
5 Approximate Nearest Neighbor Regression in

Very High Dimensions

Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal

Fast and approximate nearest-neighbor search methods have recently be-
come popular for scaling nonparameteric regression to more complex and
high-dimensional applications. As an alternative to fast nearest neighbor
search, training data can also be incorporated online into appropriate suffi-
cient statistics and adaptive data structures, such that approximate nearest-
neighbor predictions can be accelerated by orders of magnitude by means
of exploiting the compact representations of these sufficient statistics. This
chapter describes such an approach for locally weighted regression with
locally linear models. Initially, we focus on local dimensionality reduction
techniques in order to scale locally weighted learning to domains with very
high dimensional input data. The key issue here revolves around obtaining
a statistically robust and computationally inexpensive estimation of local
linear models in such large spaces, despite potential irrelevant and redun-
dant inputs. We develop a local version of partial least squares regression
that fulfills all of these requirements, and embed it in an incremental nonlin-
ear regression algorithm that can be shown to work efficiently in a number
of complex applications. In the second part of the chapter, we introduce a
novel Bayesian formulation of partial least squares regression that converts
our nonparametric regression approach to a probabilistic formulation. Some
of the heuristic components inherent in partial least squares can be elimi-
nated with this new algorithm by means of efficient Bayesian regularization
techniques. Evaluations are provided for all algorithms on various synthetic
data sets and real-time learning examples with anthropomorphic robots and
complex simulations.

5.1 Introduction

Despite the recent progress in statistical learning, nonlinear function ap-
proximation with high-dimensional input data remains a nontrivial prob-
lem, especially in incremental and real-time formulations. There is, how-

104 Approximate Nearest Neighbor Regression in Very High Dimensions

ever, an increasing number of problem domains where both these properties
are important. Examples include the online modeling of dynamic processes
observed by visual surveillance, user modeling for advanced computer inter-
faces and game playing, and the learning of value functions, policies, and
models for learning control, particularly in the context of high-dimensional
movement systems like humans or humanoid robots. An ideal algorithm for
such tasks needs to avoid potential numerical problems from redundancy
in the input data, eliminate irrelevant input dimensions, keep the compu-
tational complexity of learning updates low while remaining data efficient,
allow for online incremental learning, and, of course, achieve accurate func-
tion approximation and adequate generalization.

When looking for a learning framework to address these goals, one can
identify two broad classes of function approximation methods: (i) methods
which fit nonlinear functions globally, typically by input space expansions
with predefined or parameterized basis functions and subsequent linear
combinations of the expanded inputs, and (ii) methods which fit nonlinear
functions locally, usually by using spatially localized simple (e.g., low-order
polynomial) models in the original input space and automatically adjusting
the complexity (e.g., number of local models and their locality) to accurately
account for the nonlinearities and distributions of the target function.
Interestingly, the current trends in statistical learning have concentrated
on methods that fall primarily in the first class of global nonlinear function
approximators, for example, Gaussian process regression(GPR)[48], support
vector machine regression(SVMR)[40] and variational Bayes for mixture
models1(VBM)[13]. In spite of the solid theoretical foundations that these
approaches possess in terms of generalization and convergence, they are
not necessarily the most suitable for online learning in high-dimensional
spaces. First, they require an a priori determination of the right modeling
biases. For instance, in the case of GPR and SVMR, these biases involve
selecting the right function space in terms of the choice of basis or kernel
functions[44], and in VBM the biases are concerned with the the right
number of latent variables and proper initialization.2 Second, all these recent
function approximator methods were developed primarily for batch data
analysis and are not easily or efficiently adjusted for incrementally arriving
data. For instance, in SVMR, adding a new data point can drastically
change the outcome of the global optimization problem in terms of which
data points actually become support vectors, such that all (or a carefully
selected subset) of data has to be kept in memory for reevaluation. Thus,
adding a new data point in SVMR is computationally rather expensive, a
property that is also shared by GPR. VBM suffers from similar problems
due to the need for storing and reevaluating data when adding new mixture
components[43]. In general, it seems that most suggested Bayesian learning
algorithms are computationally too expensive for real-time learning because
they tend to represent the complete joint distribution of the data, albeit

Approximate Nearest Neighbor Regression in Very High Dimensions 105

as a conditionally independent factored representation. As a last point,
incremental approximation of functions with global methods is prone to lead
to negative interference when input distributions change[35]; such changes
are, however, a typical scenario in many online learning tasks.

In contrast to the global learning methods described above, function ap-
proximation with spatially localized models, that is, nearest-neighbor(NN)
techniques, are rather well suited for incremental and real-time learning[2].
Such nonparametric methods are very useful when there is limited knowl-
edge about the model complexity such that the model resources need to be
increased in a purely incremental and data-driven fashion, as demonstrated
in previous work[35]. However, since these techniques allocate resources to
cover the input space in a localized fashion, in general, with an increas-
ing number of input dimensions, they encounter an exponential explosion
in the number of local models required for accurate approximation, often
referred to as the “curse of dimensionality”[31]. Hence, at the outset, high-
dimensional function approximation seems to be computationally infeasible
for local nonparametric learning.

Nonparametric learning in high-dimensional spaces with global methods,
however, has been employed successfully by using techniques of projection
regression (PR). PR copes with high-dimensional inputs by decomposing
multivariate regressions into a superposition of single variate regressions
along a few selected projections in input space. The major difficulty of
PR lies in the selection of efficient projections, that is, how to achieve the
best fitting result with as few univariate regressions as possible. Among
the best known PR algorithms are projection pursuit regression [11], and
its generalization in the form of generalized additive models[16]. Sigmoidal
neural networks can equally be conceived of as a method of projection
regression, in particular when new projections are added sequentially, e.g.,
as in cascade correlation[9].

In this chapter we suggest a method of extending the beneficial properties
of local nonparametric learning to high-dimensional function approximation
problems. The prerequisite of our approach is that the high-dimensional
learning problems we address have locally low dimensional distributions, an
assumption that holds for a large class of real-world data (see below). If
distributions are locally low-dimensional, the allocation of local models can
be restricted to these thin distributions, and only a tiny part of the entire
high dimensional space needs to be filled with local models. Thus, the curse
of dimensionality of spatially localized model fitting can be avoided. Under
these circumstances, an alternative method of projection regression can be
derived, focusing on finding efficient local projections. Local projections can
be used to accomplish local function approximation in the neighborhood of
a given query point with traditional local nonparametric approaches, thus
inheriting most of the statistical properties from the well established meth-
ods of locally weighted learning and nearest-neighbor regression[15, 2]. As

106 Approximate Nearest Neighbor Regression in Very High Dimensions

this chapter will demonstrate, the resulting learning algorithm combines the
fast, efficient, and incremental capabilities of the nonparametric techniques
while alleviating the problems faced due to high-dimensional input domains
through local projections.

In the following sections, we first motivate why many high dimensional
learning problems have locally low-dimensional data distributions such that
the prerequisites of our local learning system are justified. Second, we ad-
dress the question of how to find good local projections by looking into var-
ious schemes for performing dimensionality reduction for regression. Third,
we embed the most efficient and robust of these projection algorithms in an
incremental nonlinear function approximator[45] capable of automatically
adjusting the model complexity in a purely data-driven fashion. Finally,
a new Bayesian approach is suggested to reformulate our algorithms in a
probabilistic framework, thus removing several levels of open parameters in
the techniques. In several evaluations, in both on synthetic and real world
data, in the resulting incremental learning system demonstrates high accu-
racy for function fitting in very high-dimensional spaces, robustness toward
irrelevant and redundant inputs, as well as low computational complex-
ity. Comparisons will prove the competitiveness with other state-of-the-art
learning systems.

5.2 Evidence for Low-Dimensional Distributions

The development of our learning system in the next sections relies on the
assumption that high-dimensional data sets have locally low dimensional
distributions, an assumption that requires some clarification. Across do-
mains like vision, speech, motor control, climate patterns, human gene dis-
tributions, and a range of other physical and biological sciences, various
researchers have reported evidence that corroborate the fact that the true in-
trinsic dimensionality of high-dimensional data is often very low[42, 27, 47].
We interpret these findings as evidence that the physical world has a signif-
icant amount of coherent structure that expresses itself in terms of a strong
correlations between different variables that describe the state of the world
at a particular moment in time. For instance, in computer vision it is quite
obvious that neighboring pixels of an image of a natural scene have redun-
dant information. Moreover, the probability distribution of natural scenes
in general has been found to be highly structured such that it lends itself
to a sparse encoding in terms of set of basis functions[24, 3]. Another ex-
ample comes from our own research on human motor control. In spite of
the fact that humans can accomplish movement tasks in almost arbitrary
ways, thus possibly generating arbitrary distributions of the variables that
describe their movements, behavioral research has discovered a tremendous
amount of regularity within and across individuals[20, 32]. These regular-

Approximate Nearest Neighbor Regression in Very High Dimensions 107

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

C
um

ul
at

iv
e

va
ria

nc
e

No. of retained dimensions
7.78

/ /

105
/ /

(a)

1 11 21 31 41
0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Dimensionality

(b)

Figure 5.1 Dimensionality Analysis. (a) The cumulative variance accounted vs. the local
dimensionality (averaged across all mixture models). (b) The distribution of the effective
dimensionality across all mixture models.

ities lead to a locally low-dimensional data distribution, as illustrated in
the example in figure5.1. In this analysis[6], we assessed the intrinsic di-
mensionality of data collected from full body movement of several human
subjects, collected with a special full-body exoskeleton that recorded si-
multaneously 35 degrees of freedom(DOF) of the joint angular movement
of the subjects at 100Hz sampling frequency. Subjects performed a variety
of daily-life tasks (e.g., walking, object manipulation, reaching, etc.) until
about a gigabyte of data was accumulated. Our analysis examined the local
dimensionality of the joint distribution of positions, velocities, and acceler-
ations of the collected data, that is, a 105-dimensional data set, as would be
needed as inputs to learn an inverse dynamics model for motor control[20].
As an analysis tool, we employed a variational Bayesian mixture of fac-
tor analyzers that automatically estimated the required number of mixture
components[13]. As demonstrated in figure 5.1(a), the local dimensionality
was around five to eight dimensions, computed based on the average number
of significant latent variables per mixture component. Figure 5.1(b) shows
the distribution of the effective dimensionality across all mixture models.

In summary, the results from our analysis and other sources in the
literature show that there is a large class of high-dimensional problems
that can be treated locally in much lower dimensions if one can determine
appropriate regions of locality and the local projections that model the
corresponding low-dimensional distributions. As a caveat, however, it may
happen that such low dimensional distributions are embedded in additional
dimensions that are irrelevant to the problem at hand but have considerable
variance. In the context of regression, it will thus be important to only
model those local dimensions that carry information that is important for
the regression and eliminate all other dimensions, that is, to perform local
dimensionality reduction with regression in mind and not just based on
input or joint input-output distributions, as discussed in the next section.

5.3 Local Dimensionality Reduction

108 Approximate Nearest Neighbor Regression in Very High Dimensions

Assuming that data are characterized by locally low dimensional distri-
butions, efficient algorithms are needed to exploit this property. For this
purpose, we will focus on locally weighted learning (LWL) methods[2] be-
cause they allow us to adapt a variety of linear dimensionality reduction
techniques for the purpose of nonlinear function approximation (see section
5.4) and because they are easily modified for incremental learning. LWL-
related methods have also found widespread application in mixture models
[19, 50, 13] such that the results of this section can contribute to this field,
too.

In pursuit of the question of what is the “right” method to perform
local dimensionality reduction for regression, Schaal et al.[36] examined
several candidate techniques theoretically and empirically. In particular,
the authors focused on locally weighted versions of principal component
regression (LWPCR), joint data principal component analysis (LWPCA),
factor analysis (LWFA), and partial least squares (LWPLS). We will briefly
revisit some main insights of this work before moving on to the development
of our key learning algorithm.

5.3.1 The Locally Weighted Regression Model

The learning problems considered here assume the standard regression
model:

y = f(x) + ε,

where x denotes the d-dimensional input vector, y the (for simplicity) scalar
output, and ε a mean-zero random noise term. When only a local subset of
data in the vicinity of a point xc is considered and the locality is chosen
appropriately, a low-order polynomial can be employed to model this local
subset. Due to a favorable compromise between computational complexity
and quality of function approximation[15], we choose linear models

y = βTx + ε.

A measure of locality for each data point, the weight wi, is computed from
a Gaussian kernel:

wi = exp(−0.5(xi − xc)
TD(xi − xc)), W ≡ diag{w1, . . . , wM}, (5.1)

where D is a positive semidefinite distance metric which determines the
size and shape of the neighborhood contributing to the local model[2]. The
weights wi will enter all following algorithms to assure spatial localization
in input space. In particular, zero mean prerequisites of several algorithms
are ensured by subtracting the weighted mean x or y from the data, where

x =
M∑
i=1

wixi/
M∑
i=1

wi, and y =
M∑
i=1

wiyi/
M∑
i=1

wi, (5.2)

Approximate Nearest Neighbor Regression in Very High Dimensions 109

and M denotes the number of data points. For simplicity, and without loss
of generality, we will thus assume in the derivations in the next sections that
all input and output data have a weighted mean of zero with respect to a
particular weighting kernel. The input data are summarized in the rows of
the matrix X=[x1 x2 ...xM]T , the corresponding outputs are the coefficients
of the vector y, and the corresponding weights, determined from (5.1), are
in the diagonal matrix W. In some cases, we need the joint input and output
data, denoted as Z=[z1 z2...zM]T = [X y].

5.3.2 Locally Weighted Factor Analysis

Factor analysis[8] is a density estimation technique that assumes that the
observed data z were actually generated from a lower-dimensional process,
characterized by k-latent or hidden variables v that are all independently
distributed with mean zero and unit variance. The observed variables are
generated from the latent variables through the transformation matrix U
and additive mean zero independent noise ε with diagonal covariance matrix
Ω:

z = Uv + ε, (5.3)

where

z =

[
x

y

]
, ε =

[
εx

εy

]
, E{εεT} = Ω, (5.4)

and E{.} denotes the expectation operator. If both v and ε are normally
distributed, the parameters Ω and U can be obtained iteratively by the
expectation-maximization (EM) algorithm[28].

Factor analysis can be adapted for linear regression problems by assuming
that z was generated with

U = [Id β]T , (5.5)

v = x, (5.6)

where β denotes the vector of regression coefficients of the linear model
y = βTx and Id the d-dimensional identity matrix. For the standard
regression model, εx would be zero, that is, we consider noise contamination
in the output only; for numerical reasons, however, some remaining variance
needs to be permitted and we prefer to leave it to the EM algorithm to find
the optimal values of the covariance Ω. After calculating Ω and U with EM
in joint data space as formulated in (5.3), an estimate of β can be derived
from the conditional probability p(y|x). Let us denote Z=[z1 z2...zM]T and
V=[v1 v2...vM]T . The locally weighted version (LWFA) of β can be obtained
together with an estimate of the factors v from the joint weighted covariance
matrix Ψ of z and v as

E{
[

y

v

]
|x} =

[
βT

B

]
x = Ψ21Ψ

−1
11 x, (5.7)

110 Approximate Nearest Neighbor Regression in Very High Dimensions

1. Initialize: Xres = X, yres = y

2. for i = 1 to k do

(a) ui = XT
resyres.

(b) βi = sT
i yres/(s

T
i si) where si = Xresui.

(c) yres = yres − siβi, Xres = Xres − sipi
T

where pi = XT
ressi/(s

T
i si).

Algorithm 5.1: Outline of PLS regression algorithm

where

Ψ = [ZT VT]W

[
Z

V

]
/

M∑
i=1

wi =

[
Ω + UUT U

UT Id

]
=

[
Ψ11 Ψ12

Ψ21 Ψ22

]
,

and B is a matrix of coefficients involved in estimating the factors v. Note
that unless the noise εx is zero, the estimated β is different from the true
β as it tries to optimally average out the noise in the data. Thus, factor
analysis can also be conceived of as a tool for linear regression with noise-
contaminated inputs.

5.3.3 Partial Least Squares

Partial least squares (PLS)[49, 10], a technique used extensively in chemo-
metrics, recursively computes orthogonal projections of the input data and
performs single variable regressions along these projections on the residu-
als of the previous iteration step. It is outlined in algorithm 5.1. The key
ingredient in PLS is to use the direction of maximal correlation between
the residual error and the input data as the projection direction at every
regression step. Additionally, PLS regresses the inputs of the previous step
against the projected inputs s in order to ensure the orthogonality of all
the projections u (step 2c). Actually, this additional regression could be
avoided by replacing p with u in step 2c, similar to techniques used in
PCA[30]. However, using this regression step leads to better performance
of the algorithm as PLS chooses the most effective projections if the in-
put data have a spherical distribution: in the spherical case, with only one
projection, PLS will find the direction of the gradient and achieve optimal
regression results. The regression step in 2(c) in algorithm 5.1 chooses the
reduced input data Xres such that the resulting data vectors have minimal
norms and, hence, push the distribution of Xres to become more spherical.
An additional consequence of 2(c) is that all the projections si become un-
correlated, that is, sT

j si = 0 ∀i �= j, a property which will be important in
the derivations below.

Approximate Nearest Neighbor Regression in Very High Dimensions 111

5.3.4 Other Techniques

There are several other approaches to local dimensionality reduction, in-
cluding principal component regression[22, 45], and principal component in
joint space(LWPCA J). Both of these methods can be regarded as locally
weighted factor analysis models with specific constraints on the structure
of the data generating model, and restrictive assumptions about the gener-
ative probabilistic model. As shown in [36], the methods are always inferior
to the full formulation of factor analysis from the previous section.

5.3.5 Which Approach to Choose?

Schaal et al.[36] demonstrated that both LWPLS and LWFA perform ap-
proximately the same under a large variety of evaluation sets. This result
was originally slightly surprising, as LWPLS has more of a heuristic com-
ponent than the theoretically principled factor analysis, a fact that leads to
naturally favoring factor analysis models. However, there are two compo-
nents that lift LWPLS above LWFA for our approximate nearest-neighbor
approach. First, we wish to learn incrementally and remain computation-
ally inexpensive in high dimensions. For this purpose, one would like to have
a constructive approach to factor analysis, that is, an approach that adds
latent variables as needed, a pruning approach, starting from the maximal
latent variable dimensionality, would be unacceptably expensive. Empir-
ically, [36] found that LWFA performs a lot worse if the latent variable
space is underestimated, meaning that a constructive approach to LWFA
would have transients of very bad performance until enough data were en-
countered to correctly estimate the latent space. For applications in robot
control, for instance, such behavior would be inappropriate.

Second, besides redundant variables, we also expect a large number of
irrelevant variables in our input data. This scenario, however, is disadvan-
tageous for LWFA, as in the spirit of a density estimation technique, it
needs to model the full dimensionality of the latent space, and not just
those dimensions that matter for regression. In empirically evaluations (not
shown here) similar to [36], we confirmed that LWFA’s performance de-
grades strongly if it does not have enough latent variables to represent the
irrelevant inputs. LWPLS, in contrast, uses the projection step based on
input-output correlation to exclude irrelevant inputs, which exhibits very
reliable and good performance even if there are many irrelevant and redun-
dant inputs.

These considerations make LWPLS a superior choice for approximate
nearest-neighbors in high dimensions. In the next section, we embed LW-
PLS in an incremental nonlinear function approximator to demonstrate its
abilities for nontrivial function-fitting problems.

112 Approximate Nearest Neighbor Regression in Very High Dimensions

Notation Affectation

M No. of training data points

N Input dimensionality (i.e., dim. of x)

k = (1 : K) No. of local models

r = (1 : R) No. of local projections used by PLS

{xi, yi}M
i=1 Training data

{zi}M
i=1 Lower-dimensional projection of input data xi

{zi,r}R
r=1 Elements of projected input

X, Z Batch representations of input and projected data

w Weight or activation of data (x, y) with respect to

local model or receptive field(RF) center c

W Weight matrix: W ≡ diag{w1, . . . , wN}
W n Cumulative weights seen by local model

an
var,r Trace variable for incremental computation of rth

dimension of variable var after seeing n data points

Table 5.1 Legend of indexes and symbols used for LWPR

5.4 Locally Weighted Projection Regression

For nonlinear function approximation, the core concept of our learning sys-
tem - locally weighted projection regression (LWPR)- is to find approxima-
tions by means of piecewise linear models[2]. Learning involves automati-
cally determining the appropriate number of local models K, the parameters
βk of the hyperplane in each model, and also the region of validity, called
receptive field (RF), parameterized as a distance metric Dk in a Gaussian
kernel:

wk = exp(−1

2
(x − ck)

TDk(x − ck)). (5.8)

Given a query point x, every linear model calculates a prediction ŷk(x). The
total output of the learning system is the normalized weighted mean of all
K linear models:

ŷ =

K∑
k=1

wkŷk/

K∑
k=1

wk, (5.9)

also illustrated in Figure 5.2. The centers ck of the RFs remain fixed in order
to minimize negative interference during incremental learning that could
occur due to changing input distributions[35]. Local models are created on
an “as-needed” basis as described in sub-section 5.4.2. Table 5.1 provides a
reference list of indices and symbols that are used consistently across the
description of the LWPR algorithm.

Approximate Nearest Neighbor Regression in Very High Dimensions 113

x1

x in
pu

t

�

x4
x3

x2

xn

In
pu

ts

xreg

...
...

Dk

yk

ui,k

�i,k

Linear Unit

y

Receptive Field
Weighting

Weighted
Average

Output

Correlation
Computation

ytrain

Figure 5.2 Information processing unit of LWPR.

5.4.1 Learning with Locally Weighted Projection Regression

Despite its appealing simplicity, the “piecewise linear modeling” approach
becomes numerically brittle and computationally too expensive in high-
dimensional input spaces when using ordinary linear regression to deter-
mine the local model parameters[35]. Given the empirical observation (cf.
section 5.2) that high-dimensional data often lie on locally low-dimensional
distributions, and given the algorithmic results in section 5.3, we will thus
use local projection regression, that is, LWPLS, within each local model
to fit the hyperplane. As a significant computational advantage, we expect
that far fewer projections than the actual number of input dimensions are
needed for accurate learning. The next sections will describe the necessary
modifications of LWPLS for this implementation, embed the local regression
into the LWL framework, explain a method of automatic distance metric
adaptation, and finish with a complete nonlinear learning scheme, called
locally weighted projection regression (LWPR).

Incremental Computation of Projections and Local Regression

For incremental learning, that is, a scheme that does not explicitly store any
training data, the sufficient statistics of the learning algorithm need to be
accumulated in appropriate variables. Algorithm 5.2[46] provides suitable
incremental update rules. The variables azz,r, azres,r, and axz,r are sufficient
statistics that enable us to perform the univariate regressions in step 2c.1.2
and step 2c.2.2, similar to recursive least squares, that is, a fast Newton-
like incremental learning technique. λ ∈ [0, 1] denotes a forgetting factor
that allows exponential forgetting of older data in the sufficient statistics.

114 Approximate Nearest Neighbor Regression in Very High Dimensions

1. Initialization: (# data points seen n = 0)
x0

0 = 0, β0
0 = 0, W 0 = 0, u0

r = 0; r = 1 : R

2. Incorporating new data: Given training point (x, y)

2a. Compute activation and update the means

1. w = exp(− 1
2
(x− c)T D(x− c)); W n+1 = λW n + w

2. xn+1
0 = (λW nxn

0 + wx)/W n+1; βn+1
0 = (λW nβn

0 + wy)/W n+1

2b. Compute the current prediction error

xres,1 = x − xn+1
0 , ŷ = βn+1

0

Repeat for r = 1 : R (# projections)

1. zr = xT
res,ru

n
r /

p
un

r
T un

r

2. ŷ ← ŷ + βn
r zr

3. xres,r+1 = xres,r − zrp
n
r

4. MSEn+1
r = λMSEn

r + w (y − ŷ)2

ecv = y − ŷ

2c. Update the local model

res1 = y − βn+1
0

For r = 1 : R (# projections)

2c.1 Update the local regression and compute residuals

1. an+1
zz,r = λ an

zz,r + w z2
r ; an+1

zres,r = λ an
zres,r + w zr resr

2. βn+1
r = an+1

zres,r/an+1
zz,r

3. resr+1 = resr − zrβ
n+1
r

4. an+1
xz,r = λ an

xz,r + wxres,rzr

2c.2 Update the projection directions

1. un+1
r = λ un

r + wxres,r resr

2. pn+1
r = an+1

xz,r/an+1
zz,r

e = resr+1

3. Predicting with novel data (xq):
Initialize: yq = β0,xq = xq − x0

Repeat for r = 1 : R

1. yq ← yq + βrsr where sr = uT
r xq

2. xq ← xq − srp
n
r

Note: The subscript k referring to the kth local model is omitted throughout
this table since we are referring to updates in one local model or RF.
Algorithm 5.2: Incremental locally weighted PLS for one RF centered at
c

Approximate Nearest Neighbor Regression in Very High Dimensions 115

Forgetting is necessary in incremental learning since a change of some
learning parameters will affect a change in the sufficient statistics; such
forgetting factors are a standard technique in recursive system identification
[21]. It can be shown that the prediction error of step 2b corresponds to the
leave-one-out cross-validation error of the current point after the regression
parameters were updated with the data point; hence, it is denoted by ecv.

In algorithm 5.2, for R = N , that is, the same number of projections
as the input dimensionality, the entire input space would be spanned by
the projections ur and the regression results would be identical to that
of ordinary linear regression[49]. However, once again, we would like to
emphasize the important properties of the local projection scheme. First, if
all the input variables are statistically independent and have equal variance,3

PLS will find the optimal projection direction ur in roughly a single sweep
through the training data; the optimal projection direction corresponds to
the gradient of the local linearization parameters of the function to be
approximated. Second, choosing the projection direction from correlating
the input and the output data in step 2b.1 automatically excludes irrelevant
input dimensions. And third, there is no danger of numerical problems due
to redundant input dimensions as the univariate regressions can easily be
prevented from becoming singular.

Given that we will adjust the distance metric to optimize the local model
approximation (see below), it is also possible to perform LWPR with only
one projection direction (denoted as LWPR-1). In this case, this distance
metric will have to be adjusted to find the optimal receptive field size
for a local linearization as well as to make the locally weighted input
distribution spherical. An appropriate learning rule of the distance metric
can accomplish this adjustment, as explained below. It should be noted that
LWPR-1 is obtained from algorithm5.2 by setting R = 1.

Adjusting the Shape and Size of the Receptive Field

The distance metric D and hence the locality of the receptive fields can be
learned for each local model individually by stochastic gradient descent in
a penalized leave-one-out cross-validation cost function[35]:

J =
1∑M

i=1 wi

M∑
i=1

wi(yi − ŷi,−i)
2 +

γ

N

N∑
i,j=1

D2
ij , (5.10)

where M denotes the number of data points in the training set. The first
term of the cost function is the mean leave-one-out cross-validation error
of the local model (indicated by the subscript i,−i) which ensures proper
generalization[35]. The second term, the penalty term, makes sure that re-
ceptive fields cannot shrink indefinitely in case of large amounts of training
data; such shrinkage would be statistically correct for asymptotically un-
biased function approximation, but it would require maintaining an ever

116 Approximate Nearest Neighbor Regression in Very High Dimensions

Table 5.2 Derivatives for distance metric update

For the current data point x, its PLS projection z and activation w:
(Refer to table 5.2 for some of the variables)

∂J

∂M
≈ (

MX
i=1

∂J1

∂w
)

∂w

∂M
+

w

W n+1

∂J2

∂M
[stochastic update of (5.12)]

∂w

∂Mkl
= −1

2
w(x − c)T ∂D

∂Mkl
(x − c);

∂J2

∂Mkl
= 2

γ

N

NX
i,j=1

Dij
∂Dij

∂Mkl

∂Dij

∂Mkl
= Mkjδil + Mkiδjl; where δij = 1 if i = j, else δij = 0.

MX
i=1

∂J1

∂w
=

e2
cv

W n+1
− 2 e

W n+1
qT an

H − 2

W n+1
q2T

an
G − an+1

E

(W n+1)2

where z =

2
664

z1

...

zR

3
775 z2 =

2
664

z2
1

...

z2
R

3
775 q =

2
664

z1/an+1
zz,1

...

zR/an+1
zz,R

3
775

an+1
H = λan

H +
w ecvz

(1 − h)
; an+1

G = λan
G +

w2e2
cvz

2

(1 − h)

where h = wzT q

an+1
E = λan

E + we2
cv

increasing number of local models in the learning system, which is compu-
tationally too expensive. The tradeoff parameter γ can be determined either
empirically or from assessments of the maximal local curvature of the func-
tion to be approximated[34]; in general, results are not very sensitive to this
parameter[35] as it primarily affects resource efficiency.

It should be noted that due to the local cost function in (5.10), learning
becomes entirely localized, too, that is, no parameters from other local
models are needed for updates as, for instance, in competitive learning
with mixture models. Moreover, minimizing (5.10) can be accomplished in
an incremental way without keeping data in memory[35]. This property is
due to a reformulation of the leave-one-out cross-validation error as the
PRESS residual error[4]. As detailed in[35] the bias-variance tradeoff is
thus resolved for every local model individually such that an increasing
number of local models will not lead to overfitting; indeed, it leads to better
approximation results due to model averaging [e.g. (5.9)]in the sense of
committee machines[25].

In ordinary weighted linear regression, expanding (5.10) with the PRESS
residual error results in

J =
1∑M

i=1 wi

M∑
i=1

wi(yi − ŷi)
2

(1 − wixT
i Pxi)2

+
γ

N

N∑
i,j=1

D2
ij, (5.11)

Approximate Nearest Neighbor Regression in Very High Dimensions 117

where P corresponds to the inverted weighted covariance matrix of the input
data. Interestingly, the PRESS residuals of (5.11) can be exactly formulated
in terms of the PLS projected inputs zi ≡ [zi,1 . . . zi,R]T (algorithm 5.2) as

J =
1∑M

i=1 wi

M∑
i=1

wi(yi − ŷi)
2

(1 − wizT
i Pzzi)2

+
γ

N

N∑
i,j=1

D2
ij

≡ 1∑M
i=1 wi

M∑
i=1

J1 +
γ

N
J2, (5.12)

where Pz corresponds to the covariance matrix computed from the projected
inputs zi for R = N , that is, the zi’s span the same full-rank input space4 as
the xi’s in (5.11). It can also been deduced that Pz is diagonal, which greatly
contributes to the computational efficiency of our update rules. Based on
this cost function, the distance metric in LWPR is learned by gradient
descent:

Mn+1 = Mn − α
∂J

∂M
where D = MTM (for positive definiteness),

where M is an upper triangular matrix resulting from a Cholesky decom-
position of D. Following[35], a stochastic approximation of the gradient ∂J

∂M

of (5.12) can be derived by keeping track of several sufficient statistics as
shown in table 5.2. It should be noted that in these update laws, we treated
the PLS projection direction and hence z as if it were independent of the
distance metric, such that chain rules need not be taken throughout the
entire PLS recursions. Empirically, this simplification did not seem to have
any negative impact and reduced the update rules significantly.

5.4.2 The Complete LWPR Algorithm

All update rules can be combined in an incremental learning scheme that
automatically allocates new locally linear models as needed. The concept of
the final learning network is illustrated in figure 5.2 and an outline of the
final LWPR algorithm is shown in algorithm 5.3.

In this pseudocode, wgen is a threshold that determines when to create a
new receptive field, as discussed in [35], wgen is a computational efficiency
parameter and not a complexity parameter as in mixture models. The closer
wgen is set to 1, the more overlap local models will have, which is beneficial in
the spirit of committee machines (cf. [35, 25]) but more costly to compute; in
general, the more overlap is permitted, the better the function fitting results,
without any danger that the increase in overlap can lead to overfitting. Ddef

is the initial (usually diagonal) distance metric in (5.8). The initial number
of projections is set to R = 2. The algorithm has a simple mechanism of
determining whether R should be increased by recursively keeping track of
the mean-squared error (MSE) as a function of the number of projections

118 Approximate Nearest Neighbor Regression in Very High Dimensions

1: Initialize the LWPR with no receptive field (RF)
2: for every new training sample (x,y) do
3: for k=1 to K(# of receptive fields) do
4: calculate the activation from (5.8)
5: update projections and regression (algorithm 5.2) and distance metric (table 5.2),
6: check if number of projections needs to be increased (cf. subsection 5.4.2).
7: end for
8: if no RF was activated by more than wgen then
9: create a new RF with R = 2, c = x, D = Ddef .
10: end if
11: end for

Algorithm 5.3: Pseudocode of the complete LWPR algorithm

included in a local model, that is, step 2b.4 in algorithm 5.2. If the MSE
at the next projection does not decrease more than a certain percentage of
the previous MSE, that is, MSEr+1

MSEr
> φ, where φ ∈ [0, 1], the algorithm

will stop adding new projections locally. As MSEr can be interpreted as an
approximation of the leave-one-out cross-validation error of each projection,
this threshold criterion avoids problems due to overfitting. Due to the need
to compare the MSE of two successive projections, LWPR needs to be
initialized with at least two projection dimensions.

Speedup for Learning from Trajectories

If in incremental learning, training data are generated from trajectories,
that is, data are temporally correlated, it is possible to accelerate lookup
and training times by taking advantage of the the fact that two consecutively
arriving training points are close neighbors in input space. For such cases,
we added a special data structure to LWPR that allows restricting updates
and lookups only to a small fraction of local models instead of exhaustively
sweeping through all of them. For this purpose, each local model maintains a
list of all other local models that overlap sufficiently with it. Sufficient over-
lap between two models i and j can be determined from the centers and
distance metrics. The point x in input space that is the closest to both cen-
ters in the sense of a Mahalanobis distance is x = (Di+Dj)

−1(Dici+Djcj).
Inserting this point into (5.8) of one of the local models gives the activation
w due to this point. The two local models are listed as sufficiently over-
lapping if w ≥ wgen (cf. algorithm 5.3). For diagonal distance metrics, the
overlap computation is linear in the number of inputs. Whenever a new data
point is added to LWPR, one neighborhood relation is checked for the max-
imally activated RF. An appropriate counter for each local model ensures
that overlap with all other local models is checked exhaustively. Given this
“nearest-neighbor” data structure, lookup and learning can be confined to
only a few RFs. For every lookup (update), the identification number of the
maximally activated RF is returned. The next lookup (update) will only
consider the neighbors of this RF. It can be shown that this method per-

Approximate Nearest Neighbor Regression in Very High Dimensions 119

forms as well as an exhaustive lookup (update) strategy that excludes RFs
that are activated below a certain threshold wcutoff .

Pruning of Local Models

As in the RFWR algorithm[35], it is possible to prune local models depend-
ing upon the level of overlap between two local models and the accumulated
locally weighted mean-squared error; the pruning strategy is virtually iden-
tical as in [[35], section 3.14]. However, due to the numerical robustness of
PLS, we have noticed that the need for pruning or merging is almost nonex-
istent in the LWPR implementation, such that we do not expand on this
possible feature of the algorithm.

Computational Complexity

For a diagonal distance metric D and under the assumption that the number
of projections R remains small and bounded, the computational complexity
of one incremental update of all parameters of LWPR is linear in the
number of input dimensions N . To the best of our knowledge, this property
makes LWPR one of the computationally most efficient algorithms that
have been suggested for high-dimensional function approximation. This low
computational complexity sets LWPR apart from our earlier work on the
RFWR algorithm[35], which was cubic in the number of input dimensions.
We thus accomplished one of our main goals, that is, maintaining the
appealing function approximation properties of RFWR while eliminating
its problems in high-dimensional learning problems.

Confidence Intervals

Under the classical probabilistic interpretation of weighted least squares[12],
that is, that each local model’s conditional distribution is normal with
heteroscedastic variances p(y|x; wk) ∼ N(zk

T βk, sk
2/wk), it is possible to

derive the predictive variances σ2
pred,k for a new query point xq for each

local model in LWPR.5 The derivation of this measure is in analogy with
ordinary linear regression[33, 23] and is also consistent with the Bayesian
formulation of predictive variances [12]. For each individual local model,
σ2

pred,k can be estimated as (see table 5.2 and algorithm 5.2 for variable
definitions):

σ2
pred,k = s2

k(1 + wkz
T
q,kqk), (5.13)

120 Approximate Nearest Neighbor Regression in Very High Dimensions

where zq,k is the projected query point xq under the kth local model, and

sk
2 ≈ MSEn=M

k,R /(M ′
k − p′k); M ′

k ≡
M∑
i=1

wk,i ≈ Wk
n=M ,

p′k ≡
M∑
i=1

w2
k,iz

T
k,iqk,i ≈ an=M

p′k
,

with incremental update of an+1
p′k

= λan
p′k

+ wk
2zk

Tqk.

The definition of M ′ in terms of the sum of weights reflects the effective
number of data points entering the computation of the local variance sk

2[33]
after an update of M training points has been performed. The definition of
p′, also referred to the as the local degrees of freedom, is analogous to the
global degrees of freedom of linear smoothers [16, 33].

In order to obtain a predictive variance measure for the averaging formula
(5.9), one could just compute the weighed average of the predictive variance
in (5.13). While this approach is viable, it nevertheless ignores important
information that can be obtained from variance of the individual predictions
ŷq,k and is thus potentially too optimistic. To remedy this issue, we postulate
that from the view of combining individual ŷq,k, each contributing yq,k was
generated from the process

yq,k = yq + ε1 + ε2,k,

where we assume two separate noise processes: (i) one whose variance σ2

is independent of the local model, that is, ε1 ∼ N(0, σ2/wk) (and accounts
for the differences between the predictions of the local models), and (ii)
another, which is the noise process ε2,k ∼ N(0, σ2

pred,k/wk) of the individual
local models. It can be shown that (5.9) is a consistent way of combining
prediction from multiple models under the noise model we just described and
that the combined predictive variance over all models can be approximated
as

σ2
pred =

∑
k wk σ2

(
∑

k wk)2
+

∑
k wk σ2

pred,k

(
∑

k wk)2
. (5.14)

The estimate of σpred,k is given in (5.13). The global variance across models
can be approximated as σ2 =

∑
k wk(ŷq − ŷk,q)

2/
∑

k wk. Inserting these
values in (5.14), we obtain

σ2
pred =

1

(
∑

k wk)2

K∑
k=1

wk[(ŷq − ŷk,q)
2 + s2

k(1 + wkz
T
k qk)]. (5.15)

A one-standard-deviation-based confidence interval would thus be

Ic = ŷq ± σpred. (5.16)

Approximate Nearest Neighbor Regression in Very High Dimensions 121

−5 −4 −3 −2 −1 0 1 2 3 4 5
−50

0

50

100

150

200

250

300

350
GP confidence bounds

target

traindata

approx

conf

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−50

0

50

100

150

200

250

300

350
LWPR confidence bounds

target

traindata

approx

conf

(b)

Figure 5.3 Function approximation with 200 noisy data points along with plots of confidence
intervals for (a) Gaussian Process Regression and (b) LWPR algorithms. Note the absence of
data in the range [0.5 1.5]

The variance estimate in (5.14) is consistent with the intuitive requirement
that when only one local model contributes to the prediction, the variance is
entirely attributed to the predictive variance of that single model. Moreover,
a query point that does not receive a high weight from any local model will
have a large confidence interval due to the small squared sum-of-weight
value in the denominator. Figure 5.3 illustrates comparisons of confidence
interval plots on a toy problem with 200 noisy data points. Data from the
range [0.5 1.5] was excluded from the training set. Both GPR and LWPR
show qualitatively similar confidence interval bounds and fitting results.

5.5 Empirical Evaluation

The following sections provide an evaluation of our proposed LWPR learning
algorithm over a range of artificial and real-world data sets. Whenever useful
and feasible, comparisons to state-of-the-art alternative learning algorithms
are provided, in particular SVMR and GPR. SVMR and GPR were chosen
due to their generally acknowledged excellent performance in nonlinear
regression on finite data sets. However, it should be noted, that both SVMR
and GPR are batch learning systems, while LWPR was implemented as a
fully incremental algorithm, as described in the previous sections.

5.5.1 Function Approximation with Redundant and Irrelevant Data

We implemented the LWPR algorithm as outlined in section 5.4. In each
local model, the projection regressions are performed by (locally weighted)
PLS, and the distance metric D is learned by stochastic incremental cross-
validation; all learning methods employed second-order learning techniques,

122 Approximate Nearest Neighbor Regression in Very High Dimensions

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

10

20

30

40

50

60

70

1000 10000 100000

n
M

S
E

o
n

T
e

s
t

S
e

t

#
R

e
c
e

p
ti
v
e

F
ie

ld
s

/
A

v
e

ra
g

e
#

P
ro

je
c
ti
o

n
s

#Training Data Points

2D-cross

10D-cross

20D-cross

(c)

(b)

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

x1

x2

(d)

Figure 5.4 (a) Target and (b) learned nonlinear cross-function.(c) Learning curves for 2D,
10D and 20D data. (d) The automatically tuned distance metric.

that is, incremental PLS uses recursive least squares, and gradient descent
in the distance metric was accelerated as described in [35]. In all our
evaluations, an initial (diagonal) distance metric of Ddef = 30I was chosen;
the activation threshold for adding local models was wgen = 0.2, and the
threshold for adding new projections was φ = 0.9 (cf. subsection 5.4.2).
As a first test, we ran LWPR on 500 noisy training data drawn from the
two-dimensional function (cross 2D) generated from

y = max{exp(−10x2
1), exp(−50x2

2, 1.25exp(−5(x2
1 + x2

2)))} + N(0, 0.01),

as shown in figure 5.4(a). This function has a mixture of areas of rather
high and rather low curvature and is an interesting test of the learning
and generalization capabilities of a learning algorithm: learning models
with low complexity find it hard to capture the nonlinearities accurately,
while more complex models easily overfit, especially in linear regions. A
second test added eight constant (i.e., redundant) dimensions to the inputs
and rotated this new input space by a random 10D rotation matrix to
create a 10D input space with high rank deficiency (cross 10D). A third
test added another ten (irrelevant) input dimensions to the inputs of the

Approximate Nearest Neighbor Regression in Very High Dimensions 123

100 points 300 points 500 points
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2

n
M

S
E

Cross 2 Dim.

GaussProcess LWPR

100 points 300 points 500 points
Cross 10 Dim.

100 points 300 points 500 points
Cross 20 Dim.

Figure 5.5 Normalized mean squared error comparisons between LWPR and Gaussian Pro-
cesses for 2D, 10D and 20D Cross data sets

second test, each having N(0, 0.052) Gaussian noise, thus obtaining a data
set with 20D input space (cross 20D). Typical learning curves with these
data sets are illustrated in figure 5.4(c). In all three cases, LWPR reduced
the normalized mean squared error (thick lines) on a noiseless test set
(1681 points on a 41x41 grid in the unit-square in input space) rapidly
in ten to twenty epochs of training to less than nMSE = 0.05, and it
converged to the excellent function approximation result of nMSE = 0.015
after 100,000 data presentations or 200 epochs.6 Figure 5.4(b) illustrates the
reconstruction of the original function from the 20D test data, visualized
in 3D - a highly accurate approximation. The rising lines in figure 5.4(c)
show the number of local models that LWPR allocated during learning. The
lines at the bottom of the graph indicate the average number of projections
that the local models allocated: the average settled at a value of around
two local projections, as is appropriate for this originally 2D data set. This
set of tests demonstrate that LWPR is able to recover a low-dimensional
nonlinear function embedded in high-dimensional space despite irrelevant
and redundant dimensions, and that the data efficiency of the algorithm
does not degrade in higher-dimensional input spaces. The computational
complexity of the algorithm only increased linearly with the number of
input dimensions, as explained in section 5.4.

The results of these evaluations can be directly compared with our earlier
work on the RFWR algorithm[35], in particular figures 4 and 5 of this
earlier paper. The learning speed and the number of allocated local models
for LWPR is essentially the same as for RFWR in the 2D test set. Applying
RFWR to the 10D and 20D data set of this paper, however, is problematic,
as it requires a careful selection of initial ridge regression parameters to
stabilize the highly rank-deficient full covariance matrix of the input data,
and it is easy to create too much bias or too little numerical stabilization
initially, which can trap the local distance metric adaptation in local minim.
While the LWPR algorithm just computes about a factor ten times longer
for the 20D experiment in comparison to the 2D experiment, REFER
requires a 1000-fold increase of computation time, thus rendering this
algorithm unsuitable for high-dimensional regression.

124 Approximate Nearest Neighbor Regression in Very High Dimensions

In order to compare LWPR’s results to other popular regression methods,
we evaluated the 2D, 10D, and 20D cross data sets with GPR and SVMR in
addition to our LWPR method. It should be noted that neither SVMR nor
GPR methods is an incremental method, although they can be considered
the state-of-the-art for batch regression under relatively small number
of training data and reasonable input dimensionality. The computational
complexity of these methods are prohibitively high for realtime applications.
The GPR algorithm[14] used a generic covariance function and optimized
over the hyperparameters. The SVMR was performed using a standard
available package[29] and optimized for kernel choices.

Figure 5.5 compares the performance of LWPR and GPR for the above
mentioned data sets using 100, 300, and 500 training data points.7 As in
figure 5.4, the test data set consisted of 1681 data points corresponding
to the vertices of a 41x41 grid over the unit square; the corresponding
output values were the exact function values. The approximation error was
measured as a normalized weighted mean squared error, nMSE, i.e, the
weighted MSE on the test set normalized by the variance of the outputs of
the test set; the weights were chosen as 1/σ2

pred,i for each test point xi. Using
such a weighted nMSE was useful to allow the algorithms to incorporate
their confidence in the prediction of a query point, which is especially useful
for training data sets with few data points where query points often lie far
away from any training data and require strong extrapolation to form a
prediction. Multiple runs on ten randomly chosen training data sets were
performed to accumulate the statistics.

As can be seen from figure 5.5, the performance differences between
LWPR and GPR were largely statistically insignificant across training
data sizes and input dimensionality. LWPR had a tendency to perform
slightly better on the 100-point data sets, most likely due to its quickly
decreasing confidence when significant extrapolation is required for a test
point. For the 300-point data sets, GPR had a minor advantage and less
variance in its predictions, while for 500-point data sets both algorithms
achieved equivalent results. While GPRs used all the input dimensions
for predicting the output (deduced from the final converged coefficients
of the covariance matrix), LWPR stopped at an average of two local
projections, reflecting that it exploited the low dimensional distribution
of the data. Thus, this comparison illustrates that LWPR is a highly
competitive learning algorithm in terms of its generalization capabilities and
accuracy of results, despite it being a truly incremental, computationally
efficient and real-time implementable algorithm.

5.5.2 Comparisons on Benchmark Regression Data Sets

While LWPR is specifically geared toward real-time incremental learning in
high dimensions, it can nevertheless also be employed for traditional batch

Approximate Nearest Neighbor Regression in Very High Dimensions 125

Table 5.3 Comparison of nMSE on Boston and Abalone data sets

Gaussian Process Support Vectors LWPR

Boston 0.0806 ± 0.0195 0.1115 ± 0.09 0.0846 ± 0.0225

Abalone 0.4440 ± 0.0209 0.4830 ± 0.03 0.4056 ± 0.0131

data analysis. Here we compare its performance on two natural real-world
benchmark datasets, using again GPR and SVMR as competitors.

The data sets we used were the Boston housing data and the Abalone
data set, both available from the UCI Machine Learning Repository[18]. The
Boston housing data, which had fourteen attributes, was split randomly (10
random splits) into disjoint sets of 404 training and 102 testing data. The
Abalone data set, which had nine attributes, was downsampled to yield ten
disjoint sets of 500 training data points and 1177 testing points.8

The GPR used hyperparameter estimation for the open parameters of the
covariance matrix while for SVMR, the results were obtained by employing
a Gaussian kernel of width 3.9 and 10 for the Boston and Abalone data
sets, respectively, based on the optimized values suggested in [38]. Table 5.3
shows the comparisons of the nMSE achieved by GPR, SVMR and LWPR
on both these data sets. Once again, LWPR was highly competitive on these
real-world data sets, consistently outperforming SVMR and achieving very
similar nMSE results as GPR.

5.5.3 Sensorimotor Learning in High Dimensional Space

In this section, we look at the application of LWPR to realtime learning in
high-dimensional spaces in a data-rich environment - an example of which
is learning for robot control. In such domains, LWPR is -to the best of
our knowledge - one of the only viable and practical options for principled
statistical learning. The goal of learning in this evaluation is to estimate
the inverse dynamics model (also referred to as an internal model) of the
robotic system such that it can be used as a component of a feedforward
controller for executing fast accurate movements.

Before demonstrating the applicability of LWPR in realtime, a comparison
with alternative learning methods will serve to demonstrate the complexity
of the learning task. We collected 50,000 data points from various movement
patterns from a 7DOF anthropomorphic robot arm [figure 5.6(a)], sampled
at 50 Hz. The learning task was to fit the the inverse dynamics model
of the robot, a mapping from seven joint positions, seven joint velocities,
and seven joint accelerations to the corresponding seven joint torques
(i.e, a 21D to 7D function). Ten percent of these data were excluded
from training as a test set. The training data were approximated by four
different methods: (i) parameter estimation based on an analytical rigid-
body dynamics model[1], (ii) SVMR[29] (using a ten-fold downsampled

126 Approximate Nearest Neighbor Regression in Very High Dimensions

(a)
0 1000000 2000000 3000000 4000000 5000000 6000000

0.0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

No. of Training Data Points

N
or

m
al

iz
ed

 M
ea

n
S

qu
ar

ed
 E

rr
or

 (
nM

S
E

) LWPR
LWPR_1
SVM
parametric

(b)

Figure 5.6 (a) Sarcos dextrous arm. (b) Comparison of nMSE learning curves for learning
the robot’s inverse dynamics model for the shoulder DOF.

training set for computational feasibility), (iii) LWPR-1, that is, LWPR that
used only one single projection (cf. 5.4.1), and (iv) full LWPR. It should be
noted that neither (i) nor (ii) is an incremental method. Using a parametric
rigid-body dynamics model as suggested in (i) and just approximating its
open parameters from data results in a global model of the inverse dynamics
that is theoretically the most powerful method. However, given that our
robot is actuated hydraulically and is rather lightweight and compliant, we
know that the rigid body dynamics assumption is not fully justified. In
all our evaluations, the inverse dynamics model of each DOF was learned
separately, that is, all models had a univariate output and twenty-one
inputs. LWPR employed a diagonal distance metric.

Figure 5.6 illustrates the function approximation results for the shoulder
motor command graphed over the number of training iterations (one iter-
ation corresponds to the update from one data point). Surprisingly, rigid-
body parameter estimation achieved the worst results. LWPR-1 outper-
formed parameter estimation, but fell behind SVMR. Full LWPR performed
the best. The results for all other DOFs were analogous and are not shown
here. For the final result, LWPR employed 260 local models, using an av-
erage of 3.2 local projections. LWPR-1 did not perform better because we
used a diagonal distance metric. The abilities of a diagonal distance metric
to “carve out” a locally spherical distribution are too limited to accomplish
better results; a full distance metric can remedy this problem, but would
make the learning updates quadratic in the number of inputs. As in the
previous sections, these results demonstrate that LWPR is a competitive
function approximation technique that can be applied successfully in real
world applications.

Approximate Nearest Neighbor Regression in Very High Dimensions 127

(a)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x displacement

z
di

sp
la

ce
m

en
t

X_desired
X_nouff
X_param
X_10s
X_300s

(b)

Figure 5.7 (a) The 30-DOF Sarcos humanoid robot. (b) Results of online learning of the
inverse dynamics with LWPR on the humanoid robot.

Online Learning for Humanoid Robots

We implemented LWPR on the realtime operating system (vxWorks) for
two of our robotic setups, the 7DOF Sarcos dextrous arm mentioned above
in figure 5.6(a), and the Sarcos humanoid robot in figure 5.7(a), a 30DOF
system. Out of the four parallel processors of the system, one 366 MHz
PowerPC processor was completely devoted to lookup and learning with
LWPR.

For the dexterous arm, each DOF had its own LWPR learning system,
resulting in seven parallel learning modules. In order to accelerate lookup
and training times, the nearest-neighbor data lookup described on page
118 was utilized. The LWPR models were trained online while the robot
performed a randomly drifting figure-eight pattern in front of its body.
Lookup proceeded at 480 Hz, while updating the learning model was
achieved at about 70 Hz. At 10-second intervals, learning was stopped and
the robot attempted to draw a planar figure eight in the x-z plane of the
robot end effector at 2 Hz frequency for the entire pattern. The quality
of these drawing patterns is illustrated in figure 5.8. In figure 5.8(a), Xdes

denotes the desired figure eight pattern, Xsim illustrates the figure eight
performed by our robot simulator that uses a perfect inverse dynamics model
(but not necessarily a perfect tracking and numerical integration algorithm),
Xparam is the performance of the estimated rigid-body dynamics model, and
Xlwpr shows the results of LWPR. While the rigid-body model has the worst
performance, LWPR obtained the best results, even slightly better than the
simulator. Figure 5.8(b) illustrates the speed of LWPR learning. The Xnouff

trace demonstrates the figure eight patterns performed without any inverse
dynamics model, just using a low-gain PD controller. The other traces show
how rapidly LWPR learned the figure eight pattern during training: they

128 Approximate Nearest Neighbor Regression in Very High Dimensions

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.3 0.35 0.4 0.45 0.5 0.55 0.6

z
di

sp
la

ce
m

en
t (

in
 m

et
er

s)

x displacement (in meters)

X_des

X_sim

X_lwpr

X_param

(a)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.3 0.35 0.4 0.45 0.5 0.55 0.6

z
di

sp
la

ce
m

en
t (

in
 m

et
er

s)

x displacement (in meters)

X_nouff

X_lwpr10

X_lwpr20

X_lwpr30

X_lwpr60

(b)

Figure 5.8 (a) Trajectories of robot end effector: Xdes is the desired trajectory, Xsim is a
trajectory obtained from a robot simulator that had a perfect controller but numerical inaccuracy
due to the integration of the equations of motion, Xlwpr is the result of a computed torque
controller using LWPR’s approximated inverse model, and Xparam is the trajectory using an
inverse model due to rigid body parameter estimation. (b) Results of online learning with LWPR
starting from scratch, that is, initially with no functional inverse model; the improvement of
control due to LWPR learning is shown at intervals of 10 seconds over the first minute of
learning.

denote performance after 10, 20, 30, and 60 seconds of training. After 60
seconds, the figure eight is hardly distinguishable from the desired trace.

In order to demonstrate the complexity of functions that can be learned
in realtime with LWPR, we repeated the same training and evaluation
procedure with the Sarcos humanoid robot, which used its right hand
to draw a lying figure eight pattern. In this case, learning of the inverse
dynamics model required learning in a 90D input space, and the outputs
were the thirty torque commands for each of the DOFs. As the learning of
thirty parallel LWPR models would have exceeded the computational power
of our 366 MHz real-time processors, we chose to learn one single LWPR
model with a 30D output vector, that is, each projection of PLS in LWPR
regressed all outputs vs. the projected input data. The projection direction
was chosen as the mean projection across all outputs at each projection stage
of PLS. This approach is suboptimal, as it is quite unlikely that all output
dimensions agree on one good projection direction; essentially, one assumes
that the gradients of all outputs point roughly in the same direction. On the
other hand, section 5.2 demonstrated that movement data of actual physical
systems lie on locally low-dimensional distributions, such that one can hope
that LWPR with multiple outputs can still work successfully by simply
spanning this locally low-dimensional input space with all projections.
Figure 5.7(b) demonstrates the result of learning in a similar way as figure
5.8(b); the notation for the different trajectories in this figure follow as
explained above for the 7DOF robot. Again, LWPR very rapidly improves

Approximate Nearest Neighbor Regression in Very High Dimensions 129

over a control system with no inverse dynamics controller, that is, within 10
seconds of movement, the most significant inertial perturbation have been
compensated. Convergence to low error tracking of the figure eight takes
slightly longer, that is, about 300 seconds [X300 in figure 5.7(b)], but is
reliably achieved. About fifty local models were created for this task. The
learned inverse dynamics outperformed a model estimated by rigid-body
dynamics methods significantly [cf. Xparam in figure 5.7(b)].

Online Learning for Autonomous Airplane Control

The online learning abilities of LWPR are ideally suited to be incorporated
in algorithms of provably stable adaptive control. The control theoretic
development of such an approach was presented in Nakanishi et al.[26].
In essence, the problem formulation begins with a specific class of equations
of motion of the form

ẋ = f (x) + g (x)u, (5.17)

where x denotes the state of the control system, the control inputs, and
f (x) and g (x) are nonlinear function to approximated. A suitable control
law for such a system is

u = ĝ (x)−1
(
−f̂ (x) + ẋc + K (xc − x)

)
, (5.18)

where xc, ẋc are a desired reference trajectory to be tracked, and the “hat”
notation indicates that these are the approximated version of the unknown
function.

We applied LWPR in this control framework to learn the unknown
function f and g for the problem of autonomous airplane control on a high-
fidelity simulator. For simplicity, we only considered a planar version of the
airplane, governed by the differential equation[41]:

V̇ = 1
m

(T cos α − D) − g sin γ,

α̇ = − 1
mV

(L + T sin α) + g cos γ
V

+ Q,

Q̇ = cM.

(5.19)

In these equations, V denotes the forward speed of the airplane, m the
mass, T the thrust, α the angle of attack, g the gravity constant, γ the
flight path angle with respect to the horizontal world coordinate system
axis, Q the pitch rate, and c an inertial constant. The complexity of these
equations is hidden in D,L, and M , which are the unknown highly nonlinear
aerodynamic lift force, drag force, and pitch moment terms, which are
specific to every airplane.

While we will not go into the details of provably stable adaptive control
with LWPR in this chapter and how the control law (5.18) is applied to
for airplane control, from the viewpoint of learning the main components

130 Approximate Nearest Neighbor Regression in Very High Dimensions

to learn are the lift and drag forces and the pitch moment. These can be
obtained by rearranging (5.19) to

D = T cos α −
(
V̇ + g sin γ

)
m =

fD (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR)

L =
(

g cos γ
V

+ Q − α̇
)
mV − T sin α =

fL (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR)

M = Q
c

= fM (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR) .
(5.20)

The δ terms denote the control surface angles of the airplane, with indices
midboard-flap-left/right (MFL,MFR), outboard-flap-left/right(OFL,OFR),
and left and right spoilers (SPL,SPR). All terms on the right hand side
of (5.20) are known, such that we have to cope with three simultaneous
function approximation problems in an 11D input space, an ideal application
for LWPR.

We implemented LWPR for the three functions above in a high-fidelity
simulink simulation of an autonomous airplane using the adaptive control
approach of[26]. The airplane started with no initial knowledge, just the
proportional controller term in (5.18) (i.e., the term multiplied by K). The
task of the controller was to fly doublets, that is, up-and-down trajectories,
which are essentially sinusoid like variations of the flight path angle γ

Figure 5.9 demonstrates the results of this experiment. Figure 5.9(a) shows
the desired trajectory in γ and its realization by the controller. Figure 5.9(b-
d) illustrate the online function approximation of D, L, and M . As can be
seen, the control of γ achieves almost perfect tracking after just a very few
seconds. The function approximation of D and L is very accurate after a very
short time. The approximation M requires a longer time for convergence,
but progresses fast. About ten local models were needed for learning fD and
fL, while about twenty local models were allocated for fM .

An interesting element of figure 5.9 happens after 400 seconds of flight,
where we simulated a failure of the airplane mechanics by locking the MFR
to 17-degree deflection. As can be seen, the function approximators very
quickly reorganize after this change, and the flight is successfully continued,
although γ tracking has some error for a while until it converges back to
good tracking performance. The strong signal changes in the first seconds
after the failure are due to oscillations of the control surfaces, and not a
problem in function approximation. Without adaptive control, the airplane
would have crashed.

5.6 Bayesian Backfitting

The PLS algorithm described in subsection 5.3.3 has an attractive feature:
rather than reduce the dimensionality of the input data to the most rel-

Approximate Nearest Neighbor Regression in Very High Dimensions 131

Figure 5.9 LWPR learning results for adaptive learning control on a simulated autonomous
airplane (a) Tracking of flight angle γ. (b) Approximation of lift force. (c) Approximation of drag
force, (d) Approximation of pitch moment. At 400 seconds into the flight, a failure is simulated
that locks one control surface to a 17-degree angle. Note that for reasons of clearer illustration,
an axis break was inserted after 200 seconds.

evant subspace, it deals with the complete dimensionality, and structures
its computation efficiently such that successive computationally inexpensive
univariate regressions suffice rather than expensive matrix inversion tech-
niques. However, PLS also has two heuristic components, that is, the way
the projection directions are selected by an input-output correlation analy-
sis, and the decision on when to stop adding new projection directions. In
this section we suggest a Bayesian algorithm to replace PLS.

1: Init: X = [x1 . . .xN]T ,y =
h
y1 . . . yN

iT

, gm,i = gm(xi; θm),gm = [gm,1 . . . gm,N]T

2: repeat
3: for m = 1 to d do
4: rm ← y − P

k �=m gk {compute partial residual (fake target)}
5: θm ← arg minθm (gm − rm)2 {optimize to fit partial residual}
6: end for
7: until convergence of θm

Algorithm 5.4: Algorithm for backfitting.

132 Approximate Nearest Neighbor Regression in Very High Dimensions

Another algorithm similar in vein to PLS is backfitting [16]. The backfit-
ting algorithm estimates additive models of the form

y(x) =
d∑

m=1

gm(x; θm),

where the functions gm are adjustable basis functions (e.g., splines), pa-
rameterized by θm. As shown in algorithm 5.4, backfitting decomposes the
statistical estimation problem into d individual estimation problems by us-
ing partial residuals as “fake supervised targets” for each function gm. At
the cost of an iterative procedure, this strategy effectively reduces the com-
putational complexity of multiple input settings, and allows easier numerical
robustness control since no matrix inversion is involved.

For all its computational attractiveness, backfitting presents two serious
drawbacks. There is no guarantee that the iterative procedure outlined in
algorithm 5.4 will converge as this is heavily dependent on the nature of
the functions gm. The updates have no probabilistic interpretation, making
backfitting difficult to insert into the current framework of statistical learn-
ing which emphasizes confidence measures, model selection, and predictive
distributions. It should be mentioned that a Bayesian version of backfitting
has been proposed in [17]. This algorithm however, relies on Gibbs sam-
pling, which is more applicable when dealing with the nonparametric spline
models discussed there, and is quite useful when one wishes to generate
samples from the posterior additive model.

5.6.1 A Probabilistic Derivation of Backfitting

Consider the graphical model shown in figure 5.10(a), which represents the
statistical model for generalized linear regression (GLR)[16]:

y|x ∼ Normal

(
y;

d∑
m=1

bmfm (x; θm) , ψy

)

Given a data set xD = {(xi, yi)}N
i=1, we wish to determine the most likely

regression vector v =
[
b1 b2 · · · bd

]T

which linearly combines the basis

functions fm to generate the output y. Since computing the ordinary least
squares (OLS) solution (v =

(
FTF

)−1
FT y) is an O(d3) task that grows

computationally expensive and numerically brittle as the dimensionality of
the input increases, we introduce a simple modification of the graphical
model of figure 5.10(a), which enables us to create the desired algorithmic
decoupling of the predictor functions, and gives backfitting a probabilistic
interpretation. Consider the introduction of random variables zim as shown
in figure 5.10(b). These variables are analogous to the output of the gm

function of algorithm 5.4, and can also be interpreted as an unknown

Approximate Nearest Neighbor Regression in Very High Dimensions 133

N
fd(xi)

f2(xi)

f1(xi)

yi

ψy

v

(a) Graphical model for
generalized linear re-
gression.

N

zi2

zi1

zid

f1(xi)

f2(xi)

fd(xi)

b1

b2

bd

yi ψy

(b) Graphical model for proba-
bilistic backfitting.

Figure 5.10 We modify the original graphical model for generalized linear regression by
inserting hidden variables zim in each branch of the fan-in. This modified model can be solved
using the EM framework to derive a probabilistic version of backfitting.

fake target for each branch of the regression fan-in. For the derivation of
our algorithm, we assume the following conditional distributions for each
variable in the model:

yi|zi ∼ Normal
(
yi; 1

Tzi, ψy

)
zim|xi ∼ Normal (zim; bmfm(xi), ψzm)

(5.21)

where 1 = [1, 1, . . . , 1]T . With this modification in place, we are essentially
in a situation where we wish to optimize the parameters

φ =
{
{bm, ψzm}d

m=1 , ψy

}
,

given that we have observed variables xD = {(xi, yi)}N
i=1 and that we have

unobserved variables xH = {zi}N
i=1 in our graphical model. This situation

fits very naturally into the framework of maximum-likelihood estimation
via the EM algorithm, by maximizing the expected complete log likelihood
〈ln p(xD,xH; φ)〉 which, from figure 5.10(b), can be expressed as

ln p(xD,xH; φ) = −N

2
ln ψy −

1

2ψy

N∑
i=1

(
yi − 1Tzi

)2

−
d∑

m=1

[
N

2
ln ψzm +

1

2ψzm

N∑
i=1

(
zim − bmfm(xi; θm)

)2]

+ const.
(5.22)

134 Approximate Nearest Neighbor Regression in Very High Dimensions

The resulting EM update equations are summarized below:

M-Step :

bm =

∑N
i=1 〈zim〉 fm(xi)∑N

i=1 fm(xi)2

ψy =
1

N

N∑
i=1

(
yi − 1T 〈zi〉

)2
+ 1T Σz1

ψzm =
1

N

N∑
i=1

(〈zim〉 − bmfm(xi))
2 + σ2

zm

E-Step :

1TΣz1 =

(
d∑

m=1

ψzm

)[
1 − 1

s

(
d∑

m=1

ψzm

)]

σ2
zm = ψzm

(
1 − 1

s
ψzm

)

〈zim〉 = bmfm(xi) +
1

s
ψzm

(
yi − vT f(xi)

)

where we define s ≡ ψy +
∑d

m=1 ψzm. In addition, the parameters θm of
each function fm can be updated by setting:

N∑
i=1

(
〈zim〉 − bmfm (xi; θm)

)∂fm (xi; θm)

∂θm
= 0 (5.23)

and solving for θm. As this step depends on the particular choice of
fm, e.g., splines, kernel smoothers, parametric models, etc., we will not
pursue it any further and just note that any statistical approximation
mechanism could be used. Importantly, all equations in both the expectation
and maximization steps are algorithmically O(d) where d is the number of
predictor functions fm, and no matrix inversion is required.

To understand our EM solution as probabilistic backfitting, we note that
backfitting can be viewed as a formal Gauss-Seidel algorithm; an equivalence
that becomes exact in the special case of linear models[16]. For the linear
system FTFv = FTy, the Gauss-Seidel updates for the individual bm are

bm =

∑N
i=1

(
yi −

∑d
k �=m bkfk(xi)

)
fm(xi)∑N

i=1 fm(xi)2
. (5.24)

Note that (5.24) - if used naively - only guarantees convergence for very
specially structured matrices. An extension to the Gauss-Seidel algorithm
adds a fraction (1 − ω) of bm to the update and gives us the well-known
relaxation algorithms:

Approximate Nearest Neighbor Regression in Very High Dimensions 135

Table 5.4 Results on the neuron-muscle data set

Bayesian backfitting PLS Baseline

neuron match 93.6% 18% —

nMSE 0.8446 1.77 0.84

b(n+1)
m = (1 − ω)b(n)

m + ω

∑N
i=1

(
yi −

∑d
k �=m bkfk(xi)

)
fm(xi)∑N

i=1 fm(xi)2
, (5.25)

which has improved convergence rates for overrelaxation (1 < ω < 2), or
improved stability for underrelaxation (0 < ω < 1). For ω = 1, the standard
Gauss-Seidel/backfitting of equation (5.24) is recovered. The appropriate
value of ω, which allows the iterations to converge while still maintaining
a reasonable convergence rate can only be determined by treating (5.24) as
a discrete dynamical system, and analyzing the eigenvalues of its system
matrix - an O(d3) task. If, however, we substitute the expression for 〈zim〉
in the maximization equation for bm, and set ω = ωm = ψzm/s in (5.25), it
can be shown that (after some algebraic rearrangement,) the two equations
are identical, that is, we indeed derive a probabilistic version of backfitting.

This allows us to now place backfitting within the wider context of
Bayesian machine learning algorithms. In particular, we can place individual
priors over the regression coefficients:

bm ∼ Normal (bm; 0, 1/αm) ,

αm ∼ Gamma (αm; aα, bα) ,

where aα and bα are small enough to select an uninformative Gamma prior
over the precisions αm. Figure 5.11(a) shows the graphical model with
the added priors, while figure 5.11(b) shows the resulting marginal prior
over v. This prior structure favors solutions which have as few nonzero
regression coefficients as possible, and thus performs an automatic relevance
determination (ARD) sparsification of the input dimensions.

We compared the use of PLS and ARD Bayesian backfitting to analyze the
following real-world data set collected from neuroscience. The data set con-
sists of simultaneous recordings (2400 data points) of firing-rate coded activ-
ity in seventy-one motor cortical neurons and the electromyograms(EMGs)
of eleven muscles. The goal is to determine which neurons are responsible
for the activity of each muscle. The relationship between neural and muscle
activity is assumed to be linear, such that the basis functions in backfitting
are simply a copy of the respective input dimensions, that is fm(x) = xm.

A brute-force study (conducted by our research collaborators) painstak-
ingly considered every possible combination of neurons (up to groups of
twenty for computational reasons; i.e., even this reduced analysis required

136 Approximate Nearest Neighbor Regression in Very High Dimensions

N

d

ψy

bm

ψm

yizim

αm

aα bα

fm(xi)

(a) Graphical model with ARD
prior

−2

0

2 −2

0

2

2
4
6
8

10
12

x 10
−3

b
2

Marginal with individual precisions

b
1

(b) Resulting marginal prior over v

Figure 5.11 By associating an individual gamma distributed precision with each regression
coefficient, we create a marginal prior over v that favors sparse solutions which lie along the
(hyper)-spines of the distribution.

several weeks of computation on a thirty-node cluster computer), to deter-
mine the optimal neuron-muscle correlation as measured on various valida-
tion sets. This study provided us with a baseline neuron-muscle correlation
matrix that we hoped to duplicate with PLS and Bayesian backfitting, al-
though with much reduced computational effort.

The results shown in table 5.4 demonstrate two points:

– The relevant neurons found by Bayesian backfitting contained over 93% of
the neurons found by the baseline study, while PLS fails to find comparable
correlations. The neuron match in backfitting is easily inferred from the
resulting magnitude of the precision parameters α, while for PLS, the neuron
match was inferred based on the subspace spanned by the projections that
PLS employed.

– The regression accuracy of Bayesian backfitting (as determined by eight-
fold crossvalidation), is comparable to that of the baseline study, while PLS’s
failure to find the correct correlations causes it to have significantly higher
generalization errors. The analysis for both backfitting and PLS was carried
out using the same validation sets as those used for the baseline analysis.

The performance of Bayesian backfitting on this particularly difficult data
set shows that it is a viable alternative to traditional generalized linear
regression tools. Even with the additional Bayesian inference for ARD, it
maintains its algorithmic efficiency since no matrix inversion is required.

As an aside it is useful to note that Bayesian backfitting and PLS required
of the order of 8 hours of computation on a standard PC (compared with

Approximate Nearest Neighbor Regression in Very High Dimensions 137

several weeks on a cluster for the brute-force study), and evaluated the
contributions of all seventy-one neurons.

An alternative form of prior in which a single precision parameter is shared
among the regression coefficients results in a shrinkage of the norm of the
regression vector solution, similar to ridge regression. In this case, however,
no additional crossvalidation is required to determine the ridge parameters,
as these are automatically inferred. The Bayesian backfitting algorithm is
also applicable within the framework of sparse Bayesian learning [7], and
provides a competitive and robust nonlinear supervised learning tool.

Bayesian Backfitting can thus completely replace PLS in LWPR, thus
reducing the number of open parameters in LWPR and facilitating its
probabilistic interpretation.

5.7 Discussion

Nearest-neighbor regression with spatially localized models remains one of
the most data efficient and computationally efficient methods for incremen-
tal learning with automatic determination of the model complexity. In order
to overcome the curse of dimensionality of local learning systems, we inves-
tigated methods of linear projection regression and how to employ them in
spatially localized nonlinear function approximation for high-dimensional
input data that have redundant and irrelevant components. We compared
various local dimensionality reduction techniques - an analysis that resulted
in choosing a localized version of Partial Least Squares regression at the core
of a novel nonparametric function approximator, Locally Weighted Projec-
tion Regression (LWPR). The proposed technique was evaluated on a range
of artificial and real-world data sets in up to 90D input spaces. Besides
showing fast and robust learning performance due to second-order learning
methods based on stochastic leave-one-out cross-validation, LWPR excelled
by its low computational complexity: updating each local model with a new
data point remained linear in its computational cost in the number of in-
puts since the algorithm accomplishes good approximation results with only
three to four projections irrespective of the number of input dimensions. To
our knowledge, this is the first spatially localized incremental learning sys-
tem that can efficiently work in high-dimensional spaces and that is thus
suited for online and realtime applications. In addition, LWPR compared fa-
vorably in its generalization performance with state-of-the-art batch regres-
sion methods like Gaussian process regression, and can provide qualitatively
similar estimates of confidence bounds and predictive variances. Finally, a
new algorithm, Bayesian backfitting, was suggested to replace partial least
squares in the future. Bayesian backfitting is a Bayesian treatment of lin-
ear regression with automatic relevance detection of inputs and a robust
EM-like incremental updating technique. Future work will investigate this

138 Approximate Nearest Neighbor Regression in Very High Dimensions

algorithm in the nonlinear setting of LWPR on the way to a full Bayesian
approach to approximate nearest-neighbor regression.

References

1. C.H. An, C. Atkeson, and J. Hollerbach. Model Based Control of a
Robot Manipulator. Cambridge, MA, MIT Press, 1988.

2. C. Atkeson, A. Moore, and S.Schaal. Locally weighted learning.
Artificial Intelligence Review, 11(4):76–113, 1997.

3. A. Bell and T. Sejnowski. The “independent components” of natural
scenes are edge filters. Vision Research, 37(23):3327–3338, 1997.

4. D.A. Belsley, E. Kuh and D. Welsch. Regression Diagnostics. New
York, John Wiley & Sons, 1980.

5. C. Bishop Neural Networks for Pattern Recognition. Oxford, Oxford
University Press, 1995.

6. A. D’Souza, S. Vijayakumar and S. Schaal. Are internal models of the
entire body learnable? Society for Neuroscience Abstracts. Volume 27,
Program No. 406.2, 2001.

7. A. D’Souza, S. Vijayakumar and S. Schaal. The Bayesian backfitting
relevance vector machine. In Proceedings of the Twenty-first
International Conference on Machine Learning. New York, ACM
Press, 2004.

8. B.S. Everitt. An Introduction to Latent Variable Models. London,
Chapman & Hall, 1984.

9. S.E. Fahlman and C. Lebiere. The cascade correlation learning
architecture. Advances in NIPS 2, 1990.

10. I.E. Frank and J.H. Friedman. A statistical view of some
chemometric regression tools. Technometrics, 35(2):109–135, 1993.

11. J.H. Friedman and W. Stutzle. Projection pursuit regression. Journal
of the American Statistical Association, 76:817-823, 1981.

12. A.B. Gelman, J.S. Carlin, H.S. Stern and D.B. Rubin. Bayesian Data
Analysis. London, Chapman & Hall, 1995.

13. Z. Ghahramani and M.J. Beal. Variational inference for Bayesian
mixtures of factor analysers. In editors, S. A. Solla, T. K. Leen and K.
Muller, Advances in Neural Information Processing Systems 12, pages
449-455, Cambridge, MA, MIT Press, 2000.

14. M. Gibbs and D.J.C., MacKay. Efficient implementation of Gaussian
processes. Technical Report, Cavendish Laboratory, Cambridge, UK,
1997.

15. T.J. Hastie and C. Loader. Local regression: Automatic kernel
carpentry. Statistical Science, 8(2):120–143, 1993.

16. T.J. Hastie and R.J. Tibshirani. Generalized Additive Models.
No. 43 in Monographs on Statistics and Applied Probability. London,
Chapman & Hall, 1990.

17. T.J. Hastie and R.J. Tibshirani. Bayesian backfitting. Statistical
Science, 15(3):196–213, August 2000.

Approximate Nearest Neighbor Regression in Very High Dimensions 139

18. S. Hettich and S. D. Bay. The UCI KDD archive. Irvine, CA,
University of California, Dept. of Information and Computer Science,
[http://kdd.ics.uci.edu], 1999.

19. M.I. Jordan and R. Jacobs. Hierarchical mixture of experts and the
EM algorithm. Neural Computation, 6(2):181–214, 1994.

20. M. Kawato. Internal models for motor control and trajectory
planning. Current Opinion in Neurobiology, 9:718–727, 1999.

21. L. Ljung and T. Soderstrom. Theory and Practice of Recursive
Identification. Cambridge, MA, MIT Press, 1986.

22. W.F. Massy. Principal component regression in exploratory
statistical research. Journal of the American Statistical Association,
60:234–246, 1965.

23. R.H. Myers. Classical and Modern Regression with Applications
Boston: Duxbury Press, 1990.

24. B.A. Olshausen and D.J. Field. Emergence of simple cell receptive
field properties by learning a sparse code for natural images. Nature,
381:607-609, 1996.

25. M.P. Perrone and L.N. Cooper. When networks disagree: Ensemble
methods for hybrid neural networks. In editor, R. J. Mammone,
Neural Networks for Speech and Image Processing. London, Chapman
& Hall, 1993.

26. J. Nakanishi, J.A. Farrell and S. Schaal, Learning composite adaptive
control for a class of nonlinear systems. In IEEE International
Conference on Robotics and Automation, pages 2647-2652, New
Orleans, 2004.

27. S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290:2323-2326, 2000.

28. D.B. Rubin and D.T. Thayer. EM algorithms for ML factor analysis.
Psychometrika, 47(1):69–76, 1982.

29. C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Schoelkopf and
A. Smola. Support Vector Machine - Reference Manual. TR
CSD-TR-98-03, Dept. of Computer Science, Royal Holloway,
University of London, 1998.

30. T.D. Sanger. Optimal unsupervised learning in a single layer
feedforward neural network. Neural Networks, 2:459–473, 1989.

31. D.W. Scott. Multivariate Density Estimation, Hoboken, NJ, John
Wiley & Sons, 1992.

32. S. Schaal and D. Sternad. Origins and violations of the 2/3 power law
in rhythmic 3D movements. Experimental Brain Research. 136:60-72,
2001.

33. S. Schaal, S. Vijayakumar and C.G. Atkeson. Assessing the quality of
learned local models. Advances in Neural Information Processing
Systems 6, pages 160-167. San Mateo, CA, Morgan Kaufmann, 1994.

34. S.Schaal & C.G.Atkeson Receptive field weighted regression,
Technical Report TR-H-209, ATR Human Information Processing
Labs., Kyoto, Japan.

140 Approximate Nearest Neighbor Regression in Very High Dimensions

35. S. Schaal and C.G. Atkeson. Constructive incremental learning from
only local information. Neural Computation, 10(8):2047–2084, 1998.

36. S. Schaal, S. Vijayakumar and C.G. Atkeson. Local dimensionality
reduction. Advances in NIPS, 10, 1998.

37. S. Schaal, C.G. Atkeson and S. Vijayakumar. Realtime robot learning
with locally weighted statistical learning. In Proceedings of
International Conference on Robotics and Automation ICRA2000, San
Francisco, CA, pages 288–293, 2000.

38. B. Scholkopf, A. Smola, R. Williamson, R and P. Bartlett. New
Support Vector Algorithms. Neural Computation, (12)5:1207-1245,
2000.

39. B. Scholkopf, C. Burges and A. Smola. Advances in Kernel Methods:
Support Vector Learning. Cambridge, MA, MIT Press, 1999.

40. A. Smola and B. Scholkopf. A tutorial on support vector regression.
NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College,
University of London, 1998.

41. B.L. Stevens and F.L. Lewis. Aircraft Control and Simulation.
Hoboken, NJ, John Wiley & Sons, 2003.

42. J. Tenenbaum, V. de Silva and J. Langford. A global geometric
framework for nonlinear dimensionality reduction Science,
290:2319-2323, 2000.

43. , N. Ueda, R. Nakano, Z. Ghahramani and G. Hinton, SMEM
Algorithm for Mixture Models, Neural Computation, 12, pp.
2109-2128, 2000.

44. S. Vijayakumar and H. Ogawa. RKHS based Functional Analysis for
Exact Incremental Learning Neurocomputing : Special Issue on
Theoretical Analysis of Real Valued Function Classes, 29(1-3):85-113,
1999.

45. S. Vijayakumar and S. Schaal. Local adaptive subspace regression.
Neural Processing Letters, 7(3):139–149, 1998.

46. S. Vijayakumar and S. Schaal. Locally Weighted Projection
Regression : An O(n) algorithm for incremental real time learning in
high dimensional space. In Proceedings of International Conference in
Machine Learning (ICML), pages 1079-1086, 2000.

47. N. Vlassis, Y. Motomura and B. Krose. Supervised dimension
reduction of intrinsically low-dimensional data. Neural Computation,
Cambridge, MA, MIT Press, 2002.

48. C.K.I. Williams and C. Rasmussen. Gaussian processes for regression.
In D.S. Touretsky, M. Mozer and M.E. Hasselmo, editors, Advances in
Neural Information Processing Systems 8, Cambridge, MA, MIT Press,
1996.

49. H. Wold. Soft modeling by latent variables: The nonlinear iterative
partial least squares approach. In J. Gani (Ed.), Perspectives in
probability and statistics, papers in honour of M. S. Bartlett, pages
520–540. London, Academic Press, 1975.

50. L. Xu, M.I. Jordan and G.E. Hinton. An alternative model for
mixtures of experts. In G. Tesauro, D. Touretzky, and T. Leen,

Approximate Nearest Neighbor Regression in Very High Dimensions 141

editors, Advances in Neural Information Processing Systems 7, pages
633–640. Cambridge, MA, MIT Press, 1995.

