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Figure 4.7 Schematic of visual-haptic height oddity-detection experimental task from (Hillis et al., 2002).
Subjects must choose the odd probe stimulus based on haptic (textured bars) and visual (plain bars)
observation modalities. (A) Probe stimulus is the same as the standard stimuli: detection at chance level.
(B) Probe stimulus bigger than standard: detection is reliable. (C) Haptic and visual probe modalities are
discordant: detection rate will depend on cue-combination strategy.

multimodal error distribution under MLI cue-
combination theory (Egs. 4.16—4.17). (In the
next section, we will discuss why this approach
is not quite ideal for this experiment.)

Specifically, under the MLI theory, the brain
would compute a fused estimate y, based on
the two observations x, ,, x, , (Eqs. 4.16-4.17)
and then discriminate based on this estimate.
In this case, although both cues are now being
used, some combinations of cues would produce
ametameric probe, that is, physically distinct but
perceptually indistinguishable. Specifically, if we
parameterize the probe stimuli as y, , = y, , +
AYy 0 Vo =V, + Ay, . thenalong the diagonal
line through the performance surface where
Ay, , = —(02/0;)Ay, ,, the fused estimate is on
average the same as the standard y, , = y, and
the probe would be undetectable. Performance
along the cues-concordant diagonal, however,
would be improved compared to the single-cue
estimation cases because the combined variance
is less than the individual variances (oyz‘ hy < OF
and oy, , < 07).

Two variants of the experiment were per-
formed, one for size discrimination across

visual and haptic modalities (standard: y, =
55 mm), and one for slant discrimination using
texture and stereo disparity cues within vision
(standard: y, = 0 deg). Figure 4.8 illustrates
the predicted performance surface contours for
unimodal models (red lines), the MLI model
(green lines), and those observed (dots) by Hillis
et al. (2002) for two sample subjects. Contour
points closer to the origin y, indicate better
performance.

There are several points to note in Figure 4.8:
(1) In the cues-concordant quadrants (1 and 3),
the multimodal performance is improved com-
pared to the unimodal performance, as predicted
by the MLI theory (magenta points and green
lines are inside the red lines in quadrants
1 and 3). (2) Particularly in the intramodal
case (Fig. 4.8B), the observed experimental
performance is significantly worse than the
unimodal performance in the cues-discordant
quadrants (2 and 4) (magenta points are outside
of the red lines in Fig. 4.8B, quadrants 2
and 4). Note that the green intramodal predicted
thresholds in Figure 4.8B are curved, unlike
the straight intermodal predicted thresholds in
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Figure 4.8 MLI oddity-detection predictions and experimental results. (A) Visual-haptic experiment.
(B) Texture-disparity experiment. Red lines: Observed uni-modal discrimination thresholds. Green
lines: Discrimination-threshold predictions assuming mandatory fusion. Magenta points: Discrimination
threshold observed experimentally for two sample subjects from Hillis et al. (2002).

Figure 4.8A. This is due to the use of a slightly
more complicated model than described here,
which reflects the fact that the variance of the
slant cue o2 itself depends on the current slant y,
(see Hillis et al., 2002, for details). The essential
insights remain the same, however.

Hillis et al. concluded that mandatory fusion
applied within (Fig. 4.8B) but not between
(Fig. 4.8A) the senses, in part because poor
performance in the cues-discordant quadrants
2 and 4 was noted to be less prominent in
the intermodal case. They hypothesized that the
discrepancy between the observed limited region
of poor performance in the intramodal cues-
discordant quadrants 2 and 4, and the MLI
predicted infinite region of nondiscriminability
could be due to a separate texture consistency
mechanism ultimately enabling the discrimina-
tion in quadrants 2 and 4 (Hillis et al., 2002).

Nevertheless, the classical unifying theory of
ideal-observer maximum-likelihood combina-
tion retains a strong qualitative discrepancy with
the experimental results (Fig. 4.8, green lines and
points) in both experiments. It does not predict
good performance in the cues-concordant
quadrants 1 and 2 as well as a limited region
of poor performance in the cues-discordant
quadrants 2 and 4. In the next sections, we
will show how an alternative unifying approach,

exploiting a complete generative model of
the oddity-detection problem, including the
associated structure uncertainty, can explain
both of these experiments quantitatively and
intuitively.

Modeling Oddity Detection

The classical MLI approach to sensor fusion has
failed as a means to understand human per-
formance in this multisensory oddity-detection
problem. Let us step back and reconsider the
match between the problem and its generative
model. There are two key components of this
problem that are not modeled by the classical
approach (Fig. 4.6): the discrete model-selection
nature of the problem, and the variable structure
component of the problem.

The task posed—“Is stimulus 1, 2 or 3 the
odd one out?”—is actually no longer simply an
estimation of a combined stimulus ,,. This
estimation is involved in solving the task, but
ultimately the task effectively asks subjects to
make a probabilistic model selection (Mackay,
2003) between three models. To understand
the model-selection interpretation intuitively,
consider the following reasoning process: I
have experienced three noisy multisensory
observations. I do not know the true values of
these three stimuli, but I know they come from
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two categories, standard and probe. Which of the
following is more plausible:

1. Multisensory stimuli two and three come
from one category, and stimulus one comes
from another.

2. Stimuli one and three come from one
category, and stimulus two comes from a
different category.

3. Stimuli one and two come from one category,
and stimulus three comes from another.

With this in mind, to take a Bayesian ideal-
observer point of view on this experiment, the
experimental task is clearly to estimate which
of three distinct models is the best one for the
data. That is, the experiment effectively asks
which model in an entire set of models best
explains the data, rather than asking the value of
some variable within a model. The ideal-observer
should integrate over the distribution of unknown
stimulus values y, and y, (since subjects are not
directly asked about these) in determining the
most plausible model (assignment of oddity).
The second key aspect of this task which
must be included in any full generative model
of this problem is that oddity can be entailed
in the probe stimulus not only by its combined
difference from the standard, but by discrepancy
within the probe stimulus. In this case (similar
to other recent multisensory perception exper-
iments with variable causal structure: Hairston
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et al., 2003; Shams et al., 2000, 2005; Wallace
etal., 2004), the variable structure can effectively
“give away” the probe. We introduced the
approach needed to solve this type of problem
in multisensory perception as structure inference
(Hospedales & Vijayakumar, 2008). Kording,
Beierholm et al. (2007) carried out a detailed
analysis of the experiments of Hairston et al.
(2003) and Wallace et al. (2004) and showed how
the structure inference approach was necessary
to explain the results, but they termed the
procedure causal inference (see Chapter 2).

Formalizing Optimal Oddity Detection

A generative-model Bayesian network formal-
ization of the oddity-detection task for the
three multisensory observations {x, ;, x, ;}3_, is
shown in Figure 4.9, where the aim is to
determine which observation is the odd probe.
The graph on the left indicates that the four
observations composing the other two standard
stimuli are all related to the standard stimulus
value y,. The graph on the right indicates
that the probe visual-haptic observations are
independent of the standard but might be related
via their common parent, the latent probe
stimulus of value y,. The latent variable C
switches whether the probe observations have
a common cause in the generative model. The
prior probability of common causation is given

Observations 1,2,3

() (%)
i={1,2,3N\0

Standard Stimuli

C=1 C=0

Probe Stimuli

Figure 4.9 Graphical model for oddity detection via structure inference. A subject observes three
multisensory stimuli, X, and x,51 =123 The three options for assigning oddity correspond to three
possible models indexed by 0 = 1,2,3. The uncertain causal structure of the probe stimulus is now represented
by C, which is computed in the process of evaluating the likelihood of each model o.
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by the new parameter 7, so p(C = 1) = 7, and
p(C=0)=1—m_. Under the hypotheses of
common causal structure C = 1, we assume that
the two observations x, ,, x,, were produced
from a single latent variable y. Alternately, if
C = 0, we assume separate sources y, , and
¥,., were responsible for each. An ideal Bayesian
observer in this task should integrate over both
the unknown stimulus values and the causal
structure C (i.e., whether we are feeling and
seeing the same thing).

The three different possible models are
given by the different probe hypotheses o =
1, 2, 3, which separate the standard and probe
stimuli into different clusters. We represent
this clustering in terms of the set difference
operator “\.” For example, o = 3 would
mean that stimuli {1,2,3}\3 = {1,2} are
drawn from the standard y, and there-
fore observations {x, , x, , X, ,, x, ,} (Fig. 4.9,
left) should be similar to each other—and
potentially dissimilar to odd probe observa-
tions {x,, x,,} (Fig. 4.9, right), which were
generated independently. The ideal Bayesian
observer would base its estimation of oddity
on the marginal likelihood of each stimu-
lus/model o being odd, p(ol{x, ;. x,,}}_,0)
P55 %, Yz lo, )p(ol0):

P({xh,i»xv.i}?=1|079)
:ps({xh,i’xv.i}iE(I,Z,S)\u|0’9)p0(‘xh,0’ xv,u|0’9)’
p{x 5%, e aspnol0.0)

= / R R CTARNADTA

i€{1,2,3}\o j=h,v

po(xh,o’xv,0|0’0) =/ 1_[ N(xj,ulyo’g)N(yulg)

j=hv

X ncdyo—l—// l_[ N(xjv”|yj‘u,9)N(yj’0|6’)

j=hyv

x(1=m)dy, ,dy, ,. (4.18)

The marginal likelihood factors into a product
of standard p, and probe p, parts, which may be
decomposed into integrals of Gaussian products,
which are simple to evaluate analytically (see
Hospedales & Vijayakumar, 2009, for more
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details). This procedure evaluates how likely
each stimulus o is to be odd, accounting for
the uncertainty in stimulus values y (integrals)
and the uncertain causality of the probe data
C (sum). Here, & summarizes all the fixed
model parameters, for example, the observation
variances o and o2.

Results

To evaluate our multisensory oddity-detection
model, we assume no prior preference for which
stimulus is odd (p(o) uniform) and therefore
estimate the probe based on the likelihood,
0 = argmax, p({x,;, x,,}7_,l0,0). Evaluating
the detection success rate for a range of probe
values y, , and y, ,, we can then compare the
66% performance thresholds of the model’s
success rate P, (OoreetVsr Vio» Vyo) against the
human success rate p,(0gree!Vsr Vior Voo) @S
reported by Hillis et al. (2002). To set the
various model parameters: The prior variance
o} is fixed globally to an arbitrary large value
so as to be fairly uninformative; the prior
mean p, is assumed known; the unimodal
variances o} and o2 and so forth are determined
a priori for each experiment and subject by
fitting to the unimodal data as in Hillis et al.
(2002); and only 7, is fit to the data for each
multisensory experiment, with 7, = 0.935 and
0.99 for the across and within-modality cases,
respectively (see Hospedales & Vijayakumar,
2009, for further details).

Detection Threshold Contours Figures4.10A
and 4.10B illustrate the across- and within-
modality results, respectively, for the two sample
subjects from Figure 4.8. The experimental
data (dots) are shown along with the global
performance of the model across the whole
input space (grayscale background, with white
indicating 100% success) and the 66% per-
formance contour (blue lines). The human
experimental measurements broadly define a
region of nondetection centered about the
standard stimuli and slanted along the cues-
discordant line and stretched slightly outside
the bounds of the inner unimodal threshold
rectangle. The extent of the nondetection region
along this line is increased somewhat in the
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Figure 4.10 Oddity-detection predictions of the structure-inference approach. (A,B) Oddity-detection-
rate predictions for the ideal Bayesian observer (grey-scale background) using a variable-structure model
(Fig. 4.9); Oddity-detection contours of our model (blue lines) and human (magenta points) are overlaid
with the MLI prediction (green lines); Chance = 33%. (C,D) Fusion report rates for the ideal observer
using the variable-structure model. Across-modality conditions are reported in (A,C) and within-modality

conditions are reported in (B,D).

within-modality case as compared to the across-
modality case (Hillis et al.,, 2002). Recall that
the only free parameter varying between these
experiments is the common-causation prior
., (a larger m, leads to a longer band of
nondetection), which would be expected to vary
between pairs of cue modalities.

The MLI model makes the qualitative error
of predicting infinite bands of indiscriminability
(Fig. 4.10, green lines). In contrast, our Bayesian
model provides an accurate quantitative fit to the
data (Fig. 4.10, blue lines).

To gain some intuition into these results,
consider the normalized distribution of the data
(Eq. 4.18) under each model. For example, for
0 = 3, the probability mass in the standard
part p. lies bunched on a four-dimensional
line through the standard (where x, | = x,, =
X, = X,,). The probability mass in the probe

part p, is a mixture between a simple model
(C =1)around x, ; = x, ;, and a more complex
model (C = 0), spread more uniformly over
the space. Therefore, model 0 = 3 will be likely
for multisensory observations involving a set of
similar pairs i = 1, i = 2 and a third pair i = 3,
which is either different from the first set or
different from each other.

Perception of Fusion Another benefit of the
full generative modeling of this problem is
that it also yields a perceptual inference for
the fusion (common multisensory source) of
the probe p(Cl{x, ;. x,;};_,). This is shown in
Figures 4.10C and 4.10D and corresponds to the
predicted human answer to the question “Do
you think the odd visual and haptic observations
are caused by the same object, or have they
become discordant?” This question was not asked
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systematically (Hillis et al., 2002), but they did
note that subjects sometimes reported oddity
detection by way of noticing the discordance of
cues, which is in line with the strategy that falls
out of inference with our model.

Along the cues-concordant line, the model
has sensibly inferred fusion (Fig. 4.10C and D,
quadrants 1 and 3). In these regions, the model
can effectively detect the probe (Fig. 4.10A and B,
quadrants 1 and 3), and the fused probe estimate
3, is different from the standard probe estimate
#.. Considering instead trials moving away from
the standard along the cues-discordant line, the
model eventually infers fission (Fig. 4.10C and D,
quadrants 2 and 4). The model infers the probe
stimuli correctly in these regions (Fig 4.10A and
B, quadrants 2 and 4) where the mandatory
fusion models cannot (Fig. 4.10a, b, quadrants
2 and 4, green lines) because the probe and
standard estimates would be the same 7, = j..
The strength of discrepancy between the cues
required before the fission is inferred depends
on the variance of the observations (¢} and 62)
and the strength of the fusion prior 7, which
will vary depending on the particular subject,
combination of modalities, and task.

Discussion

We have developed a Bayesian ideal-observer
model for multisensory oddity detection and
tested it by reexamining the experiments of
Hillis et al. (2002). In those experiments,
the standard maximum-likelihood-integration
ideal-observer approach failed with drastic
qualitative discrepancy compared to human
performance; however, we argue that this was
due to simple MLI being an inappropriate model
rather than a failure of ideal-observer modeling
or human suboptimality. The more complete
Bayesian ideal-observer model developed here
represents the full generative model of the
experimental task. This required modeling the
multisensory oddity-detection problem as a
full model-selection problem with potentially
variable probe structure. The Bayesian ideal-
observer provides an accurate quantitative
explanation of the data with only one free
parameter, 7, which represents a clearly inter-
pretable quantity: prior probability of common
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causation. Moreover, our interpretation of the
problem is satisfying in that it models explicitly
and generatively the unknown discrete index o of
the odd object: a quantity that the brain is clearly
computing since it is the goal of the task.

Generative Modeling Assumptions We have
consciously made a stronger assumption than
MLI does about how much the human subject
knows about the experiment, notably that
probe stimulus was possibly discordant. The
justification for this is that the subjects were
instructed to detect oddity by any means, for
which both interstimuli and within-stimulus
intercue discrepancy are reasonable indicators.
We therefore expect that perceptual circuitry
dealing with oddity detection should allow for
both kinds of oddity, and as such we model both.
Moreover, as discussed in the Introduction,
from a normative point of view on generative
modeling and ideal observers, we should start
with the assumption that the subject has—or
learns over the session—a good generative model
of the problem; and we were able to model the
data without altering this assumption. Of course,
it makes more sense for the perceptual system
to allow for intermodal discrepancy (because
we regularly see and touch different things
simultaneously) than intramodal discrepancy
as in the texture-disparity case. Nevertheless,
this second unintuitive assumption allowed
us to make a much better model of the
experiment. Exactly why intramodal discrepancy
should be permitted and how it is resolved
by the perceptual system are open research
questions, but we speculate that this could imply
some sharing of perceptual integration circuitry
between different cue pairs.

Alternative Oddity Models A simple estima-
tor for unimodal three-alternative oddity task
is the “triangle rule” (Macmillan & Creelman,
2005). This measures the distances between
all three-point combinations, discards the two
points with minimum distance between them,
and nominates the third point as odd. Note that
this simple rule does not provide an acceptable
alternative model of the multisensory oddity
detection scenario studied here because it still
does not address the uncertain correspondence



GENERATIVE PROBABILISTIC MODELING

between multisensory observations. Specifically,
if the multisensory observations were considered
to be fused first (Eq. 4.16), metameric discordant
probe observations would still occur—and these
cannot be detected by this rule, again producing
an infinite band of nondetectability (Fig. 4.8,
green lines). In contrast, if the rule were applied
directly to the multisensory observations in
two dimensions, there would be no room for
fusion effects, and detection would be good
throughout, in contrast to the tendency toward
fusion illustrated by the human data (Fig. 4.8,
magenta dots).

Generative Modeling and Structure Inference
The theory and practice of generative modeling
for inference problems is extensively studied
in other related fields, for example, artificial
intelligence (Bishop, 2006). In this context, gen-
erative modeling of uncertain causal structure in
inference tasks goes back to Bayesian multinets
(Geiger & Heckerman, 1996). Today, this theory
is applied, for example, in building artificial-
intelligence systems to explicitly understand
“who said what” in multiparty conversations
(Hospedales & Vijayakumar, 2008).

Robust Cue Combination A variety of recent
studies have investigated the limits of multi-
sensory cue combination and have reported
“robust” combination, that is, fusion when the
cues are similar and fission when the cues
are dissimilar (Bresciani, Dammeier, & Ernst,
2006; Ernst, 2005; Kording, Beierholm et al.,
2007; Roach, Heron, & McGraw, 2006; Shams
et al., 2005; Wallace et al., 2004). Some authors
have tried to understand robust combination
by simply defining a correlated joint prior
p(y,. v,) over the multisensory sources like y,
and y, (Bresciani et al, 2006; Ernst, 2005,
2007; Roach et al., 2006). These are in general
special cases of the full generative approach
introduced here (and the equivalent models for
other experimental paradigms, e.g., Koérding,
Beierholm et al., 2007). In the correlated-prior
approach, the uncertain structure C, is not
represented, and the joint prior over latents
is defined as ) . p(y,,. 7,,/C.0)p(C|8). See
Chapter 2 for more details. In our case this would
be unsatisfactory because the perceptual system
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would then not represent causal structure, which
subjects do infer explicitly in the work of Hillis
et al. (2002) and other related experiments
(Wallace et al., 2004). Another reason for
the perceptual system to represent and infer
causal structure explicitly is that it may be of
intrinsic interest. For example, in an audio-
visual context, explicit knowledge of structure
corresponds to knowledge of “who said what” in
a conversation (for example, see Hospedales &
Vijayakumar, 2008).

CONCLUSIONS

In this chapter, we have argued that the
normative modeling approach of choice for
perceptual research should be generative model-
ing of the perceptual task for each experiment.
In this chapter, we have illustrated two sets

of experiments in which striking results in
human perception can only be explained by
full generative models of the respective tasks.
These were in domains as diverse as multisensory
integration for oddity detection (Hospedales &
Vijayakumar, 2009), and visual-proprioceptive
integration for sensorimotor adaptation (Haith
etal., 2008). The nature of the generative models
is quite different in each of these cases: For
multisensory integration we considered models
in which the unknown variables to be estimated
are discrete variables describing the dependency
between observations. For sensorimotor learn-
ing, we considered a model with continuous,
time-varying unknown variables that describe
the various possible sources of systematic error
affecting each sensory observation. The success
of these two contrasting models supports the
quite general principle—that the experimental
results can only be properly explained by
considering a complete generative model of the
subject’s observations.

In our view, there are two key areas for future
research: perceptual learning and physiological
implementation. Chapter 9 of this volume
introduces some current research progress in
perceptual learning. This encompasses questions
such as: How do people learn appropriate
generative models and parameters for particular
tasks? Are there limits to the types of learnable
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distributions (e.g., Gaussian, unimodal) and
the complexity of learnable models? In online
learning, how can the brain adapt parameters
online rapidly from trial to trial? How does the
brain know when to adapt an existing model or
set of parameters versus creating a new one for a
new task? Chapter 21 of this volume introduces
some current research progress in physiological
implementation. This encompasses questions
such as: How could these models be computed by
biological machinery? Does the brain carry out
the exact ideal-observer computations like those
we describe here, or is it using heuristics that
offer a good approximation in the circumstances
considered here. Insofar as human performance
falls short of ideal-observer performance in
particular experiments, what can this tell us
about the architecture of the brain?
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