
Autonomous Robots 12, 55–69, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Statistical Learning for Humanoid Robots

SETHU VIJAYAKUMAR AND AARON D’SOUZA
Computer Science & Neuroscience and Kawato Dynamic Brain Project, University of Southern California,

Los Angeles, CA 90089-2520, USA
sethu@usc.edu

adsouza@usc.edu

TOMOHIRO SHIBATA
Kawato Dynamic Brain Project, ERATO, Japan Science & Technology Corp., Kyoto 619-0288, Japan

tom@erato.atr.co.jp

JÖRG CONRADT
University/ETH Zurich, Winterthurerstr. 190, CH-8057 Zurich, Switzerland

conradt@ini.phys.ethz.ch

STEFAN SCHAAL
Computer Science & Neuroscience and Kawato Dynamic Brain Project, University of Southern California,

Los Angeles, CA 90089-2520, USA
sschaal@usc.edu

Abstract. The complexity of the kinematic and dynamic structure of humanoid robots make conventional ana-
lytical approaches to control increasingly unsuitable for such systems. Learning techniques offer a possible way
to aid controller design if insufficient analytical knowledge is available, and learning approaches seem mandatory
when humanoid systems are supposed to become completely autonomous. While recent research in neural net-
works and statistical learning has focused mostly on learning from finite data sets without stringent constraints
on computational efficiency, learning for humanoid robots requires a different setting, characterized by the need
for real-time learning performance from an essentially infinite stream of incrementally arriving data. This paper
demonstrates how even high-dimensional learning problems of this kind can successfully be dealt with by tech-
niques from nonparametric regression and locally weighted learning. As an example, we describe the application
of one of the most advanced of such algorithms, Locally Weighted Projection Regression (LWPR), to the on-line
learning of three problems in humanoid motor control: the learning of inverse dynamics models for model-based
control, the learning of inverse kinematics of redundant manipulators, and the learning of oculomotor reflexes. All
these examples demonstrate fast, i.e., within seconds or minutes, learning convergence with highly accurate final
peformance. We conclude that real-time learning for complex motor system like humanoid robots is possible with
appropriately tailored algorithms, such that increasingly autonomous robots with massive learning abilities should
be achievable in the near future.

Keywords: motor control, statistical learning, dimensionality reduction, inverse dynamics, inverse kinematics,
oculomotor learning, nonparametric regression

56 Vijayakumar et al.

1. Introduction

The necessity for adaptive control is becoming more
apparent as the scale of control systems gets increas-
ingly more complex, for instance, as experienced in the
fields of advanced robotics, factory automation, and
autonomous vehicle control. Humanoid robots, the fo-
cus of this paper, are a typical example. Humanoid
robots are high dimensional movement systems for
which classical system identification and control tech-
niques are often insufficient due to unknown sources
of non-linearities inherent in these systems. Learning
techniques are a possible way to overcome such limi-
tations by aiding the design of appropriate control laws
(Slotine, 1991), which often involve decisions based
on a multitude of sensors and actuators. Learning also
seems to be the only viable research approach towards
the generation of flexible autonomous robots that can
perform multiple tasks (Schaal, 1999), with the hope
of creating a completely autonomous humanoid robot
at some point.

Among the characteristics of the motor learning
problems in humanoid robots are high dimensional in-
put spaces with potentially redundant and irrelevant
dimensions, nonstationary input and output distribu-
tions, essentially infinite training data sets with no rep-
resentative validation sets, and the need for continual
learning. Most learning tasks fall into the domain of re-
gression problems, e.g., as in learning dynamics mod-
els, or they at least involve regression problems, e.g.,
as in learning a policy with reinforcement learning.
Interestingly, the class of on-line learning of regres-
sion problems with the characteristics above has so far
not been conquered by the new developments in sta-
tistical learning. Bayesian inference (Bishop, 1995) is
usually computationally too expensive for real-time ap-
plication as it requires representation of the complete
joint probablity densities of the data. The framework of
structural risk minimization (Vapnik, 1995), the most
advanced in form of Support Vector Machines, excels
in classification and finite batch learning problems, but
has yet to show compelling performance in regression
and incremental learning. However techniques from
nonparametric regression, in particular the methods of
locally weighted learning (Atkeson et al., 1997), have
recently advanced to meet all the requirements of real-
time learning in high-dimensional spaces (Schaal et al.,
2000).

In this paper, we will present one of the most ad-
vanced locally weighted learning algorithms, Locally

Weighted Projection Regression (LWPR), and its ap-
plication to three challenging problems of learning in
humanoid robotics, i.e., (i) an inverse dynamics model
of a 7 DOF anthropomorphic robot, (ii) an inverse kine-
matics map of a redundant dextrous arm, and (iii) the
bio-mimetic gaze stabilization of a humanoid oculo-
motor system. In the following sections, we will first
explain the LWPR algorithm and then introduce the
various learning tasks and illustrate learning results
from real-time learning on the actual robots for each of
the tasks. To the best of our knowledge, this is the first
time that real-time learning of such complex models
has been accomplished in robot control.

2. Locally Weighted Projection Regression

The core concept of our learning approach is to ap-
proximate nonlinear functions by means of piecewise
linear models (Atkeson et al., 1997). The learning sys-
tem automatically determines the appropriate number
of local models, the parameters of the hyperplane in
each model, and also the region of validity, called re-
ceptive field (RF), of each of the model, formalized as
a Gaussian kernel:

wk = exp

(
−1

2
(x − ck)

T Dk(x − ck)

)
, (1)

Given a query point x, each linear model calculates a
prediction yk = βkx. The total output of the learning
system is the weighted mean of all K linear models:

ŷ =
K∑

k=1

wk yk

/
K∑

k=1

wk,

also illustrated in Fig. 1. Learning in the system in-
volves determining the linear regression parameter βk

and the distance metric Dk . The center ck of the RF
remains fixed. Local models are created as and when
needed as described in Section 2.3.

2.1. Local Dimensionality Reduction

Despite its appealing simplicity, the “piecewise lin-
ear modeling” approach becomes numerically brittle
and computationally too expensive in high dimen-
sional input spaces. Given the empirical observation
that high dimensional data lie often on locally low di-
mensional distributions, it is possible to develop an
efficient approach to exploit this property. Instead of

Statistical Learning for Humanoid Robots 57

Figure 1. Information processing unit of LWPR.

using ordinary linear regression to fit the local hyper-
planes, we suggest to employ Partial Least Squares
(PLS) (Wold, 1975; Frank and Friedman, 1993). PLS
recursively computes orthogonal projections of the in-
put data and performs single variable regressions along
these projections on the residuals of the previous iter-
ation step. Table 1 illustrates PLS in pseudocode for a
global linear model where the input data is in the rows
of the matrix X, and the corresponding one dimensional
output data is in the vector y. The key ingredient in PLS
is to use the direction of maximal correlation between
the residual error and the input data as the projection
direction at every regression step. Additionally, PLS
regresses the inputs of the previous step against the
projected inputs sr in order to ensure the orthogonality
of all the projections ur (Step 2b). Actually, this addi-
tional regression could be avoided by replacing pr with
ur , similar to techniques used in principal component
analysis (Sanger, 1989). However, using this regres-
sion step leads to better performance of the algorithm.
This effect is due to the fact that PLS chooses the most
effective projections if the input data has a spherical
distribution: with only one projection, PLS will find
the direction of the gradient and achieve optimal re-
gression results. The regression step in 2b modifies the

Table 1. Pseudocode of PLS projection regression.

1. Initialize: Xres = X, yres = y

2. For r = 1 to R (# projections)

(a) ur = XT
resyres; βr = sT

r yres/(s
T
r sr) where sr = Xresur .

(b) yres = yres − sr βr ; Xres = Xres − sr pr
T where pr =

XT
ressr /(sT

r sr).

input data Xres such that each resulting data vectors
have coefficients of minimal magnitude and, hence,
push the distribution of Xres to become more spherical.

An incremental locally weighted version of the PLS
algorithm is derived in Table 2 (Vijayakumar and
Schaal, 2000). Here, λ ∈ [0, 1] denotes a forgetting fac-
tor that determines how quickly older data will be for-
gotten in the various PLS parameters, similar to the
recursive system identification techniques (Ljung and
Soderstrom, 1986). The variables SSr , S Rr and SZr

are memory terms that enable us to do the univariate
regression in Step 5 in a recursive least squares fashion,
i.e., a fast Newton-like method.

Since PLS selects the univariate projections very ef-
ficiently, it is even possible to run locally weighted
PLS with only one projection direction (denoted as
LWPR-1). The optimal projection is in the direction of
the local gradient of the function to be approximated. If
the locally weighted input data forms a spherical dis-
tribution in a local model, the single PLS projection
will suffice to find the optimal direction. Otherwise,
the distance metric (and hence, weighting of the data)
will need to be adjusted to make the local distribution
more spherical. The learning rule of the distance met-
ric can accomplish this adjustment, as explained below.
It should be noted that Steps 8–10 in Table 2 become
unnecessary for the uni-projection case.

2.2. Learning the Distance Metric

The distance metric Dk and hence, the locality of the
receptive fields, can be learned for each local model
individually by stochastic gradient descent in a leave-
one-out cross validation cost function. Note that this
update does not require competitive learning—only a
completely local learning rule is needed, and leave-one-
out cross validation can be performed without keeping
data in memory (Schaal and Atkeson, 1998). The up-
date rule can be written as:

Mn+1 = Mn − α
∂J

∂M
where D = MT M

(for positive definiteness) (2)

and the cost function to be minimized is:

J = 1∑M
i=1 wi

M∑
i=1

R∑
r=1

wi res2
r+1,i(

1 − wi
s2

r,i

sT
r Wsr

)2 + γ

N

N∑
i, j=1

D2
ij

=
R∑

r=1

(
M∑

i=1

J1,r

)
+ J2. (3)

58 Vijayakumar et al.

Table 2. Incremental locally weighted PLS for one RF centered at c.

Initialization:
x0

0 = 0, u0 = 0, β0
0 = 0,

W 0 = 0

Given: Training point (x, y)

w = exp
(− 1

2 (x − c)T D(x − c)
)

Update the means:
W n+1 = λW n + w

xn+1
0 = λW nxn

0 + wx
W n+1

βn+1
0 = λW nβn

0 + wy

W n+1

Update the local model

Initialize:
z = x − xn+1

0 , res1 = y − βn+1
0

For r = 1 : R (# projections)

1. un+1
r = λun

r + wz resr

2. sr = zT un+1
r /(un+1

r
T

un+1
r)

3. SSn+1
r = λSSn

r + w s2
r

4. SRn+1
r = λSRn

r + w sr resr

5. βn+1
r = SRn+1

r /SSn+1
r

6. resr+1 = resr − sr β
n+1
r

7. MSEn+1
r = λMSEn

r + w res2
r+1

8. SZn+1
r = λSZn

r + wzsr

9. pn+1
r = SZn+1

r /SSn+1
r

10. z = z − sr pn+1
r

Predicting with novel data (xq): Initialize: y = β0, z = xq − x0

Repeat for r = 1:R

− y = y + βr sr where sr = uT
r z

− z = z − sr pn
r

where M denotes the number of training data, and N
the number of input dimensions. A stochastic version
of the gradient ∂ J

∂M can be derived from the cost function
by keeping track of several “memory terms” as shown
in Table 3.

Table 3. Derivatives for distance metric update.

∂J

∂M
≈

R∑
r=1

(
M∑

i=1

∂J1,r

∂w

)
∂w

∂M
+ w

W n+1

∂J2

∂M
(stochastic update)

∂w

∂Mkl
= − 1

2
w(x − c)T ∂D

∂Mkl
(x − c); ∂J2

∂Mkl
= 2

γ

N

N∑
i=1, j=1

Dij
∂Dij

∂Mkl

∂Dij

∂ Mkl
= Mkj δil + Mki δjl; where δij = 1 if i = j else δi j = 0.

Compute the following for each projection direction r :

M∑
i=1

∂J1,r

∂w
= e2

cv,r

W n+1
− 2

(
Pn+1

r sr er
)

W n+1
Hn

r − 2

(
Pn+1

r sr
)2

W n+1
Rn

r − En+1
r

(W n+1)2

+
[
Tn+1

r − 2Rn+1
r Pn+1

r Cn+1
r

] (
I − ur uT

r /
(
uT

r ur
))

z resr

W n+1
√

uT
r ur

Cn+1
r = λCn

r + wsr zT , er = resr+1, ecv,r = er

1 − wPn+1
r s2

r

Pn+1
r = 1

SSn+1
r

, Hn+1
r = λHn

r + w ecv,r sr

(1 − w hr)

Rn+1
r = λRn

r + w2s2
r e2

cv,r

(1 − w hr)
where hr = Pn+1

r s2
r

En+1
r = λEn

r + we2
cv,r ; Tn+1

r = λTn
r + w

(
2we2

cv,r sr Pn+1
r − ecv,r β

n+1
r

)
(1 − w hr)

zT

2.3. The Complete LWPR Algorithm

All the ingredients above can be combined in an in-
cremental learning scheme that automatically allocates
new locally linear models as needed. The final learning

Statistical Learning for Humanoid Robots 59

Table 4. Psuedocode of the complete LWPR algorithm.

– Initialize the LWPR with no receptive field (RF);

– For every new training sample (x, y):

• For k = 1 to K (# of receptive fields):

∗ calculate the activation from Eq. (1)
∗ update projections & regression (Table 2) and Distance

Metric (Table 2.2)
∗ check if no. of projections needs to be increased

(cf. Section 2.3)

• If no RF was activated by more than wgen;

∗ create a new RF with r = 2, c = x, D = Ddef

network is illustrated in Fig. 1 and an outline of the al-
gorithm is shown in Table 4.

In this pseudo-code, wgen is a threshold that de-
termines when to create a new receptive field, and
Ddef is the initial (usually diagonal) distance metric in
Eq. (1). The initial number of projections is set to r = 2.
The algorithm has a simple mechanism of determining
whether r should be increased by recursively keeping
track of the mean-squared error (MSE) as a function
of the number of projections included in a local model,
i.e., Step 7 in the incremental PLS pseudocode. If the
MSE at the next projection does not decrease more
than a certain percentage of the previous MSE, i.e.,
MSEi+1

MSEi
> φ, where φ ∈ [0, 1], the algorithm will stop

adding new projections locally. For a diagonal distance
metric D and under the assumption that the number of
projections R remains small, the computational com-
plexity of the update of all parameters of LWPR is linear
in the number of input dimensions n. For the LWPR-1
variant, this O(n) computational complexity is always
guaranteed.

3. Real-Time Learning for Humanoid Robots

One of the main motivations of the development of
LWPR was that model-based control of our humanoid
robots with analytical models did not result in suffi-
cient accuracy. The following sections describe how
LWPR has allowed us to improve model-based con-
trol with models that were learned, i.e., they were
acquired very rapidly in real-time while the sys-
tem was trying to accomplish a task. Our results
are one of the first in the learning literature that
demonstrate the feasibility of real-time statistical learn-
ing in high-dimensional systems such as humanoid
robots.

3.1. Real-Time Learning of Inverse Dynamics

A common strategy in robotic and biological motor
control is to convert kinematic trajectory plans into mo-
tor commands by means of an inverse dynamics model.
The inverse dynamics takes the desired positions, ve-
locities, and accelerations of all DOFs of the robot and
outputs the appropriate motor commands. In the case of
learning with our seven DOF anthropomorphic robot
arm (see Fig. 2(a)), the inverse dynamics model re-
ceives 21 inputs and outputs 7 torque commands. If
derived analytically under a rigid body dynamics as-
sumption (An et al., 1988), the most compact recursive
formulation of the inverse dynamics of our robot re-
sults in about 20 pages of compact C-code, filled with
nested sine and cosine terms. For on-line learning, mo-
tor commands need to be generated from the model
at 480 Hz in our implementation. Updating the learn-
ing system can take place at a lower rate but should
remain as high as possible to capture suffcient data
in fast movements—we usually achieve about 70 Hz
updating rate.

Learning regression problems in such high dimen-
sional input space is a daunting problem from the view
of the bias-variance trade-off. In learning control, train-
ing data is generated by the learning system itself, and
it is impossible to assess a priori what structural com-
plexity that data is going to have. Fortunately, actual
movement systems do not fill the data space in a com-
pletely random way. Instead, when viewed locally, data
distributions tend to be low dimensional, e.g., about
4–6 dimensional for the inverse dynamics (Schaal et al.,
1998) of our robot instead of the global 21 input dimen-
sions. This property, which is exploited by the LWPR
algorithm, is a key element in the excellent real-time
performance of our learning scheme.

3.1.1. Performance Comparison on a Static Data Set.
Before demonstrating the applicability of LWPR in
real-time, a comparison with alternative learning meth-
ods will serve to demonstrate the complexity of the
learning task. We collected 50,000 data points from
various movement patterns from our 7 DOF anthro-
pomorphic robot (Fig. 2(a)) at 50 Hz sampling fre-
quency. 10 percent of this data was excluded as a test
set. The training data was approximated by 4 differ-
ent methods: i) parameter estimation based on an an-
alytical rigid body dynamics model (An et al., 1988),
ii) Support Vector Regression (Saunders et al., 1998),

60 Vijayakumar et al.

Figure 2. (a) 7-DOF SARCOS dexterous arm. (b) 30-DOF humanoid robot.

iii) LWPR-1, and iv) full LWPR. It should be noted that
neither i) nor ii) are incremental learning methods, i.e.,
they require batch learning. Using a parametric model
as suggested in i) and just approximating its open pa-
rameters from data results in a global model of the
inverse dynamics and is theroretically the most power-
ful method. However, given that our robot is actuated
hydraulically and rather lightweight and compliant, we
know that the rigid body dynamics assumption is not
fully justified. Method ii), Support Vector Regression,
is a relatively new statistical learning approach that was
derived from the theory of structural risk minimization.
In many recent publications, support vector machines
have demonstrated superior learning performance over
previous algorithms, such that a comparison of this
method with LWPR seemed to be an interesting bench-
mark. LWPR as used in iii) and iv) was exactly the
algorithm described in the previous section. Methods
ii)–iv) learned a separate model for each output of the
inverse dynamics, i.e., all models had a univariate out-
put and 21 inputs. LWPR employed a diagonal distance
metric.

Figure 3 illustrates the function approximation re-
sults for the shoulder motor command graphed over
the number of training iterations (one iteration corre-
sponds to the update from one data point). Surprisingly,

Figure 3. Comparison of generalization error (nMSE) traces for
different learning schemes.

rigid body parameter estimation achieved the worst re-
sults. LWPR-1 outperformed parameter estimation, but
fell behind SVM regression. Full LWPR performed the
best. The results for all other DOFs were analogous.
For the final result, LWPR employed 260 local mod-
els, using an average of 3.2 local projections. LWPR-1
did not perform better because we used a diagonal dis-
tance metric. The abilities of a diagonal distance metric
to “carve out” a locally spherical distribution are too
limited to accomplish better results—a full distance

Statistical Learning for Humanoid Robots 61

metric can remedy this problem, but would make the
learning updates quadratic in the number of inputs.
These results demonstrate that LWPR is a competitive
function approximation technique.

3.1.2. On-Line Learning. We implemented full
LWPR on our robotic setup. Out of the four parallel
processors of the system, one 366 MHZ PowerPC pro-
cessor was completely devoted to lookup and learning
with LWPR. Each DOF had its own LWPR learning
system, resulting in 7 parallel learning modules. In or-
der to accelerate lookup and training times, we added a
special data structure to LWPR. Each local model main-
tained a list of all other local models that overlapped
sufficiently with it. Sufficient overlap between two lo-
cal model i and j can be determined from the centers
and distance metrics. The point x in input space that is
the closest to both centers in the sense of a Mahalanobis
distance is x = (Di + D j)

−1(Di ci + D j c j). Inserting
this point into Eq. (1) of one of the local models gives
the activation w due to this point. Two local mod-
els are listed as sufficiently overlapping if w ≥ wgen

(cf. LWPR outline). For diagonal distance metrics, the
overlap computation is linear in the number of inputs.
Whenever a new data point is added to LWPR, one
neighborhood relation is checked for the maximally
activated RF. An appropriate counter for each local

Figure 4. (a) Robot end effector motion traces under different control schemes. (b) Progress of online learning with LWPR control.

model ensures that overlap with all other local models
is checked exhaustively. Given this “nearest neighbor”
data structure and the fact that a movement system gen-
erates temporally highly correlated data, lookup and
learning can be confined to only few RFs. For every
lookup (update), the identification number of the max-
imally activated RF is returned. The next lookup (up-
date) will only consider the neighbors of this RF. It
can be proved that this method performs as good as an
exhaustive lookup (update) strategy that excludes RFs
that are activated below a certain threshold wcutoff .

The LWPR models were trained on-line while the
robot performed a pseudo randomly drifting figure-8
pattern in front of its body. Lookup proceeded at
480 Hz, while updating the learning model was
achieved at about 70 Hz. At certain intervals, learn-
ing was stopped and the robot attempted to draw a
planar figure-8 at 2 Hz frequency for the entire pattern.
The quality of these drawing patterns is illustrated in
Fig. 4(a) and (b). In Fig. 4(a), Xdes denotes the de-
sired figure-8 pattern, Xsim illustrates the figure-8 per-
formed by our robot simulator that uses a perfect in-
verse dynamics model (but not necessarily a perfect
tracking and numerical integration algorithm), Xparam

is the performance of the estimated rigid body dynam-
ics model, and Xlwpr shows the results of LWPR. While
the rigid body model has the worst performance, LWPR
obtained the results comparable to the simulator.

62 Vijayakumar et al.

Figure 4(b) illustrates the speed of LWPR learning.
The Xnouff trace demonstrates the figure-8 patterns per-
formed without any inverse dynamics model, just using
a low gain PD controller. The other traces show how
rapidly LWPR learned the figure-8 pattern during train-
ing: they denote performance after 10, 20, 30, and 60
seconds of training. After 60 seconds, the figure-8 is
hardly distinguishable from the desired trace.

3.2. Inverse Kinematics Learning

Since most movement tasks are defined in coordinate
systems that are different from the actuator space of the
robot, coordinate transformation from task to actuator
space must be performed before motor commands can
be computed. On a system with redundant degrees-
of-freedom (DOFs), this inverse kinematics transfor-
mation from external plans to internal coordinates is
often ill-posed as it is underconstrained. If we define
the intrinsic coordinates of a manipulator as the n-
dimensional vector of joint angles θθ ∈Rn , and the po-
sition and orientation of the manipulator’s end effector
as the m-dimensional vector x ∈Rm , the forward kine-
matic function can generally be written as:

x = f (θθ) (4)

while what we need is the inverse relationship:

θθ = f −1(x) (5)

For redundant systems, like our Sarcos robots (see
Fig. 2), solutions to the above equation are non-unique.
Traditional inverse kinematics algorithms address how
to determine a particular solution in face of multi-
ple solutions by optimizing an additional cost crite-
rion g = g(θθ). Most approaches favor local optimiza-
tions that compute an optimal change in θθ , �θθ , for a
small change in x, �x and then integrate �θθ to gener-
ate the entire joint space path. Resolved Motion Rate
Control (RMRC) is one such local method which uses
the Jacobian J of the forward kinematics to describe a
change of the endeffector’s position as:

ẋ = J(θθ)θ̇θ (6)

This equation can be solved for θ̇θ by taking the inverse
of J if it is square i.e. m = n, and non-singular, or by
using pseudo-inverse computations that minimize g in

the null space of J (Liegeois, 1977):

θθ = J#ẋ − α(I − J#J)
∂g

∂θθ
(7)

3.2.1. Motivation for Learning. Learning of inverse
kinematics is useful when the kinematic model of the
robot is not known accurately, when Cartesian informa-
tion is provided in uncalibrated camera coordinates, or
when the computational complexity of analytical solu-
tions becomes too high. For instance, in our humanoid
robot we observed that offsets in sensor readings and
inaccurate knowledge of the exact kinematics of the
robot can lead to significant error accumulations for
analytical inverse kinematics computations, and that it
is hard to maintain an accurate calibration of the active
vision system of the robot. Instead of re-calibrating
the entire robot frequently, we would rather employ
a self-calibrating, i.e., learning approach. An addi-
tional appealing feature of learning inverse kinematics
is that it avoids problems due to kinematic singularities-
learning works out of experienced data, and such data
is always physically correct and does not demand im-
possible postures as can result from an ill-conditioned
matrix inversion.

A major obstacle in learning inverse kinematics, is
that the inverse kinematics of a redundant kinematic
chain has infinitely many solutions. In the context of
Eq. (6), this means that multiple θ̇θ i , are mapped to
the same ẋ. Algorithms that learn the mapping θ̇θ ←
f −1(x) average over all the solutions θ̇θ i , assuming that
different θ̇θ i for the same ẋ are due to noise. This may
result in an invalid solution if the multiple θ̇θ i lie in
a non-convex set, as is frequently the case in robot
kinematics (Jordan and Rumelhart, 1992).

This problem can be avoided by a specific input
representation to the learning network (Bullock et al.,
1993) which allows local averaging over θ̇θ i . This can
be shown by averaging Eq. (6) over multiple θ̇θ i that
map to the same ẋ, for a fixed θθ .

〈ẋ〉 = 〈
J (θθ) θ̇θ i

〉
i ⇒ ẋ = J (θθ)

〈
θ̇θ i

〉 = J (θθ) ¯̇θθ i (8)

Since the Jacobian relates the ẋ and θ̇θ i in linear form,
even for redundant systems the average of the solutions
will result in the desired ẋ as long as the averaging is
carried out in the vicinity of a particular θθ .

Thus we propose to learn the inverse mapping func-
tion with our spatially localized LWPR learning sys-
tem based on the input/output representation (ẋ, θθ) →
(θ̇θ). This approach will automatically resolve the

Statistical Learning for Humanoid Robots 63

redundancy problem without resorting to any other op-
timization approach: the local average solution picked
is simply the local average over the solutions that were
experienced. The algorithm will also perform well near
singular posture since, as mentioned before, it cannot
generate joint movements that it has never experienced.

3.2.2. Applying LWPR to Inverse Kinematics Learn-
ing. In order to apply LWPR to inverse kinematics
learning for our humanoid robot, we learn a separate
model to generate each of the joint angles such that
each of the models performs a 29 (26 degrees of free-
dom neglecting the 4 degrees of freedom for the eyes,
plus 3 Cartesian inputs) to 1 mapping (ẋ, θθ) → (θ̇l),
and we have 26 such models (l = 1, . . . , 26).

The resolution of redundancy requires creating an
optimization criterion that allows the system to choose
a particular solution to the inverse kinematics problem.
Given that our robot is a humanoid robot, we would like
the system to assume a posture that is as “natural” as
possible. Our definition of “natural” corresponds to the
posture being as close as possible to some default pos-
ture θθopt, as advocated by behavioral studies (Cruse and
Brüer, 1987). Hence the total cost function for training
LWPR can be written as follows:

Q = 1

2
(θ̇θ − ˆ̇θθ)T (θ̇θ − ˆ̇θθ)

+ 1

2
α

(
ˆ̇θθ − �θθ

�t

)T

W
(

ˆ̇θθ − �θθ

�t

)
(9)

where �θθ = θθopt − θθ represents the distance of the
current posture from the optimal posture θθopt, W is a
diagonal weight matrix, and ˆ̇θθ is the current prediction
of LWPR for z = (ẋ, θθ). Minimizing Q can be achieved
by presenting LWPR with the target values:

θ̇θ target = θ̇θ − αW(ˆ̇θθ − �θθ) (10)

These targets are commposed of the self-supervised
target θ̇θ , slightly modified by a component to enforce
the optimization of the cost function within the null
space of the Jacobian (cf. Eq. (7)).

As an exploration strategy, we initially bias the out-
put of LWPR with a term that creates a motion towards
θθopt:

˜̇θθ = ˆ̇θθ + 1

nr
�θθ (11)

The strength of the bias decays with the number of data
points nr seen by the largest contributing local model

of LWPR. This additional term allows creating mean-
ingful (and importantly, data-generating) motion even
in regions of the joint space that have not yet been ex-
plored. This enables us to learn inverse kinematics “on
the fly”, i.e., while attempting to perform the required
task itself.

An important aspect of our formulation of the in-
verse kinematics problem is that although the inputs
to the learning problem comprise ẋ and θθ , the local-
ity of the local model is a function of only θθ , while
the linear projection directions (given this locality in
θθ) are solely dependent on ẋ (cf. Eq. (8)). We encode
this prior knowledge into LWPR’s learning process by
setting the initial values of the diagonal terms of the
distance metric D in Eq. (1) that correspond to the ẋ
variables to zero. This bias ensures that the locality of
the receptive fields in the model is solely based on θθ .

LWPR has the ability to determine and ignore in-
puts that are locally irrelevant to the regression, but
we also provide this information by normalizing the
input dimensions such that the variance in the relevant
dimensions is large. This scaling results in larger corre-
lations of the relevant inputs with the output variables
and hence biases the projection directions towards the
relevant subspace. We use this feature to scale the di-
mensions corresponding to the ẋ variables so that the
regression within a local model is based primarily on
this subspace.

3.2.3. Experimental Evaluations. The goal task in
each of the experiments was to track a figure-eight tra-
jectory in Cartesian space created by simulated visual
input to the robot. In each of the figures in this sec-
tion, the performance of the system is plotted along
with that of an analytical pseudo-inverse solution (cf.
Eq. (7)) that was available for our robot from previous
work (Tevatia and Schaal, 2000).

The system was first trained on data generated from
small sinusoidal motions of each degree of freedom
about a randomly chosen mean in θθ space. Every few
seconds this mean is repositioned. The performance
of the system after training the system on this “motor
babbling” for 10 minutes is shown in Fig. 5(a).

In the second experiment, the robot executed the
figure-eight again, using the trained LWPR from the
first experiment. In this case however, the system was
allowed to improve itself with the data collected while
performing the task. As shown in Fig. 5(b), after merely
1 minute of additional learning, the system performs as
well as the analytical pseudo-inverse solution.

64 Vijayakumar et al.

Figure 5. Tracking a figure eight with learned inverse kinematics. (a) Performance after training with motor babbling. (b) Results after improving
performance using the data seen on the task. (c) Performance during the first 3 minutes of learning from scratch on the task. (d) Phase plot of
joint position and joint velocity.

The final experiment started with an untrained sys-
tem, and endeavored to learn the inverse kinematics
from scratch, while performing the figure-eight task it-
self. Figure 5(c) shows the progression of the system’s
performance from the beginning of the task to about
3 minutes into the learning. The system initially starts
out making slow inaccurate movements. As it collects
data however, it rapidly converges towards the desired
trajectory. Within a few more minutes of training, the
performance approached that seen in Fig. 5(b).

It is important to note that for redundant manipu-
lators, following a periodic trajectory in operational
space does not imply consistency in joint space, i.e.,
the trajectory followed in joint space may not be cyclic
since there could be aperiodic null space motion that

does not affect tracking accuracy. Figure 5(d) shows a
phase plot of one of the joints (elbow flexion and exten-
sion), over about 30 cycles of the figure-eight trajectory
after learning had converged. The presence of a single
loop over all cycles shows that the inverse kinematics
solution found by our algorithm is indeed consistent.

3.3. Learning for Biomimetic Gaze Stabilization

Oculomotor control in a humanoid robot faces similar
problems as biological oculomotor systems, i.e., the
stabilization of gaze in face of unknown perturbations
of the body, selective attention, stereo vision, and deal-
ing with large information processing delays. Given
the nonlinearities of the geometry of binocular vision

Statistical Learning for Humanoid Robots 65

Figure 6. A control diagram of the VOR-OKR learning system.
The lowest box corresponds to the OKR-like negative feedback cir-
cuit, the middle box corresponds to the linear feedforward model
and the top box corresponds to the continuously learned non-linear
feedforward circuitry.

as well as the possible nonlinearities of the oculomo-
tor plant, it is desirable to accomplish accurate control
of these behaviors through learning approaches. Here,
we describe the application of LWPR to a learning con-
trol system for the phylogenetically oldest behaviors of
oculomotor control, the stabilization reflexes of gaze.

In our recent work (Shibata and Schaal, 2001), we
described how control theoretically reasonable choices
of control components result in an oculomotor control
system that resembles the known functional anatomy
of the primate oculomotor system. The resulting con-
trol circuitry for such a system is shown in Fig. 6. The
core of the learning system is derived from the bio-
logically inspired principle of feedback-error learning
combined with the LWPR algorithm. There are essen-
tially three blocks in the system (cf. Fig. 6): (1) the
middle block which is the vestibular (head velocity)
input based linear feedforward controller with con-
servatively low gains (2) the top block that makes
up the non-linear feedforward controller (continuously
adapted using LWPR) with vestibular inputs and (3)
a lower block which is the retinal slip based nega-
tive feedback controller that generates a delayed error
signal to both the linear (fixed) feedforward control
and the non-linear (continuously learned) feedforward
circuit.

Feedback Error Learning (FEL) is a principle of
learning motor control. It employs an approximate way
of mapping sensory errors into motor errors that, sub-
sequently, can be used to train a neural network by
supervised learning. From the viewpoint of adaptive
control, FEL is a model-reference adaptive controller.

The controller is assumed to be equipped a priori with
a stabilizing linear feedback controller whose perfor-
mance, however, is not satisfactory due to nonlinear-
ities in the plant and delays in the feedback signals.
Therefore, the feedback motor command of this con-
troller is employed as an error signal to train a neural
network controller. Given that the neural network re-
ceives the correct inputs, i.e., usually current and de-
sired state of the plant, it can acquire a nonlinear control
policy that includes both an inverse dynamics model of
the plant and a nonlinear feedback controller. Kawato
(1990) proved the convergence of this adaptive control
scheme and advocated its architecture as an abstract
model of learning in the cerebellum.

In order to employ LWPR for learning under the
FEL scheme, we require the presence of a target out-
put y (See Table 2). In motor learning, target values
for motor commands rarely exist since errors are usu-
ally generated in sensory space, not in motor com-
mand space. The FEL strategy can be interpreted as
generating a pseudo target for the motor command
y(t − 1) = ŷ(t − 1) + τfb(t), where τfb denotes the
feedback error signal and ŷ is the predicted output. Us-
ing these principles and by employing the LWPR al-
gorithm for on-line learning, we demonstrate that our
humanoid robot is able to acquire high performance
visual stabilization reflexes after about 40 seconds of
learning despite significant nonlinearities and process-
ing delays in the system.

3.3.1. Experimental Setup. Figure 7 depicts our ex-
perimental system. Each DOF of the robot is actuated

Figure 7. The vision head subsystem of our humanoid experimental
setup.

66 Vijayakumar et al.

hydraulically out of a torque control loop. Each eye of
the robot’s oculomotor system consists of two cameras,
a wide angle (100 degrees view-angle horizontally)
color camera for peripheral vision, and second camera
for foveal vision, providing a narrow-view (24 degrees
view-angle horizontally) color image. This setup mim-
ics the foveated retinal structure of primates, and it is
also essential for an artificial vision system in order to
obtain high resolution vision of objects of interest while
still being able to perceive events in the peripheral en-
vironment. Each eye has two independent degrees of
freedom, a pan and a tilt motion.

The controllers are implemented in two subsystems,
a learning control subsystem and a vision subsystem,
each operated out of a VME rack using the real-time op-
erating system VxWorks. Three CPU boards (Motorola
MVME2700) are used for the learning control subsys-
tem, and two CPU boards (Motorola MVME2604) are
provided for the vision subsystem. In the learning con-
trol subsystem, CPU boards are used, respectively, for:
i) low level motor control of the eyes and other joints of
our robot (compute torque mode), ii) visuomotor learn-
ing, and iii) receiving data from the vision subsystem.
All communication between the CPU boards is carried
out through the VME shared memory communication
which, since it is implemented in hardware, is very fast.
In the vision subsystem, each CPU board controls one
Fujitsu tracking vision board in order to calculate reti-
nal slip and retinal slip velocity information of each
eye. NTSC video signals from the binocular cameras
are synchronized to ensure simultenous processing of
both eyes’ vision data. Vision data are sent via a se-
rial port (115200 bps) to the learning control subsys-
tem. For the experimental demonstrations of this paper,
only one peripheral camera is used for VOR-OKR in its
horizontal (pan) degree-of-freedom. Multiple degrees
of freedom per camera, and multiple eyes just require a
duplication of our control/learning circuits. If the image
on a peripheral camera is stabilized, the image on the
mechanically-coupled foveal vision is also stabilized.
In order to mimic the semicircular canal of biological
systems, we attached a three-axis gyro-sensor circuit
to the head. From the sensors of this circuit, the head
angular velocity signal is acquired through a 12 bit A/D
board. The oculomotor and head control loop runs at
480 Hz, while the vision control loop runs at 30 Hz.

We use both visual-tracking and optical flow calcu-
lation in order to acquire the retinal slip and the retinal
slip velocity, respectively. Spatial averaging of multi-
ple optical flow detectors were used to reduce the noise.

To maintain a 30 Hz vision processing loop rate, pixels
were sampled only every three dots. Due to this sam-
pling, the effective angular resolution around the center
of the image was about 0.03 rad.

3.3.2. Experimental Results of Online Gaze Stabilza-
tion. There are three sources of nonlinearities both in
biological and artificial oculomotor systems: i) muscle
nonlinearities or nonlinearities added by the actuators
and the usually heavy cable attached to the cameras,
ii) perceptual distortion due to foveal vision, and iii)
off-axis effects. Off-axis effects result from the non-
coinciding axes of rotation of eye-balls and the head
and require a nonlinear adjustment of the feedforward
controller as a function of focal length, eye, and head
position. Note that this off-axis effect is the most sig-
nificant nonlinearity in our oculomotor system.

In the learning experiment, we will compare the
learning performance of our LWPR non-linear online
learning algorithm against Recursive Least Squares
(RLS) regression, a linear learning system (Ljung and
Soderstrom, 1986). For this purpose, a large board with
texture appropriate for vision processing was placed in
front of the robot. The distance between a camera and
the board was around 50 cm, i.e., a distance that empha-
sized the off-axis nonlinearities. In this experiment, the
head was moved horizontally according to a sinusoidal
signal with frequency 0.8 Hz and amplitude 0.25 rad.

Figure 8 shows the time course of the rectified retinal
slip, smoothed with a moving average over a one sec-
ond time window. The dashed line corresponds to RLS
learning, while the solid line presents the learning per-
formance of LWPR. The benefits for a nonlinear learn-
ing system are clearly demonstrated in this plot: both
learning curves show rapid improvement over time,
but the final retinal slip out of LWPR is almost half
of the remaining slip from linear learning. Figure 8
(inset) shows the time course of the raw retinal slip
signals at the end of learning. Since, as mentioned in
Section 3.3.1, the effective angular resolution around
the center of the image was 0.03 rad, the learning re-
sults shown in Fig. 8 are satisfactory as their amplitude
is also about 0.03 rad, i.e., the best result achievable
with this visual sensing resolution.

The nonlinear component generated by the off-axis
effect is around 0.05 rad when the head is rotated
0.25 rad and the visual stimulus is at 0.5 m distance
(based on analytical computations from the geometry
of off-axis vision head system). This difference is con-
sistent with the average difference between the results

Statistical Learning for Humanoid Robots 67

Figure 8. Time course of the mean retinal slip: The dashed line corresponds to linear learning result and the solid line corresponds to non-linear
learning with LWPR; (inset) retinal slip during the last part of learning.

obtained by RLS and LWPR, suggesting that LWPR
was able to learn the nonlinear component generated
by the off-axis effect.

4. Conclusions

This paper introduced locally weighted projection re-
gression (LWPR), a statistical learning algorithm, for
applications of real-time learning in highly complex
humanoid robots. The O(n) update complexity of
LWPR in the number of inputs n, together with its sta-
tistically sound dimensionality reduction and learning
rules allowed a reliable and successful real-time imple-
mentation of various learning problems in humanoid
robotics, including inverse dynamics learning, inverse
kinematics learning, and oculomotor learning. These
results demark one of the first times that complex in-
ternal models for model-based control could be learned
autonomously in real-time on sophisticated robotic de-
vices. We hope that algorithms like LWPR will allows

us in the near future to equip robots with massive on-
line learning abilities such that we come one step closer
to realizing the dream of completely autonomous hu-
manoid robots.

References

An, C.H., Atkeson, C., and Hollerbach, J. 1988. Model Based
Control of a Robot Manipulator, MIT Press: Cambridge, MA.

Atkeson, C., Moore, A., and Schaal, S. 1997. Locally weighted learn-
ing. Artificial Intelligence Review, 11:76–113.

Bishop, C. 1995. Neural Networks for Pattern Recognition, Oxford
University Press: London.

Bullock, D., Grossberg, S., and Guenther, F.H. 1993. A self-
organizing neural model of motor equivalent reaching and tool
use by a multijoint arm. Journal of Cognitive Neuroscience, 5(4):
408–435.

Cruse, H. and Brüwer, M. 1987. The human arm as a redundant
manipulator: The control of path and joint angles. Biological
Cybernetics, 57:137–144.

Frank, I.E. and Friedman, J.H. 1993. A statistical view of some
chemometric regression tools. Technometrics, 35:109–135.

Jordan, M.I. and Rumelhart, D.E. 1992. Supervised learning with a
distal teacher. Cognitive Science, 16(3):307–354.

68 Vijayakumar et al.

Kawato, M. 1990. Feedback-error-learning neural network for
supervised motor learning. In Advanced Neural Computers, R.
Eckmiller (Ed.), North-Holland/Elsevier: Amsterdam, pp. 365–
372.

Liegeois, A. 1977. Automatic supervisory control of the configura-
tion and behavior of multibody mechnisms. IEEE Transactions on
Systems, Man, and Cybernetics, 7(12):868–871.

Ljung, L. and Soderstrom, T. 1986. Theory and Practice of Recursive
Identification, MIT Press: Cambridge, MA.

Sanger, T.D. 1989. Optimal unsupervised learning in a single layer
liner feedforward neural network. Neural Networks, 2:459–473.

Saunders, C., Stitson, M.O., Weston, J., Bottou, L., Schoelkopf, B.,
and Smola, A. 1998. Support vector machine—Reference man-
ual. TR CSD-TR-98-03. Department of Computer Science, Royal
Holloway, University of London.

Schaal, S. 1999. Is imitation learning the route to humanoid robots?
Trends in Cognitive Sciences, 3:233–242.

Schaal, S. and Atkeson, C.G. 1998. Constructive incremental learn-
ing from only local information. Neural Comp. 10:2047–2084.

Schaal, S., Atkeson, C.G., and Vijayakumar, S. 2000. Real-time robot
learning with locally weighted statistical learning. In Proc. In-
ternational Conference on Robotics and Automation ICRA2000,
pp. 288–293.

Schaal, S., Vijayakumar, S., and Atkeson, C.G. 1998. Local dimen-
sionality reduction. Proc. Neural Information Processing Systems,
10:633–639.

Shibata, T. and Schaal, S. 2001. Biomimetic gaze stabilization based
on feedback-error-learning with nonparametric regression net-
works. Neural Networks, 14(2):201–216.

Slotine, J.E. and Li, W. 1991. Applied Nonlinear Control, Prentice
Hall: Englewood cliffs, NJ.

Tevatia, G. and Schaal, S. 2000. Inverse kinematics for humanoid
robots. In Proceedings of the International Conference on Robotics
and Automation (ICRA2000), San Francisco, CA.

Vapnik, V. 1995. The Nature of Statistical Learning Theory, Springer:
New York.

Vijayakumar, S. and Schaal, S. 2000. Locally weighted projection
regression: An O(n) algorithm for incremental real time learning
in high dimensional space. In Proc. International Conference on
Machine Learning ICML2000, pp. 1079–1086.

Wold, H. 1975. Soft modeling with latent variables: The nonlinear
iterative partial least squares approach. Perspectives in Probability
and Statistics: Papers in Honor of M.S. Bartlett, pp. 114–142.
Academic Press: London.

Sethu Vijayakumar is a Research Assistant Professor in the
Department of Computer Science and Neuroscience at the Univer-
sity of Southern California and holds a part time affiliation with the
RIKEN Brain Science Institute in Japan. His research interests in-

cludes statistical machine learning, neural networks, motor control
and computational neuroscience. He received the ICNN‘95 Best Stu-
dent Paper Award in 1995, the IEEE Vincent Bendix Award in 1991
and the IEEE R.K.Wilson RAB Award in 1996. Dr. Vijayakumar is
also a member of the International Neural Network Society, and an
associate of the IEEE.

Aaron D’Souza received his B.E. degree in Computer Engineering
from Mumbai University, India, in 1998. He is presently a Ph.D. stu-
dent at the USC Computational Learning & Motor Control Lab. His
research interests include statistical machine learning, neural net-
works, and Bayesian learning, with applications in humanoid robot
control.

Tomohiro Shibata received his Ph.D. in information engineering
from the University of Tokyo in 1996. From 1996 to 1997, he was
a postdoctoral fellow at the University of Tokyo. Currently, he is
a researcher with the Japan Science and Technology Corporation’s
ERATO project since April 1997. Dr. Shibata works on modeling
and learning of biologically plausible oculomotor controllers and
uses robots as testbeds for contributing to neuroscience research.

Jörg Conradt is a Ph.D. student at the Institute of Neuroinformatics
in Zurich, Switzerland working on spatial representations in the hip-
pocampus place fields. He holds a Masters in Computer Engineering
from the Technische Universitat Berlin and a M.S. in Computer Sci-
ence from the University of Southern California, where he was a

Statistical Learning for Humanoid Robots 69

Fulbright Scholar. Jorg research interests include statistical learning,
robotics and motor control.

Stefan Schaal is an Assistant Professor at the Department of Com-
puter Science and the Neuroscience Program at the University of

Southern California. He also holds additional appointments as Head
of the Computational Learning Group of the Kawato Dynamic Brain
Project (ERATO/JST) and as an Adjunct Assistant Professor at the
Department of Kinesiology of the Pennsylvania State University.
Dr. Schaal’s research interests include topics of statistical and ma-
chine learning, neural networks, computational neuroscience, non-
linear dynamics, nonlinear control theory, and biomimetic robotics.

