encode information about the degree of decision-

making uncertainty in monkeys [31]. The presence of confidence-

estimation mechanisms in the brain is supported by biologically

plausible computational models (such as reviewed in [32]) in which

neural populations readily encode sensory uncertainty and allow

networks to compute posterior probability distributions. The

results presented in this paper provide direct evidence that humans

have rapid and reliable access to statistical information available

from stimuli, which could presumably be attained from such

neural representations.

Conclusion
Our quantitative paradigm allows us to simultaneously measure

mean and confidence estimation ability. It allows us to observe

these processes over time as we control the arrival of evidence. We

are able to make qualitative and quantitative predictions of the

performance of subjects based on a statistically optimal model

constrained only by elementary kinematic limitations. The

paradigm naturally lends itself to a wide variety of future

experimental manipulations, for example in understanding the

methods deployed when integrating cues from multiple modalities,

for understanding the time-courses of decisions, and for decou-

pling the roles of objective and subjective uncertainty perception

for decision-making.

Materials and Methods

Experimental Methodology
Subjects and ethics. 14 volunteers participated in this

experimental study. All subjects were healthy, right-handed and

aged between 21 and 30. All of the subjects were naive to the

experimental manipulations and the experiment apparatus. The

experimental protocols were in accordance with the University of

Edinburgh School of Informatics policy statement on the use of

humans in experiments. Subjects gave informed consent before

participation in the study and received financial compensation for

their time (approximately 90 minutes per subject).

Apparatus. Subjects were instructed to place their left

forearm under a horizontal mirror onto an array of tactile

markers, serving as a tactile reference frame consistent and

veridical with the visual display. Using the rear-projection mirror

setup as illustrated in figure 1A, visual feedback was given in the

plane of the arm so that feedback of the arm and finger locations

aligned with the true finger and arm locations, removing any

confounding effects of mismatch between visual and propriocep-

tive cues (as discussed in [23]). The use of the left arm as a

reference frame allowed subjects to position themselves comfort-

ably. Further, this setup lends itself naturally to an alternative

version of the task in which stimuli are tactile rather than visual

(see Discussion).

Stimuli were anti-aliased and projected using a high resolution

video projector with latency v20ms. 1 projected pixel corre-

sponded to approximately 0.3 mm on the arm.

To enable accurate 3-D tracking of the arm and fingertips we

used a Polhemus Liberty 240 Hz 8-sensor motion tracking system

(POLHEMUS, USA). Every 50 ms we sampled the arm and

fingertip positions and logged data using custom personal

computer (PC) software. The same PC software was responsible

for displaying and logging the stimuli, ensuring that our data and

stimuli were temporally calibrated.

Task 1: mean estimation. In Task 1 subjects were

instructed to indicate the mean of a sequence of visual stimuli,

using a fixed-aperture cursor (figure 1D, left). The cursor location

was computed as the mean of the orthogonal projections of the

thumb and forefinger position vectors onto the forearm.

Each subject underwent an initial training period to become

familiar with the task (phase 1A), followed by a block of trials to

assess mean estimation performance as we varied the visual

uncertainty, s2, from trial-to-trial (phase 1B).

Task 2: mean and confidence estimation. In Task 2

subjects were instructed to indicate the range in which they believed

the mean to lie, using a variable aperture cursor (figure 1D, right)

determined by orthogonal projections onto the arm of their thumb

and forefinger. The average position of the projections was

interpreted as their mean estimate and the range as their

confidence in this estimate.

Again, each subject underwent an initial training period to

familiarise them with the task (phase 2A), followed by a larger

block of trials to assess their combined mean and uncertainty

estimation performance as we varied s2, b and p from trial-to-trial

(phase 2B).

Task manipulations. We manipulated the distributions of

the stimuli from trial-to-trial in two ways: (i) we modulated the

variance of the visual cues (s[ 50,120,200f g pixels, which we term

low, medium and high uncertainty respectively); and (ii) we added

perturbations (p[ {1,0,1f g, termed negative, neutral and positive
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respectively) to subsets of the cues (b[ 0,1,2f g, termed early, middle

and late respectively). Table 1 summarises the use of these

manipulations.

In order to interpret the subtle effects of these manipulations

robustly we used sets of pseudo-random cue sequences which were

counterbalanced across 15 trials for each manipulation (see Visual

Stimuli). Subjects completed several sessions each with different sets

of cue sequences. The order of all trials and sessions were

randomised, and on every trial the target location, m, was chosen

at random.

In Task 2 we also added trials of shorter durations (durations

randomly chosen in the range 5 to 15 cues). One-sixth of trial were

of this nature, but these trials did not contribute to our analyses.

They were included to ensure subjects would not be able to predict

when each trial was going to end, encouraging continuous

behaviour.

Performance feedback. In Task 1, 10 points were awarded

if the trial was successful. To motivate subjects in Task 2, subjects

were awarded less points if their chosen confidence interval was

greater than the expected objective uncertainty determined in Task 1,

encouraging them to estimate and report their objective uncer-

tainty. We exploit the finding that subjects can learn to maximise

expected reward [27].

On a given trial n let the measured cursor position and width be

given by be xn(t) andwn(t) respectively, recorded over the trial

duration (t~1, . . . ,T ). On completion of a trial we assume xn(T)
represents a subject’s internal estimate of the mean, m̂m, and wn(T)
their internal estimate of the confidence interval, d. We use a score

function, S(m̂m,d), which assigns a score according to success or

failure:

S(m̂m,d)~
R(d) if Dm̂m{mDƒ d

2

0 if Dm̂m{mDw d
2

(
ð1Þ

Where successful trials are rewarded according to

R(d)~

10 if dƒdtarget

10:
dtarget

d

� �2

if dwdtarget

8<
: ð2Þ

The reward function penalises apertures larger than dtarget. In our

experiment, dtarget is calculated for each subject based on the data

empirically observed in experiment phase 1B. We first compute

the objective error as the mean absolute endpoint deviation for each

s, denoted by E:

E~
1

N

X
n

Dxn(T){mnD ð3Þ

We then define an objective error function for each subject, E(s),
determined by the linear mapping between s and E. On a given

trial in Task 2 we compute the standard deviation of the cues, ŝs,

and use the objective error function to determine dtarget, twice the

expected objective error:

dtarget~2:E(ŝs) ð4Þ

The target aperture size for the confidence estimation task could

have been chosen to be any quantity proportional to the objective

variability. Regardless of the choice of target aperture size, subjects

are required to learn the mapping from stimulus to confidence

interval in order to succeed at the task. It was an assumption of our

approach that this could be done so as to maximise the expected

score (as per [27]). We decided to set to the target aperture size to

be the range of values that form approximately one standard

deviation of the objective variability on either side of the mean.

If subjects pick an aperture smaller than dtarget this decreases the

probability of success, while an aperture larger than dtarget

decreases the score. The reward function in equation 2 ensures

that the overall maximum expected reward is achieved by

choosing an aperture of exactly dtarget. This method, therefore,

encourages subjects to estimate their own objective error range.

Further details can be found in [33].

Visual stimuli. 15 visual cues are presented in each trial. For

mathematical convenience we describe the visual cues as a

sequence of 15 locations x1,:::,x15, where each xi is drawn from an

underlying distribution with mean m and variance ! s2. Each

visual cue is presented for 250 ms.

Each visual cue comprises 5 frames. On each frame for the ith

cue we generate a cloud of ten random blobs distributed with a

standard deviation of 10 pixels in horizontal and vertical directions

and centred at xi. Each blob is a low-contrast 2-D Gaussian of

radius 8 pixels (based on [18]). Blob-clouds provide a way to

modulate the underlying difficulty of the task, but in this

experiment we did not modulate the cloud parameters.

Table 1. Experiment Structure.

Structure Configuration

4–5 7–10 Task Phase Sessions Trials Ns Nb Np Nr Total

1 A 3 15 3 55 55 0 135

1 B 3 15 3 55 55 0 135

2 A 4 15 3 55 55 0 180

2 B 1 15 3 3 3 135 540

Each subject performed 990 trials in total across four experimental phases. Task 1 examined subjects’ ability to estimate the mean of a jittering visual cursor, split into a
training phase (1A) and a test phase (1B). In Task 2 we examined the subject’s ability to report their confidence in this estimate in addition to reporting the mean, again
with a training phase (2A) and a test phase (2B). Subjects performed several sessions in each phase to improve data integrity. On each trial we presented 15 cues,
distributed pseudo-randomly with variance s2 , and split the trial into blocks, perturbing a given block b in direction p. We examined Ns , Nb and Np levels of each of
these manipulations respectively, listed in the table. We also included Nr trials of random duration (between 5 and 15 cues in length). For each configuration subjects
performed 15 trials. All sessions and trials were randomly shuffled within a phase.
doi:10.1371/journal.pone.0037547.t001
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Each xi is chosen according to shuffled pseudo-Normal cue

sequence Q~q1, . . . q15 (generated by taking uniformly-spaced

samples from the inverse cumulative Normal distribution, then

shuffled). We devised an algorithm (illustrated in Figure S2 and

described in further detail in Text S1) to generate a matrix of cue

indices C, with 15 columns (one for each trial, n) and 15 rows (one

for each cue i). Each entry of the matrix ci,n[f1, . . . 15g is an index

into Q, shuffled by our algorithm so as to maximise the

unpredictability of each trial while removing uncontrolled sources

of uncertainty.

To generate each xi on a given trial n we use ci,n as an index

into Q, then add spatial uncertainty by multiplying by s and

induce perturbations by shifting the mean of one third of the cues

by p:0:2s and the remaining cues by {p:0:1s. We vary s, p and

b, and the random target location, m, for each trial. Hence, we

have

xi~mzs:Nci,n
z

p:0:2s if 5bz1ƒiƒ5(bz1)

{p:0:1s otherwise

�
ð5Þ

This is repeated using the same C and Q for all experimental

configurations. Subjects complete multiple sessions for each phase

of the experiment using some or all of the above manipulations as

previously discussed. Each session uses different instantiations of C
and Q, and all sessions within each phase of the experiment are

shuffled. Each subject receives different instantiations of C and Q.

Data Analysis
The ideal observer. During a trial, as samples accumulate

we would expect an ideal observer to accurately estimate the sample

mean and sample variance of the cues thus far seen and make

decisions based on this available evidence. Given k cues x1,:::,xk

the unbiased sample mean and sample variance are given by

equations 6 and 7:

m̂mk~
1

k

Xk

i~1

xi ð6Þ

ŝs2
k~

1

k{1

Xk

i~1

(xi{m̂mk)2 ð7Þ

In Task 1 the observer’s ideal strategy is to select m̂mk at time k.

One can show that the variance of the sample mean estimator is

given by

V½m̂mk�~E½ m̂mk{mð Þ2�~ ŝs2
k

k
ð8Þ

Thus, in Task 2 the ideal observer strategy at time k is to select a

confidence interval equal to 2:
ffiffiffiffi
2

pk

q
:ŝsk, which is equal to the ideal-

observer objective error range (as described in Performance Feedback).

Sensorimotor delay model. The ideal observer can perform

instantaneous computations and act on sensory information

immediately, but human beings can not. In the presence of

inevitable sensory, processing and motor delays and noise we

consider how the ideal observer would now perform. We define an

ideal-observer model constrained by the three global parameters,

d, a and b, capturing natural kinematic constraints on hand

motion.

Suppose the observer has witnessed k cues by time tzd due to

sensory delays. We introduce modified estimates of mean and

variance from equations 6 and 7:

m̂mtzd~
1

k

Xk

i~1

xi ð9Þ

ŝs2
tzd~

1

k{1

Xk

i~1

(xi{m̂mtzd)2 ð10Þ

In Task 1 subjects can compute m̂mt from equation 9 to form a

time-delayed internal estimate of the mean.

In Task 2 we expect subjects to estimate their objective

uncertainty. From equation 10 the ideal-observer can calculate the

time-delayed variance estimate ŝs2
t , which is translated into an

objective error range dtarget (using the linear objective error function

E(ŝs) defined previously; see equation 4) to achieve the maximum

possible score.

In addition to sensory delays we introduce motion constraints.

At time t let us define the reported estimate (i.e. the position of the

cursor) as xt, and the perceived estimate (i.e. our time-delayed internal

estimate of the mean) as yt. In our formulation we model the

observer as making discrete steps of size Dt so that the reported

estimate smoothly converges to the perceived estimate. The model

constrains motion using two parameters: a maximum speed

parameter, b, constrains the maximum displacement made by the

observer in a given time-step; and a momentum parameter, a,

prevents sudden speed changes by smoothing these displacements

over time. i.e.

xt~xt{1zDt ð11Þ

Dt~ 1{að Þ:f (yt{xt{1)za:Dt{1 ð12Þ

f (z)~

z if DzDvb

zb if z§b

{b if zƒb

8><
>: ð13Þ

Note that the model applies to both mean and confidence

judgements: For Task 1 we set yt~m̂mt, and for Task 2 we replace

xt with wt (the width of the cursor at time t) and set

yt~

ffiffiffiffiffi
15

k

r
:dtarget.

We add one additional parameter to the confidence estimation

model, a bias term, y0. In equation 12 this replaces the term yt

with ytzy0. This can be thought of as a safety margin or constant

systematic error. This is considered a suboptimal component of

the model, while the other parameters capture natural kinematic

limitations.

Figure 7 illustrates the effect of each of these parameters on

model trajectories.

Weight regression. To compute the contribution of each

cue in the trial to the empirical trajectory observed we perform a

multiple linear regression at each time-step using the non-negative
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weight least-squares algorithm described in [34]. For full details

see Text S2.

For Task 1 we regress the pixel location of the cues in the trial

(including those not yet seen), plus an additional constant, to the

position of the cursor at that time.

For Task 2 we regress the absolute deviation of the pixel locations

of the cues in the trial from the sample mean, plus an additional

constant, to the width of the cursor at that time.

Model parameter learning. Our model (see Sensorimotor

Delay Model) has relatively few parameters. We optimise these

parameters to achieve the best fit to the data, but note that this

process does not confound our claims. The model does not modify

the magnitude of weights assigned to each cue, it merely constrains

the trajectory through which a decision manifests itself.

Using the same weight regression technique for the model data

we compute a parametrised weight matrix ŴW (d,a,b,y0). For full

details see Text S2. We minimise the square of the difference

between ŴW and the empirical W with respect to the model

parameters using the constrained interior-reflective Newton

minimisation method described in [35,36], implemented in

Matlab (Mathworks Inc., USA). To improve the rate of

convergence we normalise the systematic weight terms st prior

to minimisation, to compensate for their excessive magnitude

relative to the cue weights.

For the mean estimation model we set y0~0 and do not allow

for its optimisation. This sub-optimal term is not necessary to

explain the gross features of the data.

Supporting Information

Figure S1 Overall Task Performance. In this figure we

show the final absolute deviation of the cursor from the target

location for different levels of uncertainty in Task 1 and Task 2.

Trials with perturbations are excluded. Note that both tasks give

indistinguishable mean-estimation performance, indicating that

ability at Task 2 is not compromised by the additional demands of

the task. We posit that Task 1 performance is a good indicator of

task 2 performance.

(TIF)

Figure S2 Pseudo-Random Cue Sequence Generation.
In this figure we illustrate the Saundoku Algorithm for generating

pseudo-random cue sequences. The purpose of this method is to

ensure that cues are counterbalanced across trials so as to

minimise systematic biases to the data, while at the same time

presenting no additional information to subjects to aid their

success at the task. (A) Cue generation. The sequence of cues to

be used for a trial are generated from a pseudo-Normal

distribution, created by sampling the Inverse cumulative Normal

distribution function at equally spaced intervals (red blobs). The

output (black blobs) is distributed pseudo-Normally, i.e. as the

number of samples increases the histogram of the samples

converges on the Normal probability density function. These

samples are shuffled (blue blobs) to provide a cue sequence. The

method of shuffling is illustrated in sub-plots B-E. (B) Initial
Cues. We create a square shuffle matrix with rows for cue number

(in time) and columns for trial number. Each matrix entry

corresponds to a cue generated in sub-plot A. We initialise the

matrix with diagonals as shown to ensure that each cue appears

only once in each trial, and once in every trial. In the figure for

clarity we show 60 cues per trial and therefore 60 trials per

condition, but in practice we have only 15 cues per trial and 15

trials per condition. (C) Trial Shuffle. We randomise the order

of trials to reduce the correlation between neighbouring trials.

This does not violate the constraint that each cue appears only

once in each sequence, and in every trial. (D) Partial Cue
shuffle. We then randomise the order of cues within each trial,

but we limit the shuffling to within the first, second and final third

of the sequence. This maintains the constraint that each cue

appears only once in each sequence, and in every trial, and adds

the additional constraint that each third contains all cues an equal

number of times. (E) Random Seed. Finally, each entry of the

matrix indexes into the shuffled pseudo-Normal sequence in sub-

plot A. The resulting plot appears completely random, but we

know the correlations between trials, and we know the average

mean and variance for the first, second and third block of trials

across all trials.

(TIF)

Figure S3 Confidence-Estimation Model Weights. To

measure the evolution of cue weights we perform a linear

regression of the deviation of each cue in the sequence from the

current mean estimate to the confidence window width, using data

over all trajectories (see main text Materials and Methods). In this

figure we illustrate the poor match between the empirically

observed weights and the model predictions. (A) Empirical
Data Integration Windows. At different time-steps in the trial

(indicated by coloured arrows) we compute the weight allocated to

all cues in the sequence (coloured curves) + the SEM across

subjects. The weights assigned to future cues are not shown. This

plot reveals that the decision at each time step is due to a weighted

average of the cues deviations observed until that point. These

weight profiles do not match the model (as we see in E) (B)
Empirical Data Cue Evolution. An alternative visualisation of

cue weight evolution shows how the weight allocated to the cues at

each of the time steps evolves over the time-course of a trial. We

do not show the weight allocated to the cue prior to it being seen.

This plot reveals that, shortly after being seen, each cue’s weight

increases as it contributes to the estimate, then gradually decays.

These weight profiles do not match the model and rise much more

slowly (as we see in F). (C) Empirical Weights. The weight

matrix W , excluding the systematic component, captures the

evolution of cue weights over time (see main text Materials and

Methods). When visualised in this way, using colour to represent cue

weight, we can see the initial response delay and the evolution of

cue combination, as summarised in A and B. This weight matrix

only roughly matches the model (as we see in the plot of ŴW in G),

but the high level of noise makes it difficult to reliably fit the model

to the data. (D) Empirical Systematic Bias. In computing the

regression of cue to decision we allow for a systematic component

to capture the variability in the trajectory that is not explained by

the cue weights. Our model roughly predicts the shape of the

systematic component (E-F) Model Predictions for compari-

son, with four parameters (a, b, d and y0) optimised to minimise

the difference between W and ŴW (plots C and G).

(TIF)

Text S1 Shuffled pseudo-Normal cue sequence genera-
tion. Further details of the cue sequence generation process.

(PDF)

Text S2 Cue weight regression algorithm. Further details

of the method used to compute the contribution of each cue in the

trial to the empirical trajectory observed.

(PDF)

Video S1 Video showing the evolution of the weights
contributing to the mean estimate in Task 2. The

contribution of each weight forms an integration window which

changes as evidence arrives. Note that at the final time step the
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integration window is flat for both the empirical data and the

model, indicative of optimal integration weights.

(AVI)
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