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Abstract— Dextrous manipulation based on techniques for
non-linear dimension reduction and manifold learning is an
upcoming field of research and offers promising opportunities.
Still, many problems remain unsolved and researchers are
seeking for new representations that combine efficient learning
of examples and robust generalisation to unseen situations.
Here, we propose a manifold representation of hand postures,
which due to its structural clarity lends itself to simple and
robust manipulation control schemes. Focussing on cyclic move-
ments, we describe extensions to the dimensionality reduction
algorithm Unsupervised Kernel Regression(UKR) that allow to
incorporate structural hints about the training data into the
learning yielding task-related structures in the manifold’s latent
space. We present the resulting manifold representation and a
simplified controller using this representation for manipulation
in the example of turning a bottle cap in a physics-based
simulation.

I. I NTRODUCTION

During the last decades, researchers have made huge
advances in constructing and building anthropomorphic robot
hands which have become more and more sophisticated.
Together with these developments, researchers are facing the
question of how to control such complex, dextrous robots
with up to 20 degrees of freedom in up to five fingers
plus wrist. It quickly became clear that implementing fixed
manipulation programs does not lead to satisfying results
as it is very time consuming and not robust against or
generalisable to differences in the manipulation situation.
Thus, various sophisticated – fundamentally different – ap-
proaches have been presented which address these problems.
Michelman and Allen [8] implement simple object transla-
tions and rotations with the Utah/MIT Hand and combined
them to more complex tasks. In this manner, they achieved to
remove a child-proof bottle top with two fingers exploiting a
decomposition into subtasks and explicit force and position
control schemes. Zhang et al. [20] define a graph of ver-
tices representingcanonical graspsconsisting of topological
hand/object feature pairs having contact when the associ-
ated grasp is achieved. Directed edges between two grasps
represent possible transitions which have to be designed
as lower-level control laws. Manipulation planning then is
implemented as path planning in the graph between defined
start and end vertices. Platt et al. [12] address manipulation
by sequencing concurrent combinations of hierarchically
organised closed-loop controllers. Each of these is derived
from potential functions and realises force-related objectives.
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Fig. 1. (a) Hand-mounted CyberGlove II during cap turning movement.
(b) Simulated manipulation scenario for the minimal cap size (r = 1.5cm).
(c) Simulated scenario for the maximal cap size (r = 3.5cm).

By dint of operating subordinated controllers in the nullspace
of superiors, higher-level conditions like wrench closure can
be prioritised and sustained.

In recent years, less engineering motivated approaches to
manipulation have been presented that aim at finding less
complex representations of the targeted problems. To this
end, i.e.eigengraspshave been taken into account [2] or
lower-dimensional manifolds embedded in the hand posture
space are used to facilitate hand control [18]. In previous
work, we proposed similar manifolds asexperiencebasis
for a grasp strategy [14] which we used as motivation for
representing manipulations inManipulation Manifolds[15].

In this paper, we are concerned with manipulation move-
ments that are highly structured in the sense that intermediate
postures can be described by few parameters in the task
space. Specifically, we focus oncap turning movements
as carried out by a human or robotic hand for opening a
bottle (cp. [15]): We aim at compactly representing a set of
recorded movements, and from that representation generalise
to similar movements (turning caps of unseen size).

Concerning the recording of robot-appropriate data, we
follow the idea of Oztop et al. [10], [11] who propose to
consider the robot as a tool for the human and to exploit
the human learning capacity in learning to use this tool for
generating appropriate training data directly on the robot.
For the task-related representation of such data, we propose
a manifold representation of hand postures, where distinct
latent manifold dimensions reflect the natural parameters of
the associated movement as directly as possible. For the cap
turning example, these would be the (temporal) phase of the
periodic manipulation and the bottle cap radius.

The paper is organised as follows: In Section II and III,
we briefly review basicUnsupervised Kernel Regressionand
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the new extensions. Section IV will address the retrieval of
our manipulation data. In Section V we describe the semi-
supervised way of learning the manifolds followed by the
evaluation and results in Section VI. In Section VII, we
present a manipulation controller that directly exploits the
simplicity of the previously trained manifold. We finish with
a conclusion and an outlook on future work in Section VIII.

II. U NSUPERVISEDKERNEL REGRESSION

Unsupervised Kernel Regression(UKR) is a recent ap-
proach to learning non-linear continuous manifold repre-
sentations, that is, to finding a lower dimensional (latent)
representationX = (x1,x2, . . . ,xN ) ∈ Rq×N of a set
of observed dataY = (y1,y2, . . . ,yN ) ∈ Rd×N and a
corresponding functional relationshipy = f(x). It has been
introduced as the unsupervised counterpart of the Nadaraya-
Watson kernel regression estimator by Meinecke et al. in
[7]. Further development has lead to the inclusion of general
loss functions, a landmark variant, and the generalisation to
local polynomial regression [5]. In its basic form, UKR uses
the Nadaraya-Watson estimator [9], [19] as smooth mapping
f : x ∈ Rq → y ∈ Rd from latent to observed data space:

f(x) =
N∑

i=1

yi
KH(x− xi)∑
j KH(x− xj)

. (1)

The original estimator realises a smooth, continuous gener-
alisation of the functional relationship between two random
variablesx andy described by given data samples(xi;yi).
Here,KH(·) is a density kernel (e.g., Gaussian) with asso-
ciated bandwidth parametersH.

UKR now treats (1) as a mapping from the latent space to
the original data space in which the manifold is embedded
and from which the observed data samplesY = {yi}, i =
1..N are taken. The associated setX = {xi}, i = 1..N
now plays the role of the input data to the regression
function (1). Here, they are treated aslatent parameters
corresponding toY. As the scaling and positioning of the
xi’s are free, the formerly crucial bandwidth parameterH
becomes irrelevant and we can use unit bandwidths. Thus,
the regression function can be denoted as

bi(x;X) =
K(x− xi)∑
j K(x− xj)

(2)

f(x;X) =
N∑

i=1

yibi(x;X) = Yb(x;X). (3)

whereb(x;X)=(b1(x;X), b2(x;X), . . . , bN (x;X))T ∈RN

is a vector of basis functions representing the effects of the
kernels parametrised by the latent parameters.

As loss function for the UKR training, the reconstruction
error is considered and can be denoted as

R(X)=
1
N

∑
i

‖yi−f(xi;X)‖2=
1
N
‖Y−YB(X)‖2

F . (4)

Here, B(X) = (b(x1;X),b(x2;X), . . . ,b(xN ;X)) is an
N × N basis function matrix. Note that moving thexi

infinitively apart from each other results inB(X) being the

identity matrix which corresponds to a trivial minimisation
solution R(X) = 0. In order to prevent this undesired
case, several regularisation methods are possible [5]. Most
notably, UKR can very efficiently include leave-one-out
cross-validation, that is, reconstruct eachyi without using
itself. To this end, the only additional step is to zero the
diagonal ofB(X) before normalising its column sums to1.

For a preselected kernel, the non-linear reconstruction er-
ror (4) only depends on the latent parametersX and thus can
be optimised with respect toX by gradient-based methods.
As such often suffer from getting stuck in poor local minima,
an appropriate initialisation is important. Here, depending
on the problem, PCA [4], Isomap [17] or LLE [13] are
usually good choices. These eigenvector-based methods by
themselves are quite powerful and efficient in uncovering
low-dimensional structures in data sets. Contrary to UKR,
however, PCA is restricted to linear structures and Isomap
as well as LLE do not provide continuous mappings – a
combination with UKR yields the best of both worlds.

An inverse mappingx = f−1(y;X) from data space
to latent space is not directly supported in UKR. Instead,
one may use an orthogonal projection to define a mapping
x? = g(y;X) = arg minx ‖y − f(x;X)‖2 which approxi-
matesf−1(·). For further details, please refer to [7], [5].

III. UKR WITH STRUCTURAL HINTS

To provide implicit mechanisms to incorporate given
knowledge about training data structures, we presented sev-
eral extensions to original UKR training [16]. These exten-
sions enable the method to learn sequences of chronologi-
cally ordered data in asemi-supervisedmanner:

a) represent periodic movements:We assume latent
parametersx consisting of one periodictemporal dimen-
sion and one or several (usually) non-periodicdata dimen-
sions. This inhomogeneous structure of the latent space
can be captured by utilising different univariate kernelsKl

(parametrised byΘl) for different latent dimensionsl. The
basis functions (2) then consist of the normalised products
of these kernels:

bi(xj ;X) =
∏q

l=1 Kl(xi,l − xj,l;Θl)∑N
k

∏q
l=1 Kl(xk,l − xj,l;Θl)

. (5)

As kernel for the non-periodic dimensions, we use a standard
Gaussian kernel with (inverse) bandwidth parameterΘ:

Kg(xi − xj ; Θ) = exp
[
−1

2
Θ2(xi − xj)2

]
. (6)

As kernel for the periodic dimensions, we proposed asin2

kernel, periodic in[0;π], again with parameterΘ:

K	(xi − xj ; Θ) = exp
[
−1

2
Θ2 sin2(xi − xj)

]
. (7)

Up to normalisation and scaling, the kernel is equivalent to
the von Mises distribution [6] which has been already used
by Bishop et al. [1] to represent periodic data characteristics.



b) consider sequences of data:The affiliation of data
to sequences enables us to influence the latent parameter
adaptation such that sequence-specific mechanisms can be
involved supplemental to the general holistic optimisation.

c) conserve sequence order in latent space:To prop-
agate the temporal order of training sequencesSσ =
(yσ

1 ,yσ
2 , . . . ,yσ

Nσ
), σ =1..NS , to the latent space structure,

the corresponding latent parameters(xσ
1 ,xσ

2 , . . . ,xσ
Nσ

) need
to reflect this order in their latent temporal dimensiondt.
In the periodic case usingclosedsequences of training data
(xσ

0 = xσ
Nσ

), we can express this condition by adding a
regularisation term to the reconstruction error (4) which
penalises the sum of successor distances:

Ecseq(X) =
NS∑
σ=1

Nσ∑
i=1

sin2(xσ
i,dt

− xσ
(i−1),dt

). (8)

d) damp intra-sequence parameter variations:The ba-
sic idea is that the underlying movement parameters usually
do not change during single sequences – that is, in terms of
cap turning, the radius of the cap does not change during the
motion. To involve such regularisation in UKR learning, we
penalise high variances in the non-temporal dimensionsk 6=
dt – as before as additive penalty term to the reconstruction
error (4):

Epvar(X) =
NS∑
σ=1

∑
k 6=dt

1
Nσ

Nσ∑
i=1

(
xσ

i,k − 〈xσ
·,k〉

)2
(9)

The resulting overall loss function of UKR for periodic
data sequences then can be denoted as

E(X) = R(X)+λcseq ·Ecseq(X)+λpvar ·Epvar(X). (10)

For further details on the UKR extensions for periodic data
sequences and a profound analysis, please refer to [16].

IV. M ANIPULATION DATA

One usually critical issue of methods for manifold learning
or non-linear dimensionality reduction, respectively, is that
their (task-related) performance strongly depends on the
underlying training data. Although UKR is able to handle
noise in the training data to some extend, data collection
should be conducted thoroughly to improve learning results.

Concerning the recording of robot-appropriate data, we
follow the idea of Oztop et al. [10], [11] who propose to
consider the robot as a tool for the human and to exploit
the human learning capacity in learning to use this tool for
generating appropriate training data directly on the robot.
For our experiments, we generated hand posture data with
our data glove – an Immersion CyberGlove II with 22 bend
sensors for the different joints. We first map the sensor
values onto a simulated hand model and perform the data
generation in a simulated manipulation scenario (cp. Fig. 1).
Here, we incorporate joint angle corrections provided by the
collision detection of a physics-based simulation toolkit [3]
and more general hand posture corrections performed by the
user induced by visual feedback.

−2
0

2

−2
0

2
−2

0

2

0 0.5 1 1.5 2 2.5 3

−1

0

1

2

(a) (b)

Fig. 2. Structure of the cap turning hand posture data. Different colours
encode different cap radii (r = 1.5cm (black),2cm (blue),2.5cm (green),
3cm (magenta), and3.5cm (red)). Connected points illustrate neighbouring
hand postures within the sequences.(a) 3D Isomap embedding (K=10) of
the hand posture data. The periodicity of the cap turning movement is
clearly reflected in the cylinder-like embedding structure.(b) Top view of
the cylinder-like embedding in (a).(c) 2D unfolding of the cyclic structure of
the Isomap embedding in (a) using atan2. This form is used as initialisation
of the UKR latent parameters.

By dint of this indirect method, we recorded sequences
of hand postures during cap turning movements for five
different cap radii (r = 1.5cm, 2.0cm, 2.5cm, 3.0cm
and 3.5cm). For each of these radii, we produced five to
nine sequences of about 30 to 45 hand postures each – in
total 1204 for all sequences and all radii. Each hand posture
consists of a vector of the 24 joint angles of the simulated
hand model. For these initial experiments, we only generated
data for a fixed position of the cap centre.

V. TRAINING

The main target of this work was to generate manifolds
similar to the Manipulation Manifolds presented in our
earlier work [15], but in a more automatic manner: specific
movement parameters – and especially the advance in time
– are explicitly represented by specific and distinct manifold
dimensions. Like this, the manifold structure itself represents
knowledge about the manipulation and a manipulation con-
troller which exploits this simplified structure (like the one
presented in Section VII) can easily perform manipulation
movements by just straightly navigating through the mani-
fold’s latent space. Incorporating the new UKR extensions
for chronologically ordered data sequences and the results
of the profound analysis [16] in the manifold training mech-
anism now enables asemi-supervisedlearning scheme for
suchManipulation Manifoldsthat no longer requires manual
constructions of the UKR latent parameters as before.

Since UKR requires a fix number of latent dimensions,
we need to specify the adequate amount based on prior
knowledge about the structure of the underlying training
data. In our case of the manipulation data – corresponding
to the constructed version of theManipulation Manifolds–
we aim at two-dimensional latent representations (q = 2) of
the 24-dimensional hand posture data whereas one dimension
corresponds to the cap radius and the other to the temporal
advance within the cap turning movement. Taking the new
features of UKR for periodic data sequences into account,
we chooseK1 = K	(x; Θ1) (7) as periodic kernel for the
periodic temporal dimension andK2 = Kg(x; Θ2) (6) as
non-periodic kernel for the non-periodic radius dimension.
For initialising the model, we first compute a 3D embed-
ding of the data using Isomap (here: neighbourhood radius
K=10; results were very robust against different choices of
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Fig. 3. Development of UKR latent variables during training (Colours as
in Fig.2).(a) Initialisation with atan2-mapped Isomap-embedding. The hori-
zontal direction corresponds to the periodic temporal latent UKR dimension,
the vertical to the non-periodic latent data dimension.(b-e) after 5, 10, 15
and 25 optimisation steps: intra-sequence variances in latent data dimension
are reduced, the separation of different sequences is not yet finished.(f-g)
after 100 and 200 steps: sequence representations are now correctly ordered,
flat in the (vertical) data dimension and clearly separated. Larger inter-
sequence distances yield more intra-sequence distinctions (inducing larger
intra-sequence data variances).(h) after 600 steps: training result.

K), which is visualised in Fig.2a. Here, because standard
Isomap cannot directly embed into a periodic space, the extra
dimension is necessary to preserve the local structure of the
data. However, it is straightforward to detect the 2D subspace
containing the periodicity, and to map these coordinates to
an angular representation; in this case e.g. usingatan2,
leaving the non-periodic dimension unchanged (cf. Fig.2b).
Following the parameter selection hints determined from
the observations presented in [16], we set the parameters
(Θ1,Θ2, λcseq, λpvar) of the UKR model to(10, 4, 1, 1). We
consider five different training sequences, each consisting
of all available training data for one specific cap radius
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Fig. 4. Training result. (Colours as in Fig.2).(a) 2D plot of the latent
parameters. The horizontal direction corresponds to the cap radius (data)
dimension, the vertical to the periodictemporal latent dimension (period:
[0; π]). (b) 3D mapping of (a). Here, sin/cos are used to generate the 2D-
circular representation of the 1D-angular temporal latent dimension.

and run the gradient-based optimisation for600 steps. Fig.
3 visualises the different stages of the latent parameters
during the training. Fig. 3a depicts the utilised initialisation
of the latent parameters. Fig. 3(b-e) show their development
after 5, 10, 15, and 25 optimisation steps. Already in this
early stage of the training, the representations of the single
sequences are flattened in their radius dimension. This early
effect results from the still tightly packed sequences pushing
each other apart and the regularisation of the variance in
the radius dimension of the single sequences by dint of the
parameter variance penalty (9). The order of the sequence
representations in radius direction corresponds to the correct
order of the radii (from bottom to top): black (r = 1.5cm),
blue (2cm), green (2.5cm), magenta (3cm), and red (3.5cm).
However, the separation of the sequences is not yet finished
– especially the sequences forr = 2cm and 2.5cm (blue
and green) are very close to each other and partly overlap.
Indeed, the distinction then is intensified in the following
training (cf. Fig. 3(f-g): after 100 and 200 steps, respectively)
and finally very explicit after600 steps, as depicted in Fig.
3h. However, the larger inter-sequence distances yield more
space for intra-sequence distinction as well and thus, the
variance in the radius dimension of the single sequence
representations grows with progressing sequence separation
and results in partly non-flat sequence representations.

VI. EVALUATION AND RESULTS

The resulting latent parameters of the UKR training for
periodic data sequences is visualised in Figure 4. The latent
structure reflects the initially targeted characteristics: the
representation of the single sequences of training data are
well separated from each other and have low variance in their
data (radius) dimension. However, from the application point
of view, the task related abilities of the resulting manifold
are of special interest and thus, the main focus of this
evaluation will be the manifold’s capability to represent and
reproduce the underlying movements (or manipulations) and
to synthesise new unseen motions.

Figure 5 visualises the training result in form of hand
posture pictures. The postures correspond to the data space
imagesf(x;X) of regularly sampled positionsx in latent
space. Here, the bottom row corresponds to the minimal
value of the latent radius dimension (which is also the small-
est cap radius in this case) and the top row to the maximal
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Fig. 5. Visualisation of the training result in the hand posture space. The depicted postures correspond to the reprojectionsf(x;X) of regularly sampled
positionsx in the trained latent space. In each picture, a bottle cap of the radiusr = 1.5cm is shown as comparison aid. The latent radius dimension is
mapped onto the vertical direction, the latent temporal dimension onto the horizontal direction of the depicted grid. Remark that the temporal dimension
is periodic in[0; π] (and thus, that the first column is the successor of the last one). A more sophisticated impression of the manifold smoothness can be
obtained by means of the movie available underhttp://www.techfak.uni-bielefeld.de/˜jsteffen/mov/icra2009/upkrturn/ .

value. In horizontal direction, the temporal dimension –
periodic in [0;π] – is sampled in steps of110π, whereas the
last column is 9

10π. Hence, the next step would be1010π which
is equivalent to the first column (= 0) due to the periodicity.

The represented movement consists of different phases:
1) columns0 to 2

10π: the hand is opened and moves in
the direction of the little finger (backward movement), 2)
columns 2

10π to 4
10π: the fingers close depending on the

associated cap radius (closing movement), 3) columns4
10π

to 7
10π: the closed hand moves in the direction of the thumb

and rotates around the cap position (turning movement).
Afterwards, the hand opens again (columns7

10π to 9
10π)

and the motion smoothly transitions back to the beginning in
column0(= π). Whereas the open hand phase is very similar
(or not characteristically differing from each other compared
to the associated cap radius) for the different radii, the hand
postures significantly differ in the turning phase (columns
4
10π to 7

10π) where the fingers had contact with the cap in
the training data generation. Here, different levels of hand
closure (around the cap position) are clearly visible.

The results presented in Fig. 5 show that the cap turning
movement described by the training data is – at least in
principle – captured by the manifold learned in the new
semi-supervised manner. The general characteristics are the
same as for the previouslyconstructedmanifold presented
in [15]. The video referenced in Fig. 5 shows manipulation
movements for different latent radius values. In the next
section, we present a simplified controller scheme and show
that the manifold is able to perform manipulations as well.

VII. S IMPLIFIED MANIPULATION CONTROL

In [15], we already presented a simple control algorithm
to perform manipulations with theManipulation Manifold

using a manifold approach to grasping to adapt the latent
radius value to the presented manipulation context.

A more robust and at the same time less complex manip-
ulation controller performs this radius adaptation in a sim-
plified manner (cp. Fig. 6). The algorithm starts in an initial
hand posture which is associated with a fixed latent position
on the manifold lying on the ’maximum radius’ border of
the latent space in a temporal position where the fingers have
contact with the cap (cf. Fig. 6, pos. 1). This initial position
needs to be specified beforehand by visual inspection or – if
present in the training data – by analysing the finger contacts
for different latent time values. If thoroughly examined, this
position serves as general starting posture for manipulations
with all covered cap radii. The motion controller then is
subdivided into two different phases of orthogonal, straight
navigations through the latent space.

The first phase corresponds to grasping the cap and is
realised by a straight navigation in direction of decreasing
radii following the radius dimension. This is visualised in
Fig. 6 as a vertical arrow and the trajectory part from point
”1” to point ”5”. The corresponding closing movement of
the fingers continues until thumb, fore finger and middle
finger have contact (this is the case in point ”5” in Fig. 6)
which then yields an appropriate latent radius value for the
subsequent manipulation movement.

As soon as this simple grasping method succeeds, the
controller transitions to the manipulation phase, in which
the adapted radius is fixed and the manipulation movement
is performed by navigating through the latent space following
the temporal dimension (Fig. 6, points ”5” to ”14”). As the
latent space is periodic in this dimension, the cap turning
movement controlled this way can be repeated several times
by just further increasing the temporal latent value. Several
manipulations for different radii produced with this simpli-



Fig. 6. Visualisation of an exemplary grasping/manipulation sequence using the simplified manipulation controller on the trained manifold. The graph
depicts the distribution of the UKR latent parameters (remark the periodicity in[0; π] in the horizontal time dimension and the reversed axis direction in
the radius dimension). The hand pictures show 14 intermediate postures during the manipulation movement corresponding to the marks ’1’ to ’14’ in the
graph. The arrows (”grasping”, ”periodic manipulation”) represent the two very simple stages of the controller: a) grasp the cap by navigating through the
manifold’s latent space from a fix starting point (pic. 1) in the direction of decreasing radius (pic. 2-5) until thumb, fore finger and middle finger have
contact (pic. 5) and then b) perform the turning movement by navigating in the orthogonal temporal latent dimension (pic. 5-14). As the temporal dimension
is periodic, the turning movement can be reapplied (with smooth transition from one run to the next) by just further increasing the temporal value. There
are two videos available at http://www.techfak.uni-bielefeld.de/∼jsteffen/mov/icra2009/ which visualise the manifold as well as the manipulation controller.

fied controller are shown in a video referenced in Fig. 6.

VIII. C ONCLUSION

We presented a new approach to learningManipulation
Manifoldsin which distinct dimensions represent distinct pa-
rameters of the associated manipulation movement. In [15],
we have already shown thatUnsupervised Kernel Regression
is well suited to represent manipulation movements based on
sequences of recorded human hand data. By incorporating
the new extensions presented and analysed in [16], we now
achieved to replace the former manifoldconstruction by
a semi-supervisedlearning. The evaluation of this learned
manifold revealed similar characteristics as the manifolds
resulting from the previous construction method. Further,
we presented a new manipulation controller which uses the
trained manifold as basis and represents a simplified but more
robust version of the previous approach.

Future work will mainly follow two directions: Firstly,
we will further investigate robustness and generalisation
abilities of the new approach. Here, we are interested
in representing data which additionally cover different
positions of the bottle cap and in analysing the minimal
amount of training data which still produces good training
results. Secondly, we will address different kinds of data
like motion capture data from whole body movements.
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