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Abstract—Effective collaboration is based on online adaptation
of one’s own actions to the actions of their partner. This article
provides a principled formalism to address online adaptation in
joint planning problems such as Dyadic collaborative Manipulation
(DcM) scenarios. We propose an efficient bilevel formulation that
combines graph search methods with trajectory optimization, en-
abling robotic agents to adapt their policy on-the-fly in accordance
to changes of the dyadic task. This method is the first to empower
agents with the ability to plan online in hybrid spaces; optimizing
over discrete contact locations, contact sequence patterns, con-
tinuous trajectories, and force profiles for co-manipulation tasks.
This is particularly important in large object co-manipulation that
requires changes of grasp-holds and plan adaptation. We demon-
strate in simulation and with robot experiments the efficacy of
the bilevel optimization by investigating the effect of robot policy
changes in response to real-time alterations of the dyadic goals,
eminent grasp switches, as well as optimal dyadic interactions to
realize the joint task.

Index Terms—Dual arm manipulation (DaM), manipulation
planning, optimization and optimal control, physical human–robot
interaction.

I. INTRODUCTION

DYADIC collaborative Manipulation (DcM) is a term
we use to refer to a set of two individuals jointly

manipulating an object, as shown in Fig. 1. The two individuals
partner together to form a distributed system, augmenting their
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Fig. 1. DcM scenario which requires contact change with the left end-effector.

manipulation abilities. Such individuals can be either humans or
robots. In scenarios, where both individuals are humans, the col-
laboration is natural as we humans are adept at co-manipulation.
One key element is our ability to understand our partner’s
intentions and adapt our actions accordingly. A second central
skill is our ability to generate sequential manipulation plans.
Nevertheless, our understanding of the mechanisms of joint
action [1] and sequential decision making [2] are still subject
of research.

Early work by Sheridan [3] identified eight core challenges
of human–robot communication, with two of them being: (i)
the need to acquaint both humans and robots with models
of their partners, and (ii) the need to regulate the interaction
of distributed decision-making systems, typically referred as
mixed initiative systems. Ajoudani et al. [4] summarized the
strategies used to equip robots with interaction capabilities and
pinpointed that research on human–robot interaction models is
still at its infancy. In this work, we focus on how a robot policy
can be partner-aware and flexible toward complying with the
requirements of DcM scenarios.

DcM scenarios demand a broad range of manipulation skills
from both participants. The secret behind humans’ remarkable
manipulation skills, is our competence in control and prediction
of contact events [5]. In this article, we address co-manipulation
scenarios that involve multiple changes of contact, which is the
crux of sequential manipulation [6].

As a typical DcM example, consider a robot transporting
a large object with a human as shown in Fig. 1. During the
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Fig. 2. Different action paths to collaboratively manipulate the object from
the initial pose (A) to the goal pose (G). The tree illustration has two branches.
The left branch (A–B–C–E), that does not involve any change of grasp from the
robot side and results in an object drop. The right branch (A–B–D–F–G), where
the robot changes grasp-hold at (D) after the human partner changed grasp-hold
at (B), to successfully jointly rotate the object to the goal (G).

abstracted task execution shown in Fig. 2, there are instances in
which the current contact configuration is not sufficient for the
continuation of the task, e.g. rotating the object upside-down [see
Fig. 2(A)–(G)]. To avoid such deadlocks, both the human and
the robot should anticipate the object’s future state and change
their contact locations accordingly, as shown in Fig. 2(B) and
2(D). As illustrated in Fig. 2(E) and 2(G), contact adjustments
are crucial for the failure or success of the task. Further, actions
like contact changes must comply with the partner’s actions to
jointly balance the object.

Joint planning in DcM scenarios is extremely challenging and
requires solution of the following four complex problems:

1) Partner’s Intention Estimation: An agent can only con-
tribute to the performance of the dyad, if an estimation of
the partner’s intention can be obtained.

2) Joint Action Space Planning: As the two individuals act
upon the same object their actions need to be coordinated
with respect to the critical aspects of the task, e.g. balanc-
ing the object in collaboration with the partner.

3) Online Motion Plan Generation: Since the human part-
ner’s behavior is changing—i.e. non-stationary—a col-
laborative agent needs to update its own action plans
on-the-fly according to the current goal and state of the
interaction.

4) Agent’s Hybrid Policy: The agent’s repertoire of actions
needs to be sufficiently rich to participate in DcM tasks.
Such actions belong to a hybrid space of both continuous
and discrete quantities, like forces and contact changes.

In this article, we address the last three points with a novel
bilevel optimization formulation—where a continuous opti-
mization problem is embedded into a discrete one. We couple
informed graph-search (GS) methods and trajectory optimiza-
tion (TO) to efficiently compute online hybrid motions with high
fidelity. The resulting motion plans can be updated on-the-fly and
incorporate both geometrical and physical couplings between
the individuals of the dyad. Partner’s intentions are represented
as task space goals and here, we assume that the intentions can
be predicted. The partner’s policy is abstracted as task space
wrenches, which enables us to model joint manipulation. The
proposed method enables robots to generate on-the-fly joint
action policies that are partner-aware and can benefit from the
breadth of the hybrid action space.

The contributions of this article can be summarized as follows:
1) Partner-Aware Dyadic Planning Formalism: We ex-

tend the joint planning formalism—introduced in our previous
work [7]—to non-stationary partner behaviors. Using this, the
problem of finding the appropriate actions to co-manipulate
the object can be addressed given an estimate of the partner’s
variable intentions. This formalism serves as a principled basis
for the development of the partner-aware joint-action method.

2) Bilevel Computational Formulation: Our bilevel opti-
mization formulation enables the combination of graph-search
methods with trajectory optimization methods in a single frame-
work. The former provides a coarse solution which is refined
by the latter. This combination allows us to efficiently explore
the discrete modes of the problem, e.g. the contact state of
an end-effector, and holistically reason about geometric and
dynamic properties, e.g. contact locations, forces and timings.

3) Hybrid Optimal Control for Multi-Contact Planning:
We present a holistic model-based optimization method that
allows robotic agents to treat (i) forces, (ii) contact locations,
(iii) actions timings, (iv) object’s trajectory, and (v) contact
sequence pattern, concurrently while ensuring optimality. To do
so, we introduce a set of hybrid motion primitives that enable our
method to generate hybrid plans without a prespecified contact
pattern as in [7].

4) Online Dyadic Planning: By combining the above three
with the partner model introduced in our work [7] and an
informed search planner, we realize a computationally efficient
optimization method for DcM setups. The method generates hy-
brid motion plans online that are capable of adapting on-the-fly
to changes during the task, like dyadic goal changes.

This article is organized as follows. Section II reviews related
work on DcM setups and hybrid motion generation. Section III
presents the problem formulation. Brief background on methods
is provided in Section IV, while the methods’ details are given in
Sections V, VI, and VII. Section VIII presents the evaluation of
the method and the experimental results. Finally, Sections IX and
X conclude this article by discussing promising future research
directions.

II. RELATED WORK

A. Human–Robot Collaboration (HRC) Components

1) Partner’s Policy Prediction: In [8] and [9], a confidence
measure of the human’s goal prediction was used to alternate
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between reactive and proactive robot behaviors. Multiclass clas-
sifiers were utilized in [10] and [11] to recognize human partner’s
commands through force interaction in co-manipulation tasks.
Further, conditional random fields were adopted in [12] to infer
the human’s intended goal during box co-pushing tasks and
in [13] to anticipate object related human activities. In [14],
learning-based human’s occupancy workspace was predicted to
generate robot collision-free motion. A comprehensive litera-
ture on modeling other agents in multi-agent environments can
be found in [15]. These methods predict the partner’s intent,
however, the adaptation of the agent’s policy is only realized as
a selection from a set of discrete behaviors or as a modification
of few continuous variables.

2) Dyadic Interaction Models: Interaction models are sepa-
rated in three prevailing schools of thought, described below.

Control focused: Agravante et al. [16] used impedance con-
trol to accommodate partner’s actions and collaboratively carry
a table with a human. A load sharing framework with predefined
sharing modes was presented in [17]. In both cases, the partner
is treated as an external disturbance to the system.

Coupled-policies focused: Maeda et al. [18] proposed a
method to transfer adaptive hand-overs to robots from kines-
thetic demonstrations. Similarly, in [19], force and vision in-
formation was employed to commence the appropriate learned
impedance behaviors depending on the task’s phase. Data-driven
extraction of interaction constraints during hand-over tasks was
proposed in [20]. The extracted constraints were then used to
form online robot responses. These methods couple together
the policies of the agent, the partner, and the task evolution, to
learn a direct mapping toward generating online adaptive robot
responses. Thus, their generalization capabilities are limited to
the demonstration set.

Partner-model focused: Maeda et al. [21] used a polynomial
model to predict human motion and update the robot’s goal.
In [22] and [23], a task model was learned offline, to guide
the interaction at the reproduction phase. Evidence of humans
utilizing a model-based prediction of the partner’s goal to update
their own task’s goal and consequently their own policy has
been presented in [24]. Such methods are elegant, as each entity
(partner, agent, task) of the interaction is modeled separately
and actions of the two individuals can be appropriately reasoned
upon. Our work follows the same principle to obtain generaliz-
able robot behaviors.

3) Agent’s Policy Generation: Another central aspect to HRC
is motion attributes that the robot can regulate to fulfill the task
in collaboration with the human. In [25], task space attributes,
e.g. the object’s trajectory, were optimized to facilitate human
ergonomics. In [26], adaptation during co-manipulation was
realized through turn-taking collaboration. Further, a number of
methods focus on the dynamic properties of the interaction. In-
verse dynamics approaches concentrated on the torque and force
regularization [27], [28], while others adapted the impedance
characteristics of the robot online to accommodate for partner’s
actions [22], [29]. However, a central aspect of manipulation
is the selection of the appropriate contact locations on the
object [30]. Accordingly, the exploitation of the contact space of
the object by the two individuals is vital in DcM scenarios. To the
best of our knowledge, contact adaptation within collaborative

manipulation scenarios has not been addressed yet, although it
is crucial toward enabling a robot perform complex DcM tasks
jointly with a partner.

B. Hybrid Motion With Contact Changes

Next, we focus on the state-of-the-art multi-contact meth-
ods used for generating hybrid motions for manipulation and
locomotion.

1) Multi-Contact Planar Manipulation: Mason introduced
the problem of planar nonprehensile manipulation, the motion
cone concept, and the voting theorem [31]. The limit surface
concept was introduced in [32] and used in [33] to model the
dynamics of planar pushing. These concepts map contact point’s
motion to object’s motion, and have been used [34]–[36] to
address planning and control for planar pushing. Also, recently
they were generalized to a broader set of planar tasks [37]. Yet
the different contact modes are typically explored with offline
sampling, and the quasi-static environment assumption limits
their applicability to 2D tabletop pushing.

2) Hybrid Planning and Control: According to an important
duality between manipulation and locomotion, the latter is an
instantiation of nonprehensile manipulation [38]. Our work is
inspired by model-based optimal control methods [39]–[42], that
are not restricted by a quasi-static stability assumption. Next, we
describe three hybrid motion generation approaches.

Hierarchical approaches: These approaches address hybrid
problems by decomposing them into action planning [43], con-
tact planning [44], and motion control [45]. Such hierarchies
allow to exploit domain knowledge at the task planning level
and have been used for online motion generation. Yet, as these
elements are designed separately it is usual that the final solution
is not optimal or sometimes not feasible. In contrast, our method
treats all the variables of the problem holistically.

Mixed-integer programming: This formulation explicitly
models the hybrid nature of the problem and has been used
by [46]–[48] for both locomotion and planar manipulation. Yet
mixed-integer methods need to explore both the continuous and
discrete parts of problems, while reasoning for the discrete part
is done using general combinatorial optimization methods like
Branch and Bound. This typically leads to large computation
times that can be prohibitive for DcM needs.

Continuous programming: Using continuous optimization,
in [41], a mathematical problem with complementarity con-
straints was formulated in the presence of complex contact
phenomena. In [40] and [39], smooth nonlinear optimization
problems were formulated based on a key observation: motions
through contacts have phases, while the contact set remains
invariant within each phase. One of their drawbacks is that the
motion can only be conditioned on physical properties of the
problem neglecting higher-level task objectives that are common
in DcM scenarios [49], [50]. Our formulation treats all the
variables as continuous and utilizes a GS method to consider
higher-level task objectives too.

3) Sequential Manipulation Planning: On a different line
of work, Simeon et al. [51] employed probabilistic roadmaps
to produce motion plans with multiple grasp-hold changes.
King et al. [52] used Monte Carlo tree search to plan sequences
of discrete pushes and reason about object interactions. The A*
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algorithm was used by Gienger et al. [53], to demonstrate DcM
scenarios with a human and a robot. These methods discretize the
state space to employ search algorithms. Further, combinations
of these methods with motion planners have been realized [54].
Nevertheless, to the extent of our knowledge, these methods are
limited to kino-dynamic planning and have not been applied in
hybrid problems, where the generation of dynamically feasible
plans is of core importance.

Logic geometric programming (LGP): LGP with physics
synthesizes logical planning with optimal control to demonstrate
a broad range of robot sequential manipulation planning capa-
bilities. LGP has also been used for multi-agent cooperative
manipulation tasks [55], such as handovers. The cooperative
aspects are limited to the kinematic domain, where both agents
act synchronously, but their actions are not physically coupled.
In parallel to LGP with physics, the proposed method combines
the benefits of informed GS algorithms and optimal control
formulations. Informed search methods such as A* are a more
efficient special case of the Branch and Bound algorithm [56],
a fact that makes them well suited for online motion adaptation
during DcM tasks. Toussaint’s work [57] exhibits creative solu-
tions for manipulation puzzles in simulation, while our method
considers dynamic aspects of the dyadic interaction and enables
online re-planning.

III. PROBLEM FORMULATION

Fig. 3 provides a graphical representation of DcM as a system.
It is separated into three components; (i) the partner’s policy, (ii)
the dyadic interaction, and (iii) the agent’s policy, similarly to
Section II-A. Key in this formulation is the dyadic interaction,
which is used to capture the binding between the two individuals,
both in physical and in mental terms. The physical pairing
arises due to the object that acts as the physical medium for
exchanging information, while the intentions of the individuals
are naturally correlated due to the common task of the dyad.
The exact pairing configuration—e.g. role distribution within
the dyad—can be regulated through the physical constraints and
the dyadic objectives.

A. Core Nomenclature

Here, we introduce the core notation used in this article, while
section specific symbols are defined in each section. We use
superscripts, k for the indexing of the agent’s kth end-effectors’
quantities, as well as a and p, to refer to the same quantity for the
agent and the partner, respectively. We use subscripts to denote
both time and indices along a sequence.
n ∈ N Dimensionality of c-space (partner, agent)
ν ∈ N Dimensionality of manipulation task
N ∈ N Total number of knots1

i ∈ N Knot indices of the transcribed problem
j ∈ N Indices of the graph-search problem
K ∈ N Total number of agent’s end-effectors
T ∈ R>0 Total motion duration (final time)
fk ∈ Rν Forces applied by agent’s kth end-effector
λ ∈ Rν Partner’s applied wrench
ck ∈ Rν Agent’s kth end-effector position
K,D ∈ Rν Stiffness and damping (partner, agent)

q ∈ Rn Configuration (partner, agent)
yt:T ∈ Rν×N Pose trajectory of the object
ΔT ∈ RN Agent’s action timings

B. Formulation

A trajectory ξ is a time-indexed sequence of actions, that guide
the object to the goal statexT given its current statext, withxt =
[yt ẏt]

T . In the top right of Fig. 3, we illustrate few trajectories
(grey) from all feasible ones, as well as the optimal one (black)
with ξ∗

The full control policy πa of an agent participating in DcM
tasks is defined as function πa(·) −→ ξ, where ξ in the most
generic form, can be used to represent a trajectory with several
components as

ξ ≡ [fki cki ΔTi Ka
i Da

i qa
i ] ∀i ∈ N. (1)

However, as this work aims to generate hybrid motion plans
that belong in the force-contact space, the output of the agent’s
policy can be simplified to

ξ ≡ [fki cki ΔTi] ∀i ∈ N. (2)

The actual task, i.e. the object’s motion, is a function of the two
individuals’ policies described by

xt:T = f (πa, πp). (3)

Thus, the policies of the two individuals are coupled, forming the
dyadic interaction. We represent this relationship by explicitly
parameterizing the policy πa as

ξ = πa(xt, π̂
p, θD, θM), (4)

which indicates the dependency of the agent’s policy to the esti-
mated policy of the partner π̂p, the parameters of both the dyadic
setup θD and the manipulation task θM. As shown in Fig. 3, the
estimation of the partner’s policy can be obtained based on a
set of sensory measurements, an intention estimation process
and a parametric model. In the proposed DcM formulation, the
parametric model of the partner’s policy depends on the state of
the object, it outputs task-space wrenches and can be described
by a set of parameters θp, formally written as

λ = π̂p(xt; θ
p). (5)

To comply with the sequential nature of DcM tasks, the policy
of the partner should be non-stationary. This can be represented
with a multi-modal probability distribution Pr(θp|xt,q

p
t , H

p)
over parameters θp, given the sensed data xt,q

p
t and a history of

partner’s actionsHp. In every instance of the dyadic interaction,
the partner’s policy is described by one of the modes of the
distribution as shown in top left of Fig. 3. This can be obtained
by an intention estimation process.

The aim in DcM scenarios is to obtain the agent’s optimal
policy that depends on the parameters of both the dyadic setup
and the manipulation task, and the current estimate of partner’s

1Knots are the discretization points of the transcribed continuous problem.
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Fig. 3. Typical DcM scenario along with a modular description of DcM as a system. On top left a multi-modal distribution describes the policy of the partner
and top right illustrates the optimal trajectory ξ∗ computed from the policy of the agent along with few other feasible trajectories. The exact definitions of u and x
are given in Section VI.

policy. We express partner-aware dyadic planning with

ξ∗ = min
πa

∫ T

0

c (πa, π̂p, θD, θM)dt

s.t. g(πa,xt, π̂
p, θM) ≤ 0, (6)

by introducing the idea of considering the partner’s actions into
the motion plans of the agent through the constraint functions
g(·). As the partner’s behavior is non-stationary, the parameters
θp of the partner’s policy πp need to be estimated repeatedly
during the interaction to provide π̂p, which will trigger an update
of πa. Further, the objectives of the dyad, such as θD, are met
through the cost function c (·), where θD can represent e.g. the
role assignment within the dyad. Additionally, the task specifi-
cations can be satisfied either through the cost function c (·) or
the constraints g(·), where θM may define e.g. the final pose of
the object or a constant linear/angular velocity for the object.

IV. BACKGROUND

A. Hybrid Motion Preliminaries

As described in Section III, the policy of the agent πa gen-
erates hybrid action trajectories that guide the object from the
current state to the goal. We illustrate one such trajectory in
Fig. 4, where the object’s pose yt, the end-effectors’ positions
ck and the contact force f l of the left end-effector are visualized.
Such trajectories have hybrid nature due to the contact change.
The elements we would like to highlight in Fig. 4 are: (i) critical
transition instances exist within the trajectory, where disconti-
nuities occur, e.g. the force at T1 and T3, (ii) according to these

Fig. 4. Hybrid motion plan with one grasp-hold change, separated into phases.
The grey dotted area on top illustrates the physical space (x,z,φ). Orientation φ
is illustrated with the green arrow in the object. The force f l applied by the left
(blue) end-effector is shown with the middle plot. The knots of the trajectory
with resolution 3 are shown in the bottom graph along with the contact distance
d of the left end-effector to the object’s surface. The contact knots are grey, the
swing knots are pink, and the pre-contact knot is cyan. It is worth mentioning
that all the quantities shown here are optimized.

time-instances, the motion can be separated in phases—called
contact-invariant phases, e.g. contact and swing phase, and (iii)
the sequential arrangement of these phases defines the outline
of the trajectory—which we refer to as structure of the motion
and we denote with H ∈ {0, 1}K×N . In manipulation setups,
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the structure of the motion specifies the arms’ contact sequence
pattern, i.e. the order with which the arms change contacts.

B. Graph Search Algorithms Preliminaries

Search algorithms are used to find paths within graphs [58].
A graph G = (V,E) is described with a set of nodes V and set
of directed edges E. Each edge epq ∈ E denotes a directed link
between node vp ∈ V and vq ∈ V , where vq is a successor of
vp. In the context of search algorithms; (i) each edge epq has an
associated cost c pq > 0, (ii) the graph can be obtained given a
set of initial nodes {vι} ⊂ V and a successor operator Γ. Γ is
defined on the set V and when applied on a node vι provides all
its directed edges to successor nodes with the respective costs.
Finally, given a node vs and the successor operatorΓ, a subgragh
Gs = (V s, Es) can be constructed such that all the nodes ofGs

define the accessible set of nodes from node vs.
GS algorithms address the problem of finding the optimal

path2 v = {v0, ..., vN } of length N ∈ N from a start node vs to
a set of goal nodes {vg}, expressed as

min
v

C (v) (7a)

s.t. vj+1 = fγ(vj , ej) (7b)

ej ∈ Γ(vj) (7c)

v0 = vs (7d)

vJ ∈ {vg}, (7e)

where C (v) ∈ R is the total cost along the path, (7c) indicates
the set of all directed edges starting from a given node, fγ(·) is
the transition function responsible for computing the next node
in the sequence, and (7d), (7e) specify the initial node and the set
of final nodes, respectively [58]. The specifics for our problem
regarding C , Γ, fγ and the representation of v are discussed
in Section V-A. These methods compute efficiently a sequence
of transitions, i.e. the structure of the motion. Yet they neglect
details of the actual continuous motion through the transitions.

C. Trajectory Optimization Preliminaries

TO addresses the problem of finding locally optimal trajecto-
ries for dynamical systems [59], [60]. We consider the following
optimal control problem

min
x(t),u(t)

∫ T

0

c
(
x(t),u(t)

)
dt+ c f (x(T )) (8a)

s.t. ẋ(t) = f (x(t),u(t)) (8b)

x(0) ∈ X0 (8c)

x(tf ) ∈ Xf (8d)

g (x(t),u(t)) ∈ Z (8e)

t ∈ [0, T ], (8f)

2We use superscripts to index nodes and edges in a time agnostic fashion and
subscripts to index the nodes in the optimal path sequence, as in Section III-A.

where η is the dimensionality of a general system, x ∈ Rη is
the model’s state vector, u ∈ Rη is the model’s control vector,
c (·), c f (·) ∈ R in (8a) are the running and final cost functions,
f(·) ∈ Rη in (8b) describes the system’s dynamics, and (8c)
to (8f) describe bounds on the initial state, final state, path
constraints and motion duration, respectively.

Description (8) belongs to a rather general class of optimiza-
tion problems—termed Infinite Programming problems—since
we seek to find a set of continuous functions that fulfill a set
of continuous constraints. To make such problems computa-
tionally tractable, the usual approach is to parameterize the
problem using a finite number of decision variables, i.e. express
the problem as a constrained parameter optimization problem.
In this work, we express the hybrid problem utilizing direct
transcription (using a trapezoidal integration rule); we further
specify our problem’s structure in Sections V-B and VI, while
more details on TO methods and transcription methods are
provided in Appendix A. These methods are used to compute
efficiently continuous motion plans through discontinuities, and
typically require a proper initial seed.

V. BILEVEL OPTIMIZATION

In this section, we provide the core computational formalism,
that enables on-the-fly generation of hybrid motion plans, both
for single agent manipulation planning and for joint manipula-
tion planning in dyads. First, we describe how GS algorithms can
be formally combined with TO methods. The former is the outer
level and the latter is the inner level of the bilevel optimization.
Next, we present the details of the outer and inner levels. The
schematic shown in Fig. 5 illustrates the interplay between the
outer and inner level, and reveals the nested structure of the inner
level.

Bilevel Formulation: The aim of this formalism is to provide
the means to generate hybrid trajectories, like the one shown
in Fig. 4. Motivated by the key observations mentioned in
Section IV and inspired by the bilevel method presented in [61]
as well as the “Mixed-Logic Program” [57], we combine the
two formulations presented in (7) and (8) into a single bilevel
optimization formulation, as follows

min
v

C (v) (9a)

s.t. v0 = vs (9b)

x(vJ ) ∈ XN (θp) (9c)

ej ∈ Γ(vj , θ
p) (9d)

vj+1 ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
x(t),u(t)

∫ T

0 c (x,u, ej)dt

s.t. ẋ = f (x,u, ej , θ
p)

x0 ∈ X0(vj),

x(T ) ∈ Xf (ej),

g (x,u) ∈ Z(ej),

t ∈ [0, T ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (9e)

The outer level of the optimization is described with equations
(9a)–(9d) and it is responsible to construct the structure of
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Fig. 5. Overview of the methods; optimized paths are obtained through an
iterative execution of the outer (discrete) and inner (continuous) levels of the
bilevel optimization.

the motion. This is achieved by performing a discrete search
using the GS method, shown in Fig. 5. The inner level of the
optimization is described with the TO problem (9e) and its role
is to compute the continuous trajectories, such that the discrete
transitions can be realized. (9a) and (9b) are identical to (7a)
and (7d) in formulation (7), however, the discrete transition
function fγ described in (7b) is now replaced by (9e), which
denotes a nonlinear continuous optimization problem of the form
(8). Additionally, to reflect in the computational formalism the
dependency of the solution to the current mode of the partner’s
policy—as denoted by (4) and (5)—we modified (9c)–(9e) such
that they depend on the parameters θp. The dyadic planning
details are given in Section VII.

Outer-Inner Level Interplay: First, the outer level computes
a discrete sequence of states that define the initial structure
of the motion toward the goal. Second, each segment of the
motion is passed on and is optimized by the inner level. One
or more of these segment may be altered by the inner level,
resulting in a modification of the initial structure of the motion.
Consequently, the discrete sequence of states—subsequent to
the modified segment—might become obsolete and might need
to be recomputed by the outer level. This third step is closing
the bilevel loop. Running these three steps iteratively, the bilevel
optimization converges to the goal in a sliding window fashion.
In Fig. 6, we illustrate the bilevel nature of the method with four
examples.

A. Outer Optimization Level

For the outer optimization level, we aim for a fast GS method,
to compute the structure of the motion, e.g. a sequence of
contact changes and object’s motions. Given a discrete state
representation, the state-space can be encoded into a graph, with
each discrete state being a node v of the graph as described in
Section IV-B. We use a coarse state representation that includes
a discrete description of the object’s state y and contact locations
of agent’s end-effectors ck. A node v in the graph corresponds
to the tuple (y, cl, cr), where y, cl, cr ∈ N and v is defined as an
index to the tuple with v ∈ N. Fig. 7 depicts a viable 2D state
discretization.

Fig. 6. Representative illustration of four different solution paths (i)–(iv)
obtained by the proposed bilevel optimization method. The dashed lines depict
the discrete transition found from the outer (discrete) level of the optimization,
while the full lines are the continuous segments obtained from the inner (hybrid)
level of the optimization. All four paths start from the same initial node with
index 1. Solution path (i) ends at node 7. Solution paths (ii) and (iii) end at node
8 although they are different paths. In particular path (ii) will be generated when
having a change of goal from final node 7 to node 8. Similarly, paths (iii) and
(iv) end at different nodes which are identical with respect to the task, if we
observe the state of the object only. An interesting point is the alternation of
the transition from e3,5 to e3,6 by the inner (hybrid) level optimization, which
results in a new path from node 6 to the goal.

A key element of the GS algorithms is the successor operator
Γ, defined in Section IV-B. Γ allows us to attain a low branch-
ing factor and perform graph expansion more efficiently than
brute-force node insertion [62]. We realize Γ for multi-contact
manipulation and DcM scenarios specifically. We construct a
simplified and intuitive physics model of the object-hand inter-
actions based on the following rules [53].
Feasible States:

1) Left end-effector must always be on the left of the right.
2) A minimum distance between end-effectors is defined.
3) Applied forces have to be permissible given the contact

location (see Section VI-3).
4) When both end-effectors are in contact, they must quasi-

statically counteract gravity effects on the object’s CoM.
5) The pivoting torque spawned in scenarios with single

contact must not violate a given threshold (DcM-specific).
Feasible Transitions (task-depend):

a) Both end-effectors must be in contact to rotate the object.
b) A single or both end-effectors can change contact within

one transition.
Rules 1), 2), and a) are realized based on a mapping from

the discrete state to the continuous Cartesian space of the end-
effectors. Rules 3) and 4) are computed based on quasi-static
principles which are configuration dependent, typically used in
grasping literature [30]. Further, rule 5) reserves as an implicit
threshold on the required torque the partner has to apply, coun-
teracting the pivoting torque applied by the agent as states with
high torques are not allowed.

Regarding the particular choice of GS method, we use a
heuristic A* algorithm for the following two reasons. First,
the A* algorithm is considered a special case of Dynamic Pro-
gramming [63], [64]. Thus, the solution of our overall problem
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Fig. 7. 2D illustration of an example state-space representation of the outer
(discrete) level. The numbers in circles denote contact points. (a) Discretization
of the contact space. (b) Discretization of the object’s orientation (the transla-
tional part can be discretized with a checkerboard-like grid).

is obtained by a bilevel optimization process. Second, A* is
known for its computational efficiency, as it exploits heuristics
to achieve a very low effective branching factor.

A* constructs an optimal sequence of states in terms of the
evaluation function C (·) = g(·) + h(·). The cost term g(·) ∈ R
is obtained from edges’ costs (see Section IV-B), while the
heuristic term h(·) ∈ R needs to be admissible (always under-
estimate the actual cost) and monotonic to ensure that the solu-
tion path found is optimal [58]. To facilitate optimal composition
of the solution paths shown in Fig. 6, the heuristic termh(·)needs
to be designed in accordance with the cost function c (·) of the
inner optimization level in (9e). The details on the heuristic and
the cost terms are given in Section VIII.

The outer level provides the optimal structure of the motion
efficiently—plus—an initial guess for the inner optimization
level, by converting the optimal sequence of states to continuous
trajectories using fifth order polynomials [53].

B. Inner Optimization Level

The inner level (9e) is responsible for optimizing the hybrid
path (see Fig. 4), given the structure of the motion. Here, all
motion-relevant quantities (see Section IV-A) are optimized
within their continuous manifold, while the discretized descrip-
tion of the quantities (see Section V-A) serves as a bases for the
initial seed of the continuous problem. For example, contacts cki
are optimally selected from the entire object surface, not only
from the discrete contact locations shown in Fig. 7.

As it has been reported in our previous work [7] and by
others [39]–[42], [57], the computational times of optimizing
the full path at once are extensively large for any type of online
motion adaptation. Further, the nonconvex nature of the problem
gives no global optimality guarantees. Thus, to address the
computational efficiency challenge, we propose to optimize each
segment of the motion separately. To realize this, we introduce
a decomposition of general hybrid motion into a set of hybrid
motion primitives, referred as the Hybrid Optimization Lexicon
for Manipulation (HOLM). Fig. 8(a) shows the primitives for a
single end-effector and Fig. 8(b) illustrates a few combinations
of HOLM primitives for bimanual agents.

In contrast to [65], where the hybrid motion is chopped into
spacetime windows with fixed contact configuration and time
duration, we choose to build each primitive as a sequence of
two contact-invariant phases (see in Section IV-A) of variable

Fig. 8. The set of primitives referred as Hybrid Optimization Lexicon for
Manipulation (HOLM). Dashed lines denote swing phase, while full lines denote
contact phase. (a) Three primitives for a single end-effector. (b) Six bimanual
primitives, where the left end-effector is colored blue and the right is red.
For primitives (ii) and (iii) end-effectors can be switched, such that the left
(blue) remains in contact and the red performs a swing. Similarly, (iv) can be
symmetrically switched.

time duration. The primitive Cnt2Cnt has to two consecutive
contact phases, the Cnt2Sw has a contact phase followed by
a swing phase—where the grasp-hold change starts—and the
Sw2Cnt has a swing phase followed by a contact phase, where
the grasp-hold change is completed. A single swing primitive
does not contribute to the task, thus every swing phase is
accompanied by a contact phase. Hence, each segment of the
motion is optimized including the critical transitions of mak-
ing and braking contact (discontinuities) to anticipate the next
phase’s contact configuration. The transition from one HOLM
primitive to the next does not require special treatment as the
contact configuration is not altered.

Regarding the collection of primitives used, Sw2Cnt and
Cnt2Sw form the minimal set of making-braking contact, while
Cnt2Cnt is used to maintain contact, e.g. this is particularly
useful when the robot rotates the object toward the goal. The use
of the Cnt2Cnt primitive is encouraged with rule a) described in
Section V-A. In general, this set of primitives allows to fine-tune
the hybrid robot motions to be legible [66].

The inner level accomplishes very fast optimal hybrid motion
plan generation, given the structure of the motion. To the extend
of our knowledge, this in turn empowers the bilevel optimization
to be the first on-the-fly re-planning capable hybrid optimization
method. This allow us to demonstrate online hybrid policy
adaptation with respect to non-stationary dyadic interactions.
Next, we provide the inner level details.

VI. HYBRID PLANNING VIA TRAJECTORY OPTIMIZATION

To solve the continuous optimization problem in (9e), we
perform direct transcription as explained in Appendix A. This
involves discretizing the trajectories of the following decision
variables. For each ith knot, the quantities of interest [see (2) and
(3)] are (i) the pose of the object yi, (ii) the velocity of the object
ẏi ∈ Rν , (iii) action timings ΔTi, (iv) the contact locations cki ,
and (v) the contact forces fki . We group these quantities in two
vectors

xi = [yi ẏi]
T and ui = [fki cki ċki ΔTi]

T . (10)
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∀i ∈ N the trajectory of xi and ui describes a hybrid motion
(described in Section IV-A). TO problems with intermittent
contacts can be expressed using complementarity constraints,
yet in practice convergence of these problems is difficult (see
Appendix B). In our work, the structure of the motion is opti-
mized by the outer level (see Section V-A), which allows us to
customize our transcription, and separate the motion in phases
with different constraints—the contact-invariant phases men-
tioned in Section IV-A. Next, we present the phase-independent
and the phase-specific constraints, respectively.

1) Phase-Independent Constraints: We introduce here con-
straints that are applied to all the knots of the trajectory regardless
of the particular phase. We note that the object’s dynamics
fo(·) ∈ R2ν and the end-effectors’ motion fe(·) ∈ Rν are in-
tegrated using trapezoidal quadrature. Also, ψc ∈ R2ν defines
the reachable area of the agent’s end-effectors, referred as arms’
workspace.
� Dynamics of the object (discussed further in Section VII)

[yi+1 ẏi+1]
T = fo(yi, ẏi,λi, f

k
i , c

k
i ,ΔTi). (11)

� Initial state of the object

y0 = y∗
0 and ẏ0 = ẏ∗

0. (12)

� Desired final state of the object

yN = y∗
N and ẏN = ẏ∗

N . (13)

� Kinematic limits of the agent’s end-effectors

cki ∈ ψc. (14)

We use simple box bounds to approximate them.
� Upper bound on the total time of the motion

N∑
i=1

ΔTi ≤ T. (15)

2) Phase-Specific Constraints: The transcription of our hy-
brid optimization problem follows the phase-based parameter-
ization (see Fig. 4) introduced in [40], also used in [39]. We
extend this by considering the three possible collision states
between two rigid bodies as described in [67], and we split the
knots in three sets according to the contact-invariant phases; the
contact, swing, and pre-contact sets, shown in Fig. 4. At each
discretization point (knot), a constant subset of constraints needs
to be satisfied. Most of the phase-specific constraints are time
independent, which allows us to optimize each phase’s duration
and satisfy the constraints of each phase simultaneously. Each
phase is characterized by a distinct set of decision variables
that allows us to enforce a number of constraints implicitly and
reduce the number of decision variables. A list of the constraints
categorized according to the phase of the motion follows.

(i) Contact phase:
� Permissible contact forces (discussed in detail next)

ψ(fki ) ≥ 0. (16)

� No contact point slipping (implicit constraint)

ċki = 0. (17)

� End-effectors in contact with the object (implicit
constraint)

d(cki , Sobj(yi, c
k
i )) = 0, (18)

where d(·) ∈ R is the signed distance between end-
effector and object. Sobj : (y, c

k) −→ Rν computes
the closest point on the object’s surface to the end-
effector’s location and stresses out the importance of
object’s shape representation described below.

(ii) Swing phase:
� End-effector’s motion

cki+1 = fe(c
k
i , ċ

k
i ,ΔTi). (19)

� End-effector’s swing motion away from object

d(cki , Sobj(yi, c
k
i )) > 0. (20)

� No force (implicit constraint)

fki = 0. (21)

(iii) Pre-contact phase:
� End-effectors touching the object

d(cki , Sobj(yi, c
k
i )) = 0. (22)

� No force (implicit constraint)

fki = 0. (23)

3) Permissible Contact Forces: With (16), we denote the
allowable contact forces exerted by the end-effectors to the
object. These forces should satisfy the constraints3

fTnc ≥ 0 (24a)

|fT tc| ≤ μfTnc, (24b)

where f is the force vector, nc ∈ Rν is the normal and tc ∈ Rν

is the tangent vector at the contact point on the object’s surface.
μ ∈ R is the friction coefficient. Here, (24a) is the unilateral
contact constraint and (24b) is the friction cone constraint; we
use the linearized friction cone form. In (24) the constraints are
denoted using the halfspace representation. Alternatively, the
force constraints can be enforced using the vertex representation,
also used in [68]

f =

κ∑
�=1

α�ν
c
�, (25)

where νc
� = nc

� + μtc� are the extreme rays of the friction cone,
α� ≥ 0 are weighting coefficients and κ ∈ R is the number of
rays used. Normals, tangents, and extreme rays are functions of
the contact location and are obtained from Sobj(·) according to
the object shape representation. A 2D graphical illustration and
intuitive comparison between the halfspace and the vertex forms
is given in Fig. 9(a). We choose to enforce constraint (16) with
(25) as we have empirically noticed faster convergence.

3For readability, we drop the indices with respect to end-effectors and knots
of the trajectory.
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Fig. 9. (a) Illustration of an end-effector in contact with the object. Valid 2D
contact forces (shown in green) are generated by the conical combination of
the rays νc

1 and νc
2. This form can be preferred for interior-point methods that

traverse the interior of the feasible region and avoid unnecessary considerations
of invalid contact forces (shown in red). (b) The position of the end-effector
described in 2D polar coordinates c = [β, r]T , along with normal vector nc at
the imminent contact location are depicted.

4) End-Effectors’ Position Representation: Equations (14),
(18), (20), (22), and (25) are realized given a specific represen-
tation of the end-effectors position. We choose to represent the
end-effectors position relative to the CoM of the object in polar
coordinates, graphically shown for the 2D case in Fig. 9(b).

5) Object’s Shape Representation: The object’s surface is
represented with a closed cubic spline curve. The spline repre-
sentation is a smooth description of the object’s surface from
which all relevant properties along with their gradients can be
extracted, like normal and tangent vectors. The use of continuous
representations of the object’s surface is more generic than ap-
proaches like [69] that rely on the convexification of the object’s
shape, as scaling with respect to the number of edges/phases
becomes cumbersome.

6) Input Variables and Hyper-Parameters: The only re-
quired input variable is the description of the manipulation
task, θM. Here, we use the start and goal state of the object,
denoted as [y∗

0 ẏ∗
0] and [y∗

N ẏ∗
N ], respectively. Nonetheless,

the specification of θM can be as flexible as needed, and can
be specified either via the cost function c(·), e.g. minimize
object’s acceleration, or via the constraints g(·), e.g. set up-
per object’s velocity limits or set forbidden regions of the
workspace. To solve the TO problem two hyper-parameters
need to be specified. First, the resolution of the grid N (num-
ber of knots) shown in Fig. 4. Second, motion’s upper time
bound T .

VII. DYADIC CONSTRAINT AND PARTNER MODEL

In this section, we present the specifics on how to incorporate
the partner’s policy in the framework and generate dyadic hybrid
plans. In DcM scenarios, the object is jointly manipulated by
both individuals—as specified by (3)—by applying forces on
it. We propose to incorporate the partner’s policy in the TO
framework through the transcription constraints defined in (11).
Only now, the object’s dynamics are subject to the partner’s
wrenches too, described by

[
mI 0

0 J

]
ÿi +

[
mg

ẏω
i × (J ẏω

i )

]
=

K∑
k

[
I

ĉki

]
fki + λ, (26)

where m ∈ R and J ∈ Rν×ν
≥0 are the mass and inertia of the

object, I is the identity matrix, g is the gravitational accel-
eration, ẏω

i is the object’s angular velocity, and with (̂·) we
refer to the cross product matrix formed by the input vector. By
realizing (11) according to the augmented dynamics—where λ

represents the partner’s contribution—the TO generates plans
in accordance to the partner’s policy, referred as partner-aware.
This is illustrated in Fig. 3 with the physical constraints block. In
contrast to [55], where the method assumes full control authority
over the partner’s actions, the only requirement of our method
is an estimate of the partner’s policy.

Partner’s policy parametric model (see Fig. 3): This work
aims to provide a principled way toward incorporating partner’s
actions into the policy of the agent. An essential step toward this
goal is to identify the appropriate function space in which the
partner’s policy lies. We use here a simple but ample model for
the partner’s policy

λ = Kp(y∗
N − yi) +Dp(ẏ∗

N − ẏi). (27)

The parameters Kp and Dp denote a spring-damper behavior
of the partner toward the goal [y∗

N ẏ∗
N ] of the co-manipulation

task. Kp can be interpreted as the parameter that can shape
whether the partner acts as a leader Kp 
 0 or as a follower
Kp = 0, along with all the intermediate behaviors. The goal
[y∗

N ẏ∗
N ] captures the partner’s intentions relative to the task.

This model has been used in human motor control research [70],
as it captures the essence of the partner’s policy.

Partner’s policy oracle function: As this work is not focused
on estimating the partner’s policy π̂p, we assume an oracle
function exists. The oracle function can predict the parameters
θp = (y∗

N , ẏ
∗
N ,K

p,Dp) that describe the current mode of the
partner’s policy (see Section III). This in turn enables the use
of (5) without the need to compute Pr(θp|xt,q

p
t , H

p). The
implementation of the oracle function could be realized with
the methods reviewed in Section II-A1.

VIII. EXPERIMENTS

In this section, we first provide computational evaluations of
the proposed method. We proceed with simulations on both a
single agent and a dyadic setup. Last, we evaluate the proposed
method with real-world DcM experiments. See the attached ma-
terial for video footage of the simulations and the human–robot
experiments during DcM tasks.

The purpose of the computational study is to highlight the
computational gains of HOLM, in comparison to our previous
work [7], and emphasize the importance of specific algorith-
mic choices. The objective of the single agent simulations is
to demonstrate the capabilities of the method to plan highly
dynamic motions. Likewise, the dyadic simulations present a
multitude of situations, where the resulting hybrid policy of the
agent is conformed to the partner’s policy. The experiments with
a human–robot dyad demonstrate our method’s viability to plan
on-the-fly under real-world conditions.

Parameters of Experimental Setup: The state of the object is
y = [x z φ] with task dimension ν = 2, which is sufficient
for the demonstrations; however, both levels (Section V) can
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TABLE I
AVERAGE COMPUTATION TIME OF MAJORLY USED HOLM PRIMITIVE TYPES

DESCRIBED IN FIG. 8

be realized in 3D space with ν = 3, e.g. the inner level can be
modified based on our previous work [68]. To obtain the discrete
state (y, cl, cr) mentioned in the outer level (see Section V-A),
we only need to consider φ and the contact locations, as the
translational components of y, do not affect the structure of the
motion. φ is discretized with 30◦ resolution and for each of cl

and cr, we specify 16 contact locations. With these choices and
with the rules defined in Section V-A, the branching factor for
a brute-force search method is b ≈ 23. Yet, the A* algorithm
uses heuristics to guide the search, thus the average effective
branching factor for our setup is b∗ ≈ 4, which is the key to very
efficient outer level computation times. Regarding the evaluation
function C of A*, the heuristic term hmodels the angular differ-
ence between the current and goal rotation angles of the object,
while the transition cost function g corresponds to the required
movement length; shorter transitions in the continuous Cartesian
space are cheaper. The cost function of the HOLM primitives
similarly minimizes distance to goal and overall path length.
With this setup—as discussed in Section V-A—the resulting A*
discrete solution sequence is optimal and in accordance with
the inner optimization level. The knot resolution used for the
HOLM primitives is six knots per phase, and the friction cone
is μ = 0.5. For each HOLM primitive, we use an upper time
bound of T = 3.5 s for contact phases and T = 6.5 s for swing
phases. Once the hybrid motions are optimized in the task space
they are being mapped to the configuration space of the robot
using inverse kinematics (IK) [71].

Regarding the implementation details, we use CasADi [72]
to realize the HOLM primitives,4 where each primitive is a
separate parameterizable hybrid problem. Each hybrid problem
is a large and sparse nonlinear optimization problem which is
solved using IPOPT [73], while the automatic differentiation
capabilities of CasADi allow us to provide exact gradient
and hessian information. The A* planner and the lower-level
control aspects of the robot, e.g. inverse kinematics (IK), are
implemented in the Robot Control Software (Rcs)
framework.5 All experiments are conducted on a 64-bit Intel
Quad-Core i7 3.40GHz workstation with 16GB RAM.

4An open-source repository with our HOLM implementation can be found
[Online]. Available: https://github.com/stoutheo/HybridManip/tree/HOLM-
primitives

5Information about Rcs can be found [Online]. Available:
https://github.com/HRI-EU/Rcs

TABLE II
COMPUTATIONAL EVALUATION OF THE BILEVEL OPTIMIZATION AND INNER

LEVEL SPECIFICALLY WITH RESPECT TO FIVE DIFFERENT GROUPS OF TASKS

A. Computational Evaluations

We now show improved computational results over our pre-
vious single optimization based hybrid planning approach [7].

1) HOLM Computation Times: In Table I, we present the
average computation times for 15 runs of each HOLM primitive.
Each primitive is evaluated on a variety of tasks, using three
objects with different shape, a sphere, a rectangular box, and
a parallelogram box. The tasks involve translation from 0m−
1m and rotation from 0◦–180◦, similar to the ones shown in
Figs. 11 and 12. The computational times reported are obtained
with zero initial seed and they scale linearly with respect to the
number of knots and the time horizon. These results reveal the
computational benefits of HOLM.

2) Bilevel Optimization Computation Times: In Table II, we
present the average computation times for the bilevel optimiza-
tion. We group tasks in terms of angular distance from the initial
state of the object to the goal, as this grouping nicely relates to
the number of contact changes required to complete the task.
As the number of contact changes depends on the initial contact
configuration, a range of contact changes is given rather than an
exact number (second column of Table II). We also provide the
approximate horizon of the resulting motion. These tasks are as
follows:

i) 0◦ < Δφ < 20◦, with motion horizon ∼ 7 s.
ii) 20◦ < Δφ < 120◦, with motion horizon ∼ 20 s.

iii) 120◦ < Δφ < 140◦, with motion horizon ∼ 28 s.
iv) 140◦ < Δφ < 200◦, with motion horizon ∼ 71 s.
v) 200◦ < Δφ < 360◦, with motion horizon ∼ 114 s.
We show the computation time required for the first seg-

ment of the motion, the average computation time for each
one of the consecutive segments (fifth and sixth column of
Table II). The former indicates the planning time until the
receding horizon plan can be updated, while the latter spec-
ifies how fast the successive segments are computed. These
computation times comprise revising structure of the motion
too, and are proportional to the graph size displayed with the
number of explored nodes (fourth column of Table II). These
evaluations exhibit the online planning capabilities of the bilevel
method.

3) Discussion: The main steps that allow us to improve the
computation times from tens of seconds in our previous work [7],
to milliseconds for HOLM and few seconds for the bilevel
optimization are as follows: (i) decomposing the problem into
HOLM primitives, which allows to keep the size of the hybrid
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Fig. 10. In these keyframes, a single robot agent performs a dynamic hybrid manipulation task, i.e. rotate a ball by throwing it up in the air and catching it.

Fig. 11. In (a) and (b), we illustrate generated motion plans in response to two different partner policies. The green rectangle is the manipulated object, the blue
dot is the left end-effector of the agent. The object’s start pose is annotated with 1 and the goal with 4. The arrow field illustrates the forces applied by the partner.
(a) and (b) stress out the dependency of chosen contact location to the partner’s policy.

problems small (second column of Table I), (ii) exploring the
hybrid structure of the problem with an efficient GS algorithm,
(iii) formulating a sparse problem that can be efficiently solved,6

(iv) providing the exact Hessian using automatic differentiation,
(third and fourth column of Table I), and (v) selecting the
end-effectors’ and permissible force representation discussed
in Section VI-3 and VI-4.

The seventh column of Table II shows the average computa-
tion times required to optimize the full continuous path using the
HOLM primitives only for the inner optimization level. First,
as the HOLM primitives utilize the initial seed provided by
the outer level (see Section V-A), the computation times are
much smaller than the ones in Table I. Second, in the eighth
column of Table II, we provide the computation times (only
inner level) needed to compute the full path using a hierarchical
approach, as in [74]. The comparison between the seventh and
eights column of Table II reveals the computational gain of using
HOLM primitives with respect to the baseline approach.

Finally, the success rate of the bilevel optimization depends on
the selected discretization of the outer level. If a fine discretiza-
tion is selected, an optimal solution is always found. However,
this is achieved at the expense of computational efficiency.

6Interior-point methods are able to solve our specific problem more robustly
than sequential quadratic programming methods.

Therefore, we used a discretization of 30◦ that provides fast
solutions and satisfying success rate. The inner optimization
level has been empirically observed to provide robust solutions
in terms of convergence, due to the appropriate initial seed given.
This allows us to mitigate sensitivity issues with respect to
the initial seed, which is a common drawback of continuous
optimization methods. Further, even in case the inner level
fails to converge, we can always use the interpolated trajectory
obtained by the outer level.

The computation times presented demonstrate the online
planning capabilities of our method. We gained approximately
a ×10 to ×50 speedup in comparison to our previous work [7],
while simultaneously the arm’s contact sequence pattern (struc-
ture of the motion) is automatically computed.

B. Simulations Experiments

We present here a number of different motion plans generated
by the proposed method that demonstrate the capability to find
dynamic and partner-aware solutions. A dynamic motion is
illustrated in Fig. 10(a)–(f), where a robot performs in simulation
the challenging task of throwing and catching a ball. Next, the
variability of the solutions generated with respect to the dyadic
setup is analyzed.
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Fig. 12. Similar to Fig. 11(a) and 11(b), (a) and (b) depict the resulting trajectories in response to two partner policies. The red and blue dots are the right and left
end-effectors of the agent. The start pose is annotated with 1 and the goal with 6. Most of the object’s trajectory is planned at the active regions of the partner’s force
field, indicating that the robot utilizes the partner’s contribution to the task accordingly. Trajectories are displayed separately for four distinct partner’s policies: (c)
in x and z dimensions, (d) in φ dimension.

Fig. 13. Arms’ contact sequence pattern for the four distinct partner’s policies
shown in Fig. 12(c) and 12(d). The colors indicate which arm is in contact with
the object.

1) Partner-Aware Solutions: First, we alter the partner’s
policy parameters Kp and Dp in (27). Each partner’s policy is
expressed as a force field along one axis: in πp1 along X, in πp2
along Z, inπp3 along the main diagonal, and inπp4 alongφ axis.
In Fig. 11(a) and (b), the agent has one end-effector and jointly
completes with the partner, a 2.12m translation task in a zero
gravity (table-top) scenario. Fig. 12(a) and (b) illustrate solutions
for a 0.98m translation and a −90◦ rotation task, generated as
responses to two different partner policies in a scenario with
gravity along the z-axis. The former task highlights the effect
of the partner’s policy on the selected contact location. The
variation of the computed solutions is evident in the latter task
in Fig. 12(c), (d), and 13, where we present trajectories for four
distinct partner’s policies.

Second, we adjust the partner’s goal [y∗
N ẏ∗

N ] in (27). Fig. 14
shows the optimized contact locations and swing motions for
three goals. These experiments demonstrate the capability of
our method to adapt trajectories, contact locations, and action
timings in response to different partner policies.

2) Outer Versus Inner Level Solutions: With Fig. 16, we
show the benefits of our method over solely search-based plan-
ning approaches [53]. During this 90◦ object rotation DcM
task, the human partner does not properly support the object,
as shown in Fig. 15, where the avatar’s left hand is not in
contact with the object. In our partner model, this is repre-
sented through parameters Kp,φ = 0 and Dp,φ = 0 in (27). The
search-based outer level provides a coarse solution (blue line in
Fig. 16) that does not take into account the policy of the partner,
while the inner level significantly alters the plan (green line
in Fig. 16) to conform to the dynamic constraints of the task,
i.e. jointly balance the object. This shows that the inner level
significantly alters trajectories, durations, and action timings
of the outer level solution, to respect dynamic aspects of the
interaction.

3) Online Adaptation to Alternations of the Joint Goal: Dur-
ing this DcM scenario, the initial object’s target orientation of
150◦ changes to−55◦, while the agent is not aware of this change
in advance. The object’s target serves as a proxy to the partner’s
intention. This is realized by altering the goal [y∗

N ẏ∗
N ] during

the interaction shown in Fig. 18. In Fig. 17(a)–(c), we show the
angular state evolution of the object and the two end-effectors.
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Fig. 14. Agent’s left end-effector performs a swing motion, while the partner supports the object from the other side. Depending on the partner goal, the contact
locations change. The small yellow spheres denote the knots of the trajectory and the larger one the anticipated contact location. The black curve is the interpolated
trajectory. The partner’s intended object orientations are (a) 30◦, (b) 60◦, and (c) 90◦.

Fig. 15. Keyframes of a rotational DcM task with y∗
N = 90◦ intended goal, where the partner is not properly supporting the object. (a) The left hand of the avatar

is not in contact with the object. (b) The object is first rotated in the opposite direction to be properly supported by the agent’s right hand. (c) The swing motion to
change grasp-hold is performed. (d) The object is properly held and jointly rotated to the intended target.

Fig. 16. Evolution of the object orientation for the 90◦ DcM task shown
in Fig. 15. The blue curve is the path computed from the outer level of the
optimization, while the green is the final path optimized by the inner level. The
shaded areas indicate the duration and temporal placement of the swing motion
of the left end-effector. The inner level initially rotates the object opposite to the
goal to satisfy the dynamic constraints of the task.

Once the change of joint goal occurs, re-planning is completed
in 0.95 s for the first segment of the receding horizon plan. The
consecutive segments are adapted in 1.13 s. This illustrates that
our method can adapt on-the-fly trajectories, action timings,
durations, the structure of the motion and contact locations to
respond to real-time changes of the joint task.

C. DcM Experiments

We validate our approach in a real setting, where a human part-
ner jointly manipulates two different objects with a bi-manual,
i.e. k ∈ {1, 2}, and n = 32 DoF robot. The robot moves on
the horizontal plane in an omni-directional fashion—due to its
mobile base—and utilizes its two Kuka LBR iiwa 820 arms along
with two Schunk dexterous 3-finger hands for manipulation and
DcM tasks. A linear joint allows the arm base to be translated
along the vertical axis. We use a box and a cylindrical object.
Both are bulky, so that a human cannot perform the task alone.
The hybrid motion plans are optimized in the task space and are
realized on the robot in an open-loop fashion, after being mapped
to the configuration space using IK. A detailed description of the
physical system can be found in [53]. The robot utilizes surface
contacts at the planned contact locations as a form of mechanical
feedback. Further, it is worth noting that the joint-range of the
robot only permits rotations of the object of about 90◦ before it
reaches kinematic limits, thus grasp-hold changes are required.

1) Human-Aware Solutions: In correspondence to the simu-
lation experiments shown in Figs. 12 and 13, we demonstrate a
90◦ box rotation task with one contact change per arm. During
this real-world evaluation, the human partner is actively rotating
the box and no change of goal occurs. The key-frames of the
DcM scenario are depicted in Fig. 19.

2) Online Adaptation to Human’s Goals: We perform two
experiments to demonstrate the on-the-fly adaptation to the
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Fig. 17. Evolution of (a) the object’s absolute orientation, and the relative
to the object orientation of the (b) left end-effector and (c) right end-effector
for a non-stationary task. The shaded areas indicate the duration and temporal
placement of the end-effectors’ swing motion and its adaptation according to
the switch of the joint goal. The vertical orange dotted line indicates the exact
point in time where the change happens. The re-planning duration of 0.95 s is
shown with respect to the total motion duration of 88.27 s.

humans’ real-time changing goals. Similar to the simulations
shown in Figs. 17 and 18 these changes are unexpected.

In the first experiment, shown in Fig. 20, the initial goal of
the human partner is to rotate the cylindrical object to 90◦. The
full plan is computed by the bilevel optimization in 1.72 s and
the duration of the resulting hybrid motion is 27.31 s, with
one contact change. During the experiment, the human partner
decides that the preferred orientation of the object should be
180◦. Given the change of the human’s goal, the robot agent
computes the first segment of the adapted plan in 0.54 s and
the remaining segments of the hybrid plan are computed within

1.28 s, while the total duration of the updated plan is 51.63 s
with two contact changes.

In the second experiment, shown in Fig. 21, the initial goal
of the human partner is to rotate the object to −45◦. The hybrid
motion plan includes a grasp-hold change of the right arm and
has a total duration of 28.93 s, which is computed within 1.69 s.
During execution, the human alters the intended dyadic goal
and aims for a 90◦ desired object orientation. The first segment
of the adapted motion (receding horizon) is computed in 2.60 s,
while the remaining hybrid plan is computed in parallel with
the execution of the first segment in 4.98 s. The total updated
plan has a duration of 57.35 s and includes two contact changes.
Note that this experiment requires a complete reversal of the
object’s orientation. The computed motion stops near −45◦

(see attached video) and then an opposite rotation is initiated.
The stop is due to the rotation reversal and not due to stretched
computation time.

IX. DISCUSSION

In this section, we discuss our dyadic modeling choice, prac-
tical considerations and possible extensions of the proposed
approach.

In our partner-aware dyadic formulation presented in
Section III, we treat the two individuals and their dyadic in-
teraction separately (see Fig. 3); such treatment was used to
analyze human–human interactions [24]. We believe that this
design choice is of core importance; as it has been shown in a
variety of scenarios in Section VIII. This allows our method to
generalize over different tasks and partner behaviors, assuming
that the partner behavior can be approximated with the simple
but rich spring-damper model.

For the outer level described in Section V-A, we used a specific
discrete state representation and rules that do not model the
partner explicitly. Nevertheless, our framework can be easily
extended to enable multi-layered dyadic interaction modeling.
The inner level (see Section V-B) takes into account geomet-
ric [55] and dynamic aspects of the interaction (see Section VIII-
B2), while the outer level could incorporate logical interaction
rules, e.g. if one of the partner’s arm is swinging, the agent’s
end-effectors should remain in contact with the object. Also,
due to the A* choice, the outer level finds only the optimal
discrete solution. One could enhance the planning robustness
at the expense of optimality or computation time, by realizing
the outer level with Anytime Repairing A* [75], that computes
multiple incrementally optimal solutions.

Last, during the robot experiments, we identified the poten-
tial usefulness of microscale adaptation to task’s current state.
Essentially, coping with arbitrary dyadic situations requires
both our online planning adaptation method (long horizon) and
closed-loop control (short horizon). To this front, a Hybrid
Model Predictive Control (MPC) implementation based on the
HOLM primitives would allow the robot to correct for small
errors during the evolution of the task, e.g. close the loop with
respect to the object’s state. The HOLM computation times
presented in Section VIII-A1 serve as a first promising step.
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Fig. 18. Sequence of frames of a nonstationary DcM scenario. The orientation of the object is given at the top left corner of every keyframe. The initial joint
goal is to rotate the object to 150°; keyframes (a) and (b) show the hybrid plan and the early execution steps for achieving this joint partner-agent goal. However, in
between (b) to (c) the joint intended goal changes to rotate the object to −55°. This causes an on-the-fly adaptation to a new hybrid motion plan in (c). Keyframes
during the execution of the adapted plan are shown in (d), (e), and (f).

Fig. 19. Keyframes of a 90° box rotation DcM scenario. The human and the robot jointly complete the task. (a) Initial configuration. (b) Contact change by the
right arm. (c) The left arm has changed contact and the task is completed.

Fig. 20. Keyframes of a DcM task, where the human and the robot rotate a cylinder. (a) Initial state. (b) To realize the initial dyadic goal of orienting the cylinder
at 90◦, the robot performs a left arm contact change. (c) The partner’s goal changes to a 180◦ orientation for the cylinder. (d), (e) The robot performs the new
contact changes in accordance to the adapted joint plan. (f) The updated plan is completed given the latest human goal.
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Fig. 21. Sequence of frames of a DcM scenario, where the human’s initial goal is to orient the cylinder at −45◦ and during the task execution his goal changes
to 90◦. (a) Initial configuration. (b) Right arm during swing phase. (c) Right arm grasp-hold change has completed. (d) Human and robot jointly rotate the cylinder
towards the original goal. (e) Given the human’s goal change, the adapted hybrid motion plan is in progress. (f) Right arm contact location change according to the
updated plan. (g) Object’s weight is transferred to the right arm and the left arm changes grasp-hold. (h) All grasp-hold changes have finished and the final object’s
rotation starts. (i) The dyad reaches the object’s goal orientation.

X. CONCLUSION

This article presented a novel concept toward online adaptive
robot motion generation for physical HRC tasks, such as Dyadic
collaborative Manipulation (DcM) scenarios. We proposed a
formalization toward addressing the joint action problem based
on the assumption that an estimate of the partner’s non-stationary
intentions can be attained.

Further, we proposed a novel computational formalism to
exploit the efficiency of informed graph-search (GS) methods
in combination with the dynamic and geometric reasoning of
optimal control methods. Our approach computes the optimal
hybrid policy for the robot to complete manipulation tasks as
a member of a dyad or alone. The method only assumes a
roughly estimated model of the partner’s policy and a model
of the object. With these information, our bilevel optimization
computes dynamically consistent and optimal hybrid paths for
the (i) trajectory of the object, (ii) agent’s forces, (iii) agent’s
contact locations, (iv) respective timings of these actions, and
(v) arms’ contact sequence pattern. Due to the computational
efficiency of the method, the optimal paths can be computed
online, such that on-the-fly adaptation to real-time changes of

the dyadic interaction can be realized. This capability of the
proposed method is particularly important for HRC scenarios,
where typically the human partner alters intentions and behav-
iors multiple times throughout the interaction.

In summary, the proposed method is able to optimize over a
variety of different modes, which span both:

1) The hybrid action space that arises, due to the multi-
contact nature of the task.

2) The multi-modal nature of joint-action planning, due to
the non-stationary policy of the partner.

The pivotal aspects that enable the method to holistically
optimize over such a complex and multi-modal space efficiently
is the use of an informed GS algorithm in combination with the
decomposition of the hybrid motion into the HOLM primitives.
The outer level’s rules explore only the useful part of the solution
space and with the HOLM primitives hybrid motion plans are
optimized very efficiently.

We evaluated the method both in simulation and with an actual
human–robot dyad. Both results demonstrate that the proposed
method enables the robot agent to adapt its motion plans online,
in response to real-time changes of the dyadic setup. These
indicate the large potential of the method to be employed in
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general co-manipulation scenarios. Our future work will focus
on methods to estimate the human intentions online and fully
realize our vision presented in Fig. 3.

APPENDIX A
TRAJECTORY OPTIMIZATION METHODS

TO methods can be categorized as either indirect or direct.
Indirect methods are based on the calculus of variations or the
Maximum Principle [76]. They first use necessary conditions,
usually as a boundary value problem in ordinary differential
equations, and then discretize the resulting equation to obtain
the optimal solution. For our problem, multiple path constraints
(8e) have to be included, which is not straightforward using
this transcription method. Direct methods for TO first discretize
(8) and then use standard nonlinear optimization techniques
to solve the resulting parametric problem [60]. Since standard
optimization techniques are used, general constraints are easily
incorporated. This comes with costs regarding the accuracy of
the obtained solution, for which the required level is always
application dependent, while the resulting problems are easier
to pose and solve. Our method falls into the direct TO category.

Next, there are three main direct TO methods: shooting, tran-
scription, and collocation [77]. In direct shooting methods, an
integration scheme (e.g. an ODE solver) is used to eliminate state
trajectory variables from the problem. As a result, problems in
this class require only discretization of the control and possibly
of the path constraints. To compute the state trajectory calls
to an embedded integrator are needed, which first requires the
integrator to provide sensitivities and second it can be espe-
cially problematic for unstable systems. To mitigate this, direct
multiple shooting methods perform both a state and control
discretization, while calls to an integrator are still used, albeit
for a shorter horizon [78]. This leads to larger but structured
nonlinear problems.

Direct transcription methods do not require calls to an
embedded integrator; the discrete system’s dynamics are en-
forced as constraints. This is achieved by discretizing both the
controls and the states in a grid as well as the objective integral,
where the grid points are called knots. Using direct transcription,
problem (8) can be expressed as

min
x,u

N−1∑
i=0

c i (xi,ui) + c N (xN )

s.t. xi+1 = f (xi,ui)

x0 ∈ X0

xN ∈ XN

g (xi,ui) ≤ 0

i ∈ {0, N},
where the notation is the same as in Section IV-C. The optimiza-
tion problem is typically large and sparse, and nonlinear solvers
which exploit sparsity (SNOPT [79] orIPOPT [73]) can be used.
Direct transcription methods have similar convergence charac-
teristics with direct multiple shooting, are well parallelizable,

and are preferred for problems with challenging path constraints.
Their drawback is that the time discretization and the integration
scheme should be carefully selected, since there is a trade-off
between accuracy and computation effort.

Finally, in direct collocation methods both the input and
the state are parameterized by piecewise polynomial functions
(splines). Using these polynomial functions, the values of the
state and control are computed outside of the knot points (typ-
ically at the midpoint of each segment), referred as collocation
points. At these collocation points, the derivative of the spline
is enforced to match the dynamics. Most commonly, first order
polynomials are used for the input and third order for the state.
Defining the collocation points at the midpoints of the spline
allows their practitioners to compute the values of the state and
control at the collocation points without computing the spline
coefficients [80].

APPENDIX B
TRAJECTORY OPTIMIZATION THROUGH CONTACT

In TO through contact, the hybrid nature of the intermittent
contacts is usually expressed via a complementarity formulation
defined as 0 ≤ d⊥f ≥ 0, where d is a signed distance between
the contacting objects and f is the constraint normal force
between them. This states that only unilateral force can be
exerted between the bodies, penetration is not allowable, and that
situations involving no contact but contact force are excluded.
Mathematical programs with complementarity constraints are
in practice difficult to solve as they do not satisfy constraint
qualifications and relaxations are usually needed [41].
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