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Abstract. Incremental learning of sensorimotor transformations in high dimen-
sional spaces is one of the basic prerequisites for the success of autonomous robot
devices as well as biological movement systems. So far, due to sparsity of data in
high dimensional spaces, learning in such settings required a significant amount of
prior knowledge about the learning task, usually provided by a human expert. In
this paper we suggest a partial revision of the view. Based on empirical studies, we
observed that, despite being globally high dimensional and sparse, data distributions
from physical movement systems are locally low dimensional and dense. Under this
assumption, we derive a learning algorithm, Locally Adaptive Subspace Regression,
that exploits this property by combining a dynamically growing local dimensionality
reduction technique as a preprocessing step with a nonparametric learning technique,
locally weighted regression, that also learns the region of validity of the regression.
The usefulness of the algorithm and the validity of its assumptions are illustrated for
a synthetic data set, and for data of the inverse dynamics of human arm movements
and an actual 7 degree-of-freedom anthropomorphic robot arm.

Keywords: sensorimotor map, locally weighted regression, dimensionality reduc-
tion, nonparametric learning

1. Introduction

One of the outstanding characteristics of biological systems is their
ability to learn, in particular, to learn incrementally in real-time from
a multitude of sensory inputs. Despite progress in artificial neural net-
work learning, statistical learning, and machine learning, we are still far
away from equipping an artificial system of even moderate complexity
with a “black-box” learning system that can perform as autonomously
and robustly as the biological counterpart. Among the most basic in-
gredients that are missing in most learning approaches are three critical
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components. First, a learning system should possess the ability to learn
continually from incrementally arriving data without the danger of for-
getting useful knowledge from previously incorporated data, an effect
called catastrophic interference. Second, the system has to automati-
cally allocate the appropriate number of resources, e.g., hidden units
in a neural network, to represent the learning problem at hand without
the undesirable effects of overfitting or oversmoothing. And third, the
learning system must be able to deal with a large number of inputs
that are possibly redundant or irrelevant.
In this paper we will address these goals in the context of learning sen-
sorimotor transformations, as needed, for instance, in the control of bi-
ological or robotic movement systems. From a statistical point of view,
this involves approximating a functional relationship f : RN → RM

from N inputs to M outputs. A typical example is to learn the inverse
dynamics model of a robot, a highly nonlinear map that relates joint
positions, velocities, and accelerations to appropriate joint torques.
Previous research (Atkeson,1989; Atkeson, Moore & Schaal (in press))
has shown that nonparametric local learning techniques offer a favor-
able solution to learning such tasks with respect to the bias/variance
dilemma of model selection (Geman, Bienenstock & Dursat,1992) and
problems of negative interference. However, nonparametric learning
techniques that depend on the notion of “neighborhood” generally scale
unfavorably to high dimensions. The reason for this behavior comes
from the non-intuitive effect that in high dimensional spaces, e.g., 20-
dimensional, all data points are approximately the same distance away
from each other (Scott,1992), thus destroying the discriminative power
of neighborhood relations.

Given this “curse of dimensionality”, nonparametric learning sys-
tems – and actually all other general nonlinear learning systems – seem
to have limited merits for sensorimotor control. However, when one
examines data distributions of high dimensional data sets generated
from real physical systems, one often notices that locally such data
is not high dimensional at all and rarely exceed 5-8 dimensions. It
is this observation which motivates the approach suggested in this
paper. Despite the fact that previously developed learning techniques
are theoretically able to exploit such low dimensional distributions,
they quickly become computationally infeasible and also tend to be
numerically less robust. This effect is due to only exploiting the low
dimensional distributions implicitly by regularization techniques, for
instance, ridge regression (Atkeson, Moore & Schaal (in press)). How-
ever, if we can exploit the low dimensional distributions explicitly
by performing a local dimensionality reduction of the data before we
apply our nonparametric learning techniques, we should be able to
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extend nonparametric learning and its favorable incremental learning
properties to high dimensional spaces within acceptable computational
costs.

To pursue this line of thought, Section 2.1 will first discuss local
dimensionality reductions. Afterwards, Section 2.2 outlines incremen-
tal locally weighted regression, and Section 2.3 introduces a complete
algorithm for local learning in high dimensional space, Locally Adap-
tive Sub-Space Regression (LASS). Finally, Section 3 demonstrates
the properties of LASS using synthetic data, behavioral data from
human psychophysical experiments, and data from an actual 7-degree-
of-freedom anthropomorphic robot arm in order to perform function
approximation in up to 21-dimensional spaces.

2. Locally Adaptive Subspace Regression
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Figure 1. Illustration of the information processing stages of LASS.

The assumed underlying statistical model of our problems is the
standard regression model y = f(x)+ ε, where x denotes the N dimen-
sional input vector, y, for the sake of clarity, a scalar output, and ε the
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additive mean-zero noise term. LASS consists of an automatically ad-
justing number of elements, each of which is processing data in the same
way. The different stages and additional notation of the information
flow of one element in the LASS system are shown in Fig.1. In essence,
the input is transformed into a predicted output ŷk by two linear
transformations, WPCA

k and bk. WPCA
k performs the dimensionality

reduction and bk fits a (hyper)plane to the reduced data. Additionally,
a weight wk is calculated with the help of the connections Dk. Based on
a Gaussian activation function, the weight, wk, is computed for every
training data point (x, y) as

wk = exp(−1
2
(x − ck)TDk(x − ck)), (1)

where Dk = MT
k Mk for positive definiteness.

wk indicates how much this LASS element should contribute to the total
prediction of the entire system. The center of the Gaussian ck is as-
signed at the time of creation of the LASS unit and remains stationary.
The matrix Dk, referred to as the distance metric, determines the size
and shape of the “receptive field” created by (1). The total prediction
ŷ of the entire LASS system results from the weighted average of the
individual predictions ŷk of all the K elements:

ŷ = (
K∑

k=1

wkŷk)/(
K∑

k=1

wk). (2)

From now on, we will drop the subscript k since every LASS elements
learns independently of every other one and is updated by the same
formulae.

2.1. Locally Weighted Dimensionality Reduction

Various candidates can be considered for dimensionality reduction in
order to exploit locally low dimensional data distributions. From choices
ranging from principal component analysis (PCA), independent com-
ponent analysis (ICA), partial least squares (PLS) and factor analysis,
we employ locally weighted PCA (LWPCA). Frank & Friedman (1993)
have shown that although Principal Component Regression (PCR)
performs dimensionality reduction only in the input space, it is quite
competitive with more sophisticated statistical dimensionality reduc-
tion techniques. Moreover, LWPCA offers a good compromise in terms
of computational feasibility and numerical robustness.

The goal of the LWPCA preprocessing stage is to locally project
the original N dimensional input x into a L dimensional subspace – a
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subspace which accounts for the most local variance of the input data
up to a user defined threshold θPCA:

xreg = WPCAxmz , (3)
where xmz = x − x̄ denotes the mean subtracted input data.

For a batch operation, this dimensionality reduction can be handled by
performing a SVD decomposition on the weighted covariance matrix
of the input data. For implementing an incremental LWPCA, we can
minimize the following weighted cost criterion in the spirit of Minimum
Description Length (MDL) (Rissanen,1989):

J1 =
1
2

p∑

i=1

wi‖xreconst,i − xmz,i‖2, where xreconst = WPCAT
xreg (4)

The minimization of (4) is achieved by gradient descent with learning
rate η

W PCAn+1

ij = W PCAn

ij + η
δJ1

δW PCA
ij

, (5)

where
δJ1

δW PCA
ij

= wxreg,i(
i∑

r=1

xreg,rW
PCAn

ij − xmz,j). (6)

and corresponds to a weighted version of the incremental PCA algo-
rithm of Oja(1982) and Sanger(1989). In order to speed up learning,
we use a second order gradient descent minimization of (4) based on
Sutton (1992), explanation of which we defer due to space limitations.

2.2. Locally Weighted Regression and Distance Metric

Adaptation

Each of the LASS elements performs a local regression on the pro-
jected reduced dimensional data as ŷ = xT

regb + b0 = x̃T β, where x̃ =
(xT

reg, 1)T . An incremental estimate of β can be formed by recursive
least squares (Schaal & Atkeson,1996). However, it should be noted
that the LWPCA pre-processing step does not only yield a computa-
tional advantage in terms of providing a significantly reduced input to
the regression; LWPCA also decorrelates the dimensions of xreg Thus,
the regression decomposes into L + 1 univariate additive regressions
(Hastie & Tibshirani,1990), reducing the computational complexity of
the regression from being quadratic in the number of regression inputs
to being linear:

βn+1
i = sn+1

xy,i /s
n+1
xx,i , where sn+1

xy,i = λsn
xy,i+wx̃iy and sn+1

xx,i = λsn
xx,i+wx̃i

2.
(7)
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The variable λ in (7) denotes a forgetting factor, a standard technique
in recursive estimation (Ljung & Soederstroem,1986), such that initial
input to the regression, stemming from a LWPCA which has not prop-
erly converged yet, will not negatively influence the regression result in
the long run.

The linear model represented by each LASS unit is valid only in
the locality specified by the distance metric D. In order to adapt to
local differences in the spatial frequency of the outputs, we optimize
the size and shape of the local models by adapting D. This process can
be accomplished by incrementally minimizing a local cost criterion:

J2 =
1

∑p
i=1 wi

p∑

i=1

wi ‖yi − ŷi,−i‖2 + γ
∑

n,m

Dreg2

n,m , (8)

where (9)

Dreg = WPCADWPCAT

Here, the first term corresponds to a weighted mean squared cross
validation measure, and the second term corresponds to a bias on the
magnitude of the second derivatives of the output. The update of the
distance metric D is a gradient descent in J2, detailed in Schaal &
Atkeson (1997). It should be noted, however, that the gradient compu-
tation for (8) is much simpler than in Schaal & Atkeson (1997) due to
orthogonality of the outputs from the PCA pre-processing.

2.3. The LASS Algorithm

The LASS algorithm proceeds as following. The entire system is initial-
ized with no processing element. Every piece of training data (x, y) is
used to update all the existing elements. If no element is activated (cf.
Equation 1) more than a threshold wgen, a new LASS element is created
with its receptive field center c in (1) initialized to c = x. The distance
metric D is initialized to a user supplied value Ddef . The initial dimen-
sionality of the LWPCA starts out with L = 2, although the regression
will only use L − 1 inputs. An incrementally adapting mechanism in-
creases the dimensionality of the regression stage based on a variance
threshold criterion: if the condition vPCA,L/

∑L
i=1 vPCA,i > θPCA is

satisfied, the dimensionality L is incremented by one and appropriate
coefficients are added in WPCA and b. For this purpose, each LASS
unit keeps an incremental record of the variances of its L LWPCA
outputs:

vn+1
PCA = (λW nvn

PCA + wx2
reg)/(W

n + w) (10)

Note that the learning rule (5) guarantees that the variances vPCA are
in descending order (Sanger,1989) such that only the L-th variance has
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to be monitored. To avoid premature adding of dimensions, it is useful
to also monitor the rate of change of the variances and add dimensions
only if the rate of change is close to zero.

It is important to note that adding dimensions does not disturb the
results obtained by the previously trained LASS parameters. A new
dimension in the LWPCA adds a row to WPCA, but the learning rule
(5) ensures that updates of coefficients of WPCA are not affected by
coefficients whose row index is larger. Thus, the new row is trained
entirely independently. Similarly, adding a coefficient to b just adds a
new element to an additive regression. As shown in (7), the regression
updates for each dimension are independent of each other due to the
decorrelation of xreg in the LWPCA. Due to ordering of the variances, it
can also be argued statistically that regression coefficients with a small
var(xreg) have a low prior probability of contributing significantly to
the regression output, since the confidence in a regression coefficient
depends inversely proportional on var(xreg). All these facts contribute
positively to an incremental mechanism with minimal interference.

In sum, LASS is a constructive learning algorithm in two different
senses. First, LASS elements are added whenever a training point in in-
put space does not sufficiently activate any existent LASS element. This
process will guarantee that the entire input distribution of the training
data is quickly covered by LASS. Second, within each LASS element
the dimensionality of the regression stage can grow until the LWPCA
models a user specified fraction of the local variance of the inputs.
The size and shape of the local region of validity of a LASS element,
however, is determined by a goodness of fit criterion in regression space,
thus coupling the choice of a local subspace to the regression stage,
not unlike the classification algorithm of (Kambhatla & Leen, 1995).
These features ensures the quality of the regression result. Since The
adjustable parameters in each LASS element are the LWPCA weights
WPCA, the regression parameters β and the distance metric D, all of
which are trained with second order learning techniques.

3. Empirical Results

In the first example we will use a synthetic data set that allows to
illustrate function fitting results with LASS graphically. The task is to
approximate

y = max{exp(−10x2
1), exp(−50x2

2, 1.25exp(−5(x2
1 + x2

2)))}+N(0, 0.01)

from noisy data set of 500 samples, drawn uniformly from the unit
square. This function consists of a narrow and a wide ridge which are
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Figure 2. (a) LASS approximation results for 10-dimensional input data set; (b)
Contour lines of 0.1 iso-activation of each expert in input space.
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Figure 3. nMSE(solid lines) and dimensionality of regression(dashed lines) as func-
tion of training iterations for 10-D LASS approximation with fixed and adjusted
distance metric and a baseline comparison with 2-D RFWR. One training iteration
corresponds to one incremental presentation of a training sample.

perpendicular to each other, and a Gaussian bump at the origin. The
test data set consists of 1681 data points corresponding to the vertices
of a 41x41 grid over the unit square; the corresponding output values
are the exact function values. The approximation error is measured
as a normalized mean squared error, nMSE, i.e, the MSE on the
test set normalized by the variance of the outputs of the test set. The
initial parameters of LASS are set to Ddef = 20I (I is the identity
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matrix), wgen = 0.2, θPCA = 0.03. The PCA learning rate was η = 1,
the regression learning rate θ = 100 and the forgetting factor was set
to λ = 0.9995. In the test for LASS, we augmented the input space
by 8 additional dimensions whose values were zero, and transformed
this input space by a 10 dimensional randomly chosen rotation matrix.
Thus, the task of LASS was to recover this low dimensional function
now embedded in a high dimensional space. As a comparison, LASS was
trained with and without the adjustment of the distance metric D. Fig.3
illustrates the course of learning for both tests. It takes about 50,000
iterations until the LWPCA converges initially. For a fixed distance
metric, the algorithm converged with an nMSE = 0.1 and the actual
dimensionality of the data was correctly detected as 2. On the other
hand, when we allowed the adjustment of the distance metric D based
on the regression, an nMSE = 0.01 was achieved, with the LWPCA
again saturating the regression dimensions employed at 2. Fig.2a shows
a typical example of the excellent reconstruction of the function after
rotating the results back into the original low dimensional space. Fig.2b
shows the size and orientation of the receptive fields that the system
created during learning. As can be noticed, each LASS element mod-
ifies it‘s region of locality based on the function’s curvature, hence,
shrinking along high frequency directions while stretching over largely
linear areas. The nMSE achieved by LASS was indistinguishable to the
results achieved in 2-dimensional approximation of the same function
by RFWR (see Fig.3), a robust local learning technique for low dimen-
sional non-parametric regression (Schaal & Atkeson, 1996). It should
also be noted that the nMSE starts at a fairly low value after only
1,000 iterations, despite the system only employing one dimensional
regressions at this point.

In the second evaluation, we use real movement data collected from
human arm movements in random point-to-point reaching and rhyth-
mic scribbling tasks. Kinematic arm data was recorded with optical
recording equipment. From this data, the 7 joint positions of the arm
and their associated velocities and accelerations were recovered. Under
the assumption of a rigid body dynamics model, corresponding joint
torques were computed using biologically plausible values for inertia
and mass parameters. LASS was trained to fit the inverse dynamics
model of this data, a mapping from the joint positions, velocities, and
accelerations to the joint torques (a 21 to 7 dimensional function).
This test was intended to determine whether a successful nonpara-
metric approximation of the rigid body inverse dynamics, given the
measured input distribution from the human subjects, could be ob-
tained in locally reduced subspaces. Results of this evaluation showed
that LASS achieved an nMSE of 0.04 on test sets by employing only
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Figure 4. (a) Sketch of SARCOS Dexterous Arm (b) Trajectory tracking comparison
of the SARCOS arm using a PID controller against using a non-parametric inverse
dynamics model learned by LASS.
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Figure 5. Average dimensionality and typical learning curves for LASS in real
movement data of humans and robots.

between 4-5 dimensions on the average for the regression (see Fig.5).
This strongly supports our assumption that real movement data are
locally low dimensional.

However, an authoritative statement about having successfully learned
an inverse dynamics model should not solely be made based on nMSE
values alone; the true test is, of course, success in motion synthe-
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sis and performance on actual trajectory tracking. Therefore, in our
final evaluation, we approximated the inverse dynamics model of a 7-
degree-of-freedom anthropomorphic robot arm (Sarcos Dexterous Arm,
Fig.4a) from a data set consisting of 45,000 data points, collected at
100Hz from the actual robot performing various rhythmic and discrete
movement tasks. The data was randomly split into half to obtain a
training set and testing set. Fig.5 shows the learning results in compar-
ison to a linear regression model. Already after 10,000 iteration, LASS
performed as good as the linear regression model despite employing
only 1 regression dimension at this stage. After about 100,000 iterations
(roughly 4 passes through the training set or 15 minutes of real-time
data), LASS already accomplished a nMSE (averaged over all 7 output
dimensions) of under 0.05. The system converges at nMSE = 0.03
while employing an average of 6 dimensions locally, once again confirm-
ing our hypothesis that physical systems realize locally low dimensional
data distributions. Finally, we used the inverse dynamics model learned
by LASS in a trajectory following task of drawing an ‘eight’ in Carte-
sian coordinates. In comparison to a low gain, biologically inspired
PID controller on the same task, the LASS based controller improved
tracking significantly (see Fig.4b) although a slight constant offset due
to incomplete gravity compensation can be noticed.

4. Discussion

The goal of this paper is to emphasize one major point, i.e, local learn-
ing for regression in high dimensional spaces may not be as complicated
as previously thought. The rationale for this statement is based on the
assumption that data distributions, despite being globally high dimen-
sional, are locally often of only low dimensional structure. Evaluations
of the real movement data provided strong support for this assumption.
Based on this, we developed a nonparametric learning algorithm which
is targeted to make use of such locally low dimensional distributions.
Our learning system, Locally Adaptive SubSpace regression (LASS),
preprocesses data by a local principal component analysis (LWPCA)
which is capable of adapting dynamically to the input data distribution.
Besides learning a locally weighted regression model(LWR) based on
the preprocessed data, LASS also automatically adjusts the region of
locality where the local linear model is valid. For a synthetic and an
actual human and robot data sets, we illustrated that LASS achieved
the expected performance: in all cases, locally low dimensional data
distributions were detected and exploited appropriately. In contrast
to our previously developed learning methods whose computational
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complexity is more than quadratic, LASS scales linearly to the number
of input dimensions.

An open point of research concerns how the regression analysis could
influence the LWPCA. At the current stage of LASS, LWPCA proceeds
independently of LWR, which, from a statistical point of view, is not
satisfying as the quality of the regression depends on the distribution
of the input data (Schaal & Atkeson,1997). Empirical evaluations will
provide insight into how much this shortcoming affects the quality of
learning. Performing LWPCA in joint data space, or employing al-
ternative techniques, like partial least squares regression, have shown
promising results in some pilot studies.
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