
Sequential Support Vector Classi�ers and Regression

Sethu Vijayakumar and Si Wu
RIKEN Brain Science Institute, The Institute for Physical and Chemical Research,

Hirosawa 2-1, Wako-shi, Saitama, Japan 351-0198
fsethu,phwusig@brain.riken.go.jp

1 Abstract

Support Vector Machines(SVMs) map the input
training data into a high dimensional feature space
and �nds a maximal margin hyperplane separating
the data in that feature space. Extensions of this
approach account for non-separable or noisy training
data (soft classi�ers) as well as support vector based
regression. The optimal hyperplane is usually found
by solving a quadratic programming problem which
is usually quite complex, time consuming and prone
to numerical instabilities. In this work, we introduce
a sequential gradient ascent based algorithm for fast
and simple implementation of the SVM for classi�-
cation with soft classi�ers. The fundamental idea is
similar to applying the Adatron algorithm to SVM as
developed independently in the Kernel-Adatron [7],
although the details are di�erent in many respects.
We modify the formulation of the bias and consider
a modi�ed dual optimization problem. This formu-
lation has made it possible to extend the framework
for solving the SVM regression in an online setting.
This paper looks at theoretical justi�cations of the al-
gorithm, which is shown to converge robustly to the
optimal solution very fast in terms of number of itera-
tions, is orders of magnitude faster than conventional
SVM solutions and is extremely simple to implement
even for large sized problems. Experimental evalua-
tions on benchmark classi�cation problems of sonar
data and USPS and MNIST databases substantiate
the speed and robustness of the learning procedure.

2 Introduction

Support Vector Machines(SVMs) were introduced for
solving pattern recognition problems by Vapnik et
al.[6, 4] as a technique that minimized the struc-
tural risk - that is, the probability of misclassifying
novel patterns for a �xed but unknown probability
distribution of the input data - as opposed to tradi-
tional methods which minimize the empirical risk[15].
This induction principle is equivalent to minimizing
an upper bound on the generalization error. What
makes the SVMs so attractive is the ability to con-

dense the information in the training data and pro-
vide a sparse representation using non-linear decision
surfaces of relatively low VC dimension. Moreover,
when extended for the regression case, the SVM solu-
tion provides a tool for some level of automatic model
selection- for example, the SVM regression with RBF
kernels leads to automatic selection of the optimal
number of RBFs and their centers [13].

The SVM solution relies on maximizing the mar-
gin between the separating hyperplanes and the data.
This solution is achieved by reducing the problem to a
quadratic programming problem and using optimiza-
tion routines from standard numerical packages. In
spite of the successes of SVMs in real world appli-
cations like handwritten character recognition prob-
lems [3], it's uptake in practice has been limited be-
cause quadratic optimization through packages are
computationally intensive, suspect to stability prob-
lems and it's implementation, especially for a large
training data set, is non-trivial. Recently, some al-
gorithms have dealt with chunking the data sets and
solving smaller quadratic problems to deal with mem-
ory storage problems resulting from large training
sets[10]. However, it still uses the quadratic program-
ming solvers for the basic optimization. The idea of
using a non-linear kernel on top of the Adatron al-
gorithm to obtain the Kernel-Adatron algorithm for
solving the support vector classi�cation problem has
been proposed in [7] in parallel to our work. However,
in the initial implementations[7], they do not consider
bias nor soft margin classi�ers. In later modi�cations
[8], the authors talk of an implementation of bias and
soft margin which is conceptually di�erent from our
method. Based on the same idea of applying the Ada-
tron method to SVM, in this work, by exploiting an
alternate formulation for the bias term in the classi-
�er, we derive a sequential gradient ascent type learn-
ing algorithm which can maximize the margins for the
quadratic programming problem in high-dimensional
feature space and provide very fast convergence in
terms of number of iterations to the optimal solution
within particular analytically derived bounds of the
learning rate. We look at theoretical implications of
the modi�cation of the cost function and derive con-
ditions that are necessary to obtain optimal class sep-

1

Sethu Vijayakumar
Proc. International Conference on Soft Computing (SOCO'99), Genoa, Italy, pp.610-619 (1999).

aration. Experimental results on benchmark datasets
have shown that the algorithm provides generalization
abilities equal to the standard SVM implementations
while being orders of magnitude faster. The algorithm
is capable of handling noisy data and outliers through
implementation of the soft classi�er with adaptable
trade-o� parameter. Furthermore, the algorithm has
been extended to provide a fast implementation of
the Support Vector regression, a uni�ed approach to
classi�cation and regression which very few other al-
gorithms have addressed. It should be noted in rela-
tion to the work in Friess et al. [7] that although the
the fundamental idea is the same and �nal algorithm
looks quite similar, there are conceptual di�erences
in the way the bias and soft margin is handled. A
di�erence in the update procedures (clipping) can be
shown to lead to an extended convergence plateau in
[7] resulting in qualitatively similar results but a�ect-
ing the speed of solution and the number of resulting
SVMs.

Section 3 reviews the theoretical framework of the
SVMs and looks at implementation of non-linear de-
cision surfaces. Section 4 provides a new formulation
for the bias and describes the sequential algorithm for
classi�cation along with rigorous justi�cations for it's
convergence. We also perform a theoretically rigorous
analysis on the margin maximization which clari�es
the additional conditions that need to be satis�ed to
obtain a balanced classi�er. Section 5 compares the
learning performance of the proposed method against
other techniques for standard benchmark problems.
Section 6 describes an extension of the algorithm for
implementing SVM regression while Section 7 sum-
marizes the salient features of the proposed method
and looks at future research directions.

3 The classi�cation problem

and Support Vectors

We start by introducing the theoretical underpinnings
of the Support Vector learning. Consider the problem
of classifying data fxi; yig

l
i=1, where xi are the N

dimensional pattern vectors and yi 2 f�1; 1g are the
target values.

3.1 The linearly separable case

We �rst consider the case when the data is linearly
separable. The classi�cation problem can be reformu-
lated as one of �nding a hyperplane f(w; b) = xi�w+b
which separate the positive and negative examples:

xi �w + b � 1 for yi = 1; (1)

xi �w + b � 1 for yi = �1: (2)

which is equivalent to

yi(xi �w + b)� 1 � 0 for i = 1; : : : ; l: (3)

where a � b �
P

i aibi represents the dot product. All
points for which eq.(1) hold lie on the hyperplane
H1 : xi � w + b = 1 with normal w and perpen-

dicular distance from origin dH1
=

(1�b)

kwk
. Similarly,

those points satisfying eq.(2) lie on the hyperplane
H2 : xi � w + b = �1 with distance from the origin

dH2
= (�1�b)

kwk
. The distance between the two canoni-

cal hyperplanes, H1 and H2 is a quantity we refer to
as the margin and is given by :

Margin = jdH1
� dH2

j =
2

kwk
: (4)

There are (in general) many hyperplanes satisfying
the condition given in eq.(3) for a data set that is
separable. To choose one with the best generaliza-
tion capabilities, we try to maximize the margin be-
tween the canonical hyperplanes [5]. This is justi�ed
from the computational theory perspective since max-
imizing margins correspond to minimizing the V-C
dimension of the resulting classi�er [15] and from the
interpretation of attractor type networks in physics,
achieves maximal stability[2].
Therefore, the optimization problem to be solved

becomes

Minimize J1[w] =
1

2
kwk2 (5)

subject to yi(xi �w + b)� 1 � 0; i = 1; : : : ; l:(6)

3.2 The linearly non separable case

In case the data are not linearly separable, as is true
in many cases, we introduce slack variables �i � 0 to
take care of misclassi�cations such that the following
constraint is satis�ed :

yi(xi �w + b)� 1 + �i � 0 for i = 1; : : : ; l: (7)

Here, we choose a tradeo� between maximizing mar-
gins and reducing the number of misclassi�cations by
using a user de�ned parameter C such that the opti-
mization problem looks like :

Minimize J2[w; �i] = (
1

2
kwk2 + C

lX
i=1

�i) (8)

subject to yi(xi �w + b)� 1 + �i � 0; (9)

�i � 0; i = 1; : : : ; l: (10)

We can write this constrained optimization as an
unconstrained quadratic convex programming prob-
lem by introducing Lagrangian multipliers as

Minimize L(w; b; �i;h; r) =
1

2
kwk2 + C

lX
i=1

�i

�

lX
i=1

hi[yi(xi �w + b)� 1 + �i]�

lX
i=1

ri�i (11)

where h = (h1; : : : ; hl) and r = (r1; : : : ; rl) are the
non-negative Lagrange multipliers.

3.3 The dual problem and sparsity of

solution

The optimization problem of eq.(11) can be converted
into a dual problem which is much more easier to
handle[5] by looking at the saddle points of eq.(11).

Maximize LD(h) = (

lX
i=1

hi �
1

2
h �Dh) (12)

subject to

lX
i=1

yihi = 0; (13)

0 � hi � C; i = 1; : : : ; l: (14)

where Dij = yiyjxi � xj .
Solutions to this dual problem is traditionally found

by using standard quadratic programming packages.
Once the optimal multipliers hi are found, the classi-
�er is simply

f(x) = sign(
X
i

hiyixi � x+ b0): (15)

Usually, based on the Kuhn-Tucker optimality condi-
tion, the number of non-zero Lagrange multipliers hi
are much smaller than the number of data and hence,
the kind of expansion for the classi�er given by eq.(15)
is very sparse. The data points corresponding to these
non-zero Lagrangians are referred to as support vec-
tors. The bias term b0 can be found using any support
vector xsv as

b0 = ysv �
X
i2SV

hiyixi � xsv : (16)

3.4 Extension to non-linear decision

surfaces

Obviously, the power of linear decision surfaces are
very limited. SVMs provide a convenient way of ex-
tending the analysis from the input space to a non-
linear feature space by using a high-dimensional map-
ping �(x). Finding a linear separating hyperplane in
this feature space is equivalent to �nding a non-linear
decision boundary in the input space.
It should be noted that the input vectors appear

only in the form of dot products �(xi) ��(xj) in the
dual problem and it's solution. By using the repro-
ducing kernels of a Hilbert space, we can rewrite this

dot product of two feature vectors in terms of the ker-
nel, provided some (non-trivial) conditions are satis-
�ed :

(�(xi) ��(xj)) = K(xi;xj) �
X
k

�k(xi)�k(xj):

(17)
Some common examples of the kernels are the

Gaussian RBF kernels, given as

K(x;x0) � e
�kx�x0

k
2=2�2 (18)

and polynomial kernel of degree d, written as

K(x;x0) � (x � x0 + 1)d: (19)

The use of kernels instead of dot products in the op-
timization provides an automatic implementation of
representing hyperplanes in the feature space rather
than the input space. For further details on SVMs
and use of kernels, the reader is referred to the tuto-
rial by Burges[5].

4 Sequential learning of sup-

port vectors for classi�cation

The main aim of this work is to implement the support
vectors in a fast, simple, sequential scheme. To this
e�ect, we make a slight modi�cation in the problem
formulation.

4.1 An alternate formulation for bias

In the previous sections, the bias has been represented
explicitly using an additional variable b. From now
on, we will use an additional dimension for the pat-
tern vectors such that x0 = (x1; : : : ; xN ; �) and in-
corporate the bias term in the weight vector, w0 =
(w1; : : : ; wN ; b=�), where � is a scalar constant. The
choice of the magnitude of the augmenting factor � is
discussed in Section 4.1.1.
Based on this modi�cation, we write an analogous

optimization problem.

Mininimize L
0(w0

; �i) = (
1

2
kw0k2 + C

lX
i=1

�i)(20)

subject to yi(x
0

i �w
0)� 1 + �i � 0; (21)

�i � 0; i = 1; : : : ; l: (22)

If we look carefully, the margin we are trying to
maximize is slightly di�erent from the original prob-
lem. Instead of maximizing 2

kwk
or minimizing kwk2,

we are minimizing kw0k2 = kwk2 + b
2
=�

2. We now
look at the implications of this approximation.

d
+

d
~

m (0,1)

(0,0)

φ

-

Figure 1: Visualization of the modi�ed margin in
higher dimensional space

Table 1: E�ect of augmenting factor on approxima-
tion quality

Augmenting Factor(�) �(degrees)

0.1 31.823032
0.5 16.999935
1.0 6.831879
2.0 0.977416
5.0 0.275545

4.1.1 E�ect of modi�ed bias formulation on
margin maximization

Here, we look at the implications of the maximizing
a modi�ed margin (refer Section 4.1) which involves
using an input vector augmented with a scalar con-
stant �. For the sake of analysis, let us assume that
the augmenting factor � = 1. Fig. 1 gives a schematic
diagram of a linearly separable classi�cation problem
in a higher dimensional space after the input vector
has been augmented. The margin being maximized
in the original problem with explicit bias, based on
eq.(4), is

d
2 = 1=kwk2: (23)

The modi�ed margin ~
d is the closest distance from the

data points to a hyperplane in the higher dimensional
space passing through the origin. Based on simple
geometry, it can be seen from Fig. 1 that

~
d
2 = d

2 � cos2�: (24)

The angle � satis�es the following relationship:

cos
2
� = 1=(1 +m

2) where m = b=kwk (25)

Therefore, eqs.(23), (24) and (25) yield an explicit
relationship for the modi�ed margin:

~
d
2 = 1=(kwk2 + b

2): (26)

So, maximizing the modi�ed margin will, in general,
only give an approximate solution of the original op-
timization problem. In case the input dimension is
high, the contribution of the bias term in the margin
1=(kwk2+b

2) is negligible and the approximation will
be very good as con�rmed in our simulation experi-
ments.
From eq.(24), we see that if the angle � (refer Fig.

1) is smaller, the approximation tends to be better.
This can be ensured by augmenting the input vec-
tor by a `larger' number instead of `1'. To prove this
point and also show how good the approximation is,
we carried out simulations on an arti�cial two dimen-
sional linearly separable data set. One data cluster
is randomly generated in the range [�1; 1] � [�1; 1]
with uniform distribution. The other one is obtained
in the same way in the range [1:5; 3:5]� [1:5; 3:5]. It is
easy to see that the normal of the optimal classifying
hyperplane w� can be obtained in the following way:
Select a pair of data points, say x1 and x2, from dif-
ferent clusters such that the distance between them
is the minimum among all such pairs. w

� can then
be expressed as w� = (x2 � x1)=kx2 � x1k. Let the
solution achieved through SVMseq be w. The angle
� between w and w

�, which indicates how good the
approximation is, can be written as

� = arccos
w �w�

kwk
: (27)

Table 1 compares the e�ect of the augmenting factor
(�) on the approximation quality. We see that the
approximation improved vastly with the increase of
the magnitude of the augmenting factor. The simula-
tions used a �xed set of 50 data points for the exper-
iments. In practice, however, there is a tradeo� re-
sulting from increasing the augmenting factor. Large
augmenting factor will normally lead to slower conver-
gence speeds and instability in the learning process.
An appropriate solution is to choose an augmenting
factor having the same magnitude as the input vector.
However, while using the non-linear kernels, the e�ect
of the augmenting factor is not directly interpretable
as above and depends on the exact kernels we use.
We have noticed that setting the augmenting term to
zero (equivalent to neglecting the bias term) in high
dimensional kernels gives satisfactory results on real
world data.

4.1.2 Obtaining a balanced classi�er

In the case when the data is linearly separable, a bal-
anced classi�er is de�ned as the hyperplane (f(w; b) =

x�w+b = 0) that lies in the middle of the two clusters,
or more precisely, the bias term b is given as:

b = �
1

2
(x+i �w + x

�

i �w); (28)

where x+i and x�i are any two support vectors from
the two clusters, respectively. Certainly, a balanced
classi�er is superior to an unbalanced one. For the
original problem, a balanced classi�er is automatically
obtained. However, while maximizing the modi�ed
margin, it is no longer the case. A constraint on the
magnitude of w needs to be satis�ed.
Suppose there is an unbalanced classi�er f(w0

; b
0).

Without loss of generality, we assume it is closer to
the negative cluster, that is,

x
+

i �w0 + b
0 = c; c > 1

x
�

i �w0 + b
0 = �1:

It is easy to check by using the transformation w� =
2

1+c
w
0 and b

� = 2

1+c
b
0 + 1�c

1+c
that we can get a bal-

anced classi�er f(w�
; b

�) parallel to the unbalanced
one :

x
+

i �w� + b
� = 1;

x
�

i �w� + b
� = �1:

So, we can construct a family of parallel classi�ers
parameterized by c, for c � 1 in the following way:

w(c) =
1 + c

2
w
�
; (29)

b(c) =
1 + c

2
b
� �

1� c

2
; (30)

such that

x
+

i �w(c) + b(c) = c; c > 1 (31)

x
�

i �w(c) + b(c) = �1: (32)

Here, f(w(1); b(1)) gives the balanced classi�er, which
corresponds to c = 1 and f(w�

; b
�). For c > 1, an un-

balanced classi�er closer to the negative cluster is ob-
tained. We will, for the sake of simplicity, assume the
augmenting factor to be 1. Then, SVMseq minimizes
kwk2 + b

2. So, when

L(c) = kw(c)k2 + b(c)2 (33)

takes the minimum value at c = 1, SVMseq will pro-
vide a balanced classi�er. Calculating the derivative
of L(c) with respect to c, we have

dL(c)

dc

=
1 + c

2
[kw�k2�

1

(1 + c)2
]+

1 + c

2
[b�+

c

1 + c

]2:

(34)

Note that since c � 1, kw�k2 > 1

4
ensures dL(c)

dc
> 0,

for any c. So, kw�k2 >
1

4
is the suÆcient condi-

tion that a balanced classi�er will be obtained in our

method. In practice, this is easy to satisfy by just
scaling the input data to smaller values, an automatic
result of which leads to larger magnitudes of w.
Working along the lines of Section 3.3, and solv-

ing for the hyperplane in the high dimensional fea-
ture space, we can convert the modi�ed optimization
problem of eq.(20) into a dual problem:

Maximize L
0

D(h) = (
X
i

hi �
1

2
h �D0

h) (35)

subject to 0 � hi � C; i = 1; : : : ; l: (36)

(37)

where D
0

ij = yiyjK(xi;xj) + �
2
yiyj . Here, in the

non-linear case, we augment the input vector with an
extra dimension in the feature space, i.e., �(x0) =
(�(x) �)T . The resultant non-linear classi�er is com-
puted as

f(x) = sign(
X
i2SV

hiyiK(xi;x) + hiyi�
2): (38)

For the sake of clarity, we will stop using the `dash'
notation and from now on assume that vectors x and
matrix D refers to the modi�ed input vector aug-
mented with the scalar � and modi�ed matrix, respec-
tively, as described in the beginning of this section.

4.2 SVMseq for classi�cation

In this section, we provide the pseudocode for the
sequential learning algorithm. The algorithm, on
convergence, provides the optimal set of Lagrange
multipliers hi for the classi�cation problem in high-
dimensional feature space which corresponds to the
maximum of the cost function (35).

Sequential Algorithm for Classi�cation

1. Initialize hi = 0. Compute matrix [D]ij =
yiyj(K(xi;xj) + �

2) for i; j = 1; : : : ; l.

2. For each pattern, i=1 to l, compute

2.1 Ei =
Pl

j=1 hjDij .

2.2 Æhi = minfmax[(1�Ei);�hi]; C � hig:

2.3 hi = hi + Æhi.

3. If the training has converged, then stop else goto
step 2.

Here, refers to the learning rate, theoretical
bounds for which will be derived in the following anal-
ysis. The kernel K(x;x0) can be any function which
satis�es the Mercer's condition[6]
Z Z

K(x;y)f(x)f(y)dxdy � 0;_� f 2 L
2
; (39)

examples of which are the Gaussian and polynomial
kernels given in Section 3.4. We can check for the
convergence of the algorithm either by monitoring the
updates of each Lagrange multiplier Æhi or by looking
at the rate of change of the cost function, �L0

D, which
can be written as

�L0

D = Æh
t
i(1�E

t
i �

1

2
DiiÆh

t
i) (40)

as shown in Section 4.3.2.

4.3 Rigorous proofs on convergence

Now we prove the learning algorithm can indeed �nd
the optimal solution of the dual problem given by
eq.(35). The proof involves showing that the con-
straint of eq.(36) is always satis�ed and that the al-
gorithm will converge to the global maximum of the
cost function given by eq.(35).

4.3.1 The constraint (36) is always satis�ed
during the learning process

For all the possible updates of hi, we have

1. If Æhti = C � h
t
i; then, h

t+1
i = h

t
i + Æh

t
i = C.

2. If Æhti = maxf(1�E
t
i);�h

t
ig;

then,ht+1i = h
t
i + Æh

t
i � h

t
i � h

t
i = 0.

Since, in this case C�h
t
i � maxf(1�E

t
i);�h

t
ig;

hence, ht+1i � h
t
i + C � h

t
i = C

So, for any initial values of h0i , h
1

i will satisfy the
constraint (36) after just one step learning and will
maintain this property forever.

4.3.2 The learning process will monotonically
increase L

0

D(h) and stop when a local
maximum is reached

De�ne a � maxfigDii. We prove that for the learning
rate bounded by 0 < < 2=a, L0

D(h) will monotoni-
cally increase during the learning process.

�L0

D = L
0

D(h
t
i + Æh

t
i)� L

0

D(h
t
i)

= Æh
t
i �

1

2

X
j

h
t
jDjiÆh

t
i �

1

2

X
j

Dijh
t
jÆh

t
i

�
1

2
Dii(Æh

t
i)
2
:

Since Dij = Dji and
P

j Dijh
t
j = E

t
i , we have

�L0

D = Æh
t
i(1�E

t
i �

1

2
DiiÆh

t
i): (41)

Now, considering the three possible updates of Æhti:

Case 1: Æhti = (1�E
t
i)

�L0

D = (1�E
t
i)
2(�

1

2
D
0

ii
2)

� (1�E
t
i)
2(�

1

2
a

2) � 0

Case 2: Æhti = �hti
This case arises only when �hti � (1�E

t
i). Re-

member h
t
i � 0, which implies E

t
i � 1 in this

case. Substituting Æhti in eq.(41), we get

�L0

D = �hti(1�E
t
i +

1

2
Diih

t
i) (42)

Notice that

1�E
t
i +

1

2
Diih

t
i � 1�E

t
i +

1

2
Dii(E

t
i � 1)

� (1�E
t
i)(1�

1

2
Dii) � 0 (43)

So, from eqs.(42) and (43) �L0

D � 0.

Case 3: Æhti = C � h
t
i

This case arises only when C � h
t
i � (1 � E

t
i).

Remember hti � C, which implies Et
i � 1 in this

case. Therefore,

�L0

D = (C � h
t
i)[1�E

t
i �

1

2
Dii(C � h

t
i)]

� (C � h
t
i)[1�E

t
i �

1

2
Dii(1�E

t
i)]

� (C � h
t
i)(1�E

t
i)(1�

1

2
Dii) � 0:

So for all the three possible values of Æhi, L
0

D(h) will
monotonically increase and stop when a local maxi-
mum is reached. In the following we will show that
the local maximum is also the global one.

4.3.3 Every local maximum is also the global
one

Since
P

ij hiDijhj = (
P

i hiyixi) � (
P

i hiyixi) � 0

for any h, D is a semide�nite matrix, and L
0

D(h) is a
convex function. For the linear constraints that arises
in this optimization problem, we show that each local
maximum is equivalent to the global one. Suppose h1
is a local maximum point, while h2 is the global maxi-
mum which has a larger value, i.e., L0

D(h2) > L
0

D(h1).
We can construct a straight line connecting h1 and
h2, which is parameterized as (1 � �)h1 + �h2, for
0 � � � 1. Since the constraints are linear, all the
data points on the line are feasible solutions. On
the other hand, since L

0

D(h) is a convex function,
L
0

D(h(�)) � (1 � �)L(h1) + �L
0

D(h2). For � > 0,
L
0

D(h(�)) > L
0

D(h1), which contradicts the assump-
tion that h1 is a local maximum. So h1 must also be
the global maximum solution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ : Gaussian kernel parameter

E
rr

or
 (

in
 p

er
ce

nt
ag

e
of

 d
at

a)

SONAR classification benchmark

generalization error
training error

(a)

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

sigma = 0.3

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

sigma = 0.6

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

No. of training epochs

G
en

er
al

iz
at

io
n

er
ro

r

sigma = 0.7

(b)

Figure 2: Sonar data classi�cation using SVMseq: (a) Training and generalization error obtained using various
Gaussian kernel parameter (b) Generalization error vs the number of training epochs plotted for three di�erent
kernel parameters

Sections 4.3.1, 4.3.2 and 4.3.3 combined completes
the proof of convergence. The analysis also gives us
a theoretical upper bound on the learning rate to be
used :

 � 2=max
fig

Dii: (44)

5 Experimental results

We now proceed to look at some experimental clas-
si�cation results using the SVMseq algorithm. The
aim of this section is to demonstrate that the SVM-
seq algorithm is capable of achieving the high lev-
els of generalization capability boasted by the SVM
kind of classi�ers and it does so with much lesser
amounts of computation besides being robust to pa-
rameter choices in a broad range. We use benchmark
problems reported in [7] as well some others. Results
for the the case without bias are similar but are im-
proved by introducing bias and soft margin as done in
our modi�ed formulation. Moreover, in our method
the �xing of learning rates and open parameters have
a �rm theoretical basis as an o�-shoot of the rigorous
theoretical analysis.
Here, we give examples of using RBF and polyno-

mial type non-linear decision boundaries. The learn-
ing rate is �xed to 1:9=maxfigDii based on eq.(44)
and the convergence of the algorithm is determined by
looking at a trace of the cost function which is easily
computed using eq.(40).

5.1 Sonar classi�cation benchmark

We consider a benchmark problem to classify the
sonar data set of 208 patterns representing metal
cylinders(mines) and rocks[9]. Each of the patterns

Table 2: Sonar classi�cation: Gorman and Se-
jnowski's result with standard NNs using BP algo[9]

#hidden 0 2 6 12 24
%gen. 73.1 85.7 89.3 90.4 89.2

Table 3: Sonar classi�cation: Gen. error and compu-
tational cost for standard SVM and SVMseq

ALGO Epoch %gen.(#Errors) FLOPS
SVM - 93.3% (7) 6:8� 109

SVMseq 10 93.3% (7) 383520
SVMseq 50 95.2% (5) 1917600
SVMseq 130 95.2% (5) 4985760

has 60 input dimensions and the aspect-angle depen-
dent data set has been split into a training set and
testing set of 104 patterns each as recommended by
Gorman and Sejnowski[9]. We use a Gaussian RBF
kernel (refer Section 3.4) with various values of the
variance parameter � in our non-linear implementa-
tion.

Tables 2 and 3 compares the generalization perfor-
mance of our method with the BP trained NNs of
Gorman and Sejnowski [9] (upto 24 hidden units and
300 epochs through training data) and the standard
SVM method on the lines of the analysis in Friess
et al.[7]. The values shown are obtained with pa-
rameters � = 0:6 and C = 50. The generalization
performance achieved by SVMseq is superior to the
NN based method (Table 2) while it is similar to the
standard SVM. However, the SVMseq is orders faster
than the standard SVM as is reected through the
FLOPS comparison in MATLAB (Table 3). The last
row (epochs=130) is when the algorithm detected con-
vergence.

We also plot the evolution of the generalization and

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

Number of training epochs

E
rr

or
(%

 o
f d

at
a)

USPS database classification

training error
generalization error

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

Number of training epochs

C
os

t f
un

ct
io

n

normalized cost function

(a)

5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

Number of training epochs

E
rr

or
(%

 o
f d

at
a)

MNIST database classification

training error
generalization error

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Number of training epochs

C
os

t f
un

ct
io

n

normalized cost function

(b)

Figure 3: Handwritten character recognition : Training, generalization error and the cost function trace with
number of training epochs for (a) USPS 16� 16 pixel database (b) MNIST 28� 28 pixel database.

Table 4: USPS dataset two-class classi�cation comparisons: number of test errors (out of 2007 test patterns)

Digits 0 1 2 3 4 5 6 7 8 9

classical RBF 20 16 43 38 46 31 15 18 37 26
Optimally tuned SVM 16 12 25 24 32 24 14 16 26 16
SVMseq (poly.deg.=3) 19 14 31 29 33 30 17 16 34 26
SVMseq (poly.deg.=4) 14 13 30 28 29 27 14 16 28 19
SVMseq (RBF:�=3.5) 11 7 25 24 30 25 17 14 24 14

training error for various values of the kernel param-
eter in Fig.2(a). It is noted that generalization error
is at in a fairly broad region of the parameter space.
Fig.2(b) shows that the algorithm has very fast con-
vergence speed(in terms of training epochs) if we are
in the region with an approximately correct kernel
parameter.

5.2 USPS and MNIST handwritten

character classi�cation

The next classi�cation task we considered used the
USPS database of 9298 handwritten digits (7291 for
training, 2007 for testing) collected from mail en-
velopes in Bu�alo[11]. Each digit is a 16� 16 vector
with entries between -1 and +1. Preprocessing con-
sists of smoothing with a Gaussian kernel of width
� = 0:75. We used polynomial kernels of third and
fourth degree and RBF kernels to generate the non-
linear decision surface.
Here, we consider the task of two-class binary clas-

si�cation, i.e. separating one digit from the rest of
the digits. Table 4 shows comparisons of the general-
ization performance of the SVMseq using polynomial
and RBF kernels against the optimally tuned SVM
with RBF kernels (performance reported in Scholkopf

et al.[13]) and classical RBF networks. We see that
inspite of absolutely no tuning of parameters, SVM-
seq achieves much better results than classical RBF
and comparable results to that of best tuned standard
SVMs.
Fig.3(a) shows a typical learning performance, in

this case for the classi�cation of digit `0', using SVM-
seq. The training error drops to zero very fast(in a
few epochs) and the test error also reaches a low of
around .7% which corresponds to an average of about
14 test errors. The plot of the cost function L

0

D(h),
which is an indicator of algorithm convergence, is also
shown to reach the maximum very quickly.

6 SV regression and it's sequen-

tial implementation

In this section we will proceed to show how the idea
can be extended to incorporate SVM regression. The
basic idea of the SV algorithm for regression estima-
tion is to compute a linear function in some high di-
mensional feature space (which possesses a dot prod-
uct) and thereby, compute a non-linear function in the
space of the input data. Working in the spirit of the
SRM principle, we minimize empirical risk and maxi-

mize margins by solving the following constrained op-
timization problem[16]:

Min. J(�; ��;w) =
1

2
kwk2 + C(

lX
i=1

�i +
X
i=1l

�
�

i) (45)

subject to yi �w � xi � �+ �
�

i ; i = 1; : : : ; l (46)

w � xi � yi � �+ �i; i = 1; : : : ; l (47)

�i; �
�

i � 0; i = 1 : : : ; l: (48)

Here, x refers to the input vector augmented with the
augmenting factor � to handle the bias term, �i; �

�

i are
the slack variables and � is a user de�ned insensitivity
bound for the error function[16]. The corresponding
modi�ed dual problem works out to be:

Max. JD(�; �
�) = �

1

2

lX
i;j=1

(��i � �i)(�
�

j � �j)xi � xj

� �

lX
i=1

(�i + �
�

i) +

lX
i=1

yi(�
�

i � �i) (49)

subject to 0 � �i; �
�

i � C; i = 1; : : : ; l; (50)

where �i; �
�

i are non-negative Lagrange multipliers.
The solution to this optimization problem is tradition-
ally obtained using quadratic programming packages.
The optimal approximation surface using the modi-
�ed formulation, after extending the SVM to nonlin-
ear case, is given as

f(x) =

lX
i=1

(��i � �i)(K(xi;x) + �
2): (51)

As in the classi�cation case, only some of the coeÆ-
cients (��i � �i) are non-zero, and the corresponding
data points are called support vectors.

6.1 SVMseq algorithm for regression

We extend the sequential learning scheme devised
for the classi�cation problem to derive a sequential
update scheme which can obtain the solution to the
optimization problem of eq.(49) for SVM regression.

Sequential Algorithm for Regression

1. Initialize �i = 0; ��i = 0. Compute [R]ij =
K(xi;xj) + �

2 for i; j = 1; : : : ; l.

2. For each training point, i=1 to l, compute

2.1 Ei = yi �
Pl

j=1(�
�

i � �i)Rij .

2.2 Æ�
�

i = minfmax[(Ei � �);���i]; C � �
�

i g:
Æ�i = minfmax[(�Ei � �);��i]; C � �ig:

2.3 �
�

i = �
�

i + Æ�
�

i :

�i = �i + Æ�i:

3. If the training has converged, then stop else goto
step 2.

Similar to the classi�cation case, any non-linear
kernel satisfying the Mercer's condition can be used.
We have rigorously proved the convergence of the al-
gorithm for the regression case, a result which will
be part of another publication with detailed experi-
mental evaluations of benchmark regression problems.
Here, the user de�ned error insensitivity parameter �
controls the balance between the sparseness of the so-
lution and the closeness to the training data. Recent
works on �nding the asymptotical optimal choice of
�-Loss [14] and soft �-tube [12] give theoretical foun-
dations for the optimal choice of the �-loss function.

7 Discussion and concluding re-

marks

By modifying the formulation of the bias term, we
were able to come up with a sequential update based
learning scheme which solves the SVM classi�cation
and regression optimization problems with added ad-
vantages of conceptual simplicity and huge computa-
tional gains.

� By considering a modi�ed dual problem, the
global constraint in the optimization problem,P

i hiyi = 0, which is diÆcult to be satis�ed in a
sequential scheme is circumvented by absorbing
it into the maximization functional.

� Unlike many other gradient ascent type algo-
rithms, the SVMseq is guaranteed to converge
(essentially due to the nature of the optimiza-
tion problem) very fast in terms of the training
epochs. Moreover, we have derived a theoretical
upper bound for the learning rate, hence, ensur-
ing that there are very few open parameters to
be handled.

� The algorithm has been shown to be computa-
tionally more eÆcient than conventional SVM
routines through comparisons of the computa-
tional complexity in MATLAB routines. More-
over, in the proposed learning procedure, non-
support vector Lagrangian values go exactly to
zero as opposed to numerical round-o� errors
that are characteristic of quadratic optimization
routine packages.

� The algorithm also deals with noisy data by im-
plementing soft classi�er type decision surfaces
which can take care of outliers. Most impor-
tantly, the algorithm has been extended to han-
dle the SVM for regression under the same gen-
eral framework, something which very few other
speed up techniques have considered.

� The SVM paradigm in the regression domain pro-
vide an automatic complexity and model order
selection for function approximation - a char-
acteristic that should favor these techniques to
standard RBF, Neural Network or other para-
metric approaches.

In addition, this work looks at implications of re-
formulation of the bias by using the augmenting fac-
tor from a geometric point of view and interprets the
e�ects seen in simulation results theoretically. The
choice of the augmenting factor is also discussed.
Moreover, the conditions for obtaining a balanced
classi�er, which is simple but conceptually important,
is also derived.

The proposed algorithm is essentially a gradient as-
cent method in the modi�ed dual problem by using
extra clipping terms in the updates to satisfy the lin-
ear constraints. It is well known that the gradient as-
cent/descent may be trapped in a long narrow valley
if the Hessian matrix (in our context, the matrices D
or R in the dual problem) has wide spread eigen val-
ues. In our future work, we will work on implement-
ing more advanced gradient descent methods, like the
natural gradient descent of Amari[1], to overcome this
prospective problem.

Acknowledgements

We would like to thank Prof. Shunichi Amari and Dr.
Noboru Murata for constructive suggestions. The au-
thors acknowledges the support of the RIKEN Brain
Science Institute for funding this project.

References

[1] S. Amari. Natural gradient works eÆciently in
learning. Neural Computation, 10(2):251{276,
1998.

[2] J.K. Anlauf and M. Biehl. The Adatron: an
adaptive perceptron algorithm. Europhysics Let-
ters, 10(7):687{692, 1989.

[3] P. Barlett and J. Shawe-Taylor. Generaliza-
tion performance of support vector machines
and other pattern classi�ers. In B. Scholkopf,
C. Burges, and A. Smola, editors, Advances in

Kernel Methods - Support Vector Learning. MIT
Press, 1998.

[4] B. Boser, I. Guyon, and V. Vapnik. A train-
ing algorithm for optimal margin classi�ers. In
Proceedings, Fifth Annual Workshop on Compu-

tational Learning Theory. ACM Press, 1992.

[5] C.J.C. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data Mining and

Knowledge Discovery, 1998. (In press.).

[6] C. Cortes and V. Vapnik. Support vector net-
works. Machine Learning, 20:273{297, 1995.

[7] T.T. Friess, N. Cristianini, and C. Campbell.
The kernel adatron algorithm: A fast and simple
learning procedure for support vector machines.
In Proceedings, 15th Intl. Conference on Machine

Learning. Morgan-Kaufman, 1998.

[8] T.T. Friess and R.F. Harrison. Support vector
neural networks: The kernel adatron with bias
and soft margin. Technical Report 752, The Univ
of SheÆeld, Dept. of ACSE, 1998.

[9] R.P. Gorman and T.J. Sejnowski. Finding the
size of a neural network. Neural Networks, 1:75{
89, 1988.

[10] T. Joachims. Making large scale SVM learn-
ing practical. In B. Scholkopf, C. Burges, and
A. Smola, editors, Advances in Kernel Methods -

Support Vector Learning. MIT Press, 1998.

[11] Y. LeCun, B. Boser, J.S. Denker, D. Hender-
son, R.E. Howard, W. Hubbard, and L.J. Jackel.
Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1:541{551,
1989.

[12] B. Scholkopf, P. Bartlett, A.J. Smola, and
R. Williamson. Support vector regression
with automatic accuracy control. In Proceed-

ings, Intl. Conf. on Arti�cial Neural Networks

(ICANN'98), volume 1, pages 111{116. Springer,
1998.

[13] B. Scholkopf, K. Sung, C. Burges, F. Girosi,
P. Niyogi, T. Poggio, and V. Vapnik. Compar-
ing Support Vector Machines with Gaussian ker-
nels to radial basis function classi�ers. A.I.Memo
1599, M.I.T. AI Labs, 1996.

[14] A.J. Smola, N. Murata, B. Scholkopf, and K.-
R. Muller. Asymptotically optimal choice of �-
loss for support vector machines. In Proceed-

ings, Intl. Conf. on Arti�cial Neural Networks

(ICANN'98), volume 1, pages 105{110. Springer,
1998.

[15] V. Vapnik. Statistical Learning Theory. John
Wiley and Sons,Inc.,New York, 1997.

[16] V. Vapnik, S.E. Golowich, and A. Smola. Sup-
port vector method for function approximation,
regression estimation and signal processing. In
Advances in Neural Information Processing Sys-

tems, volume 9, pages 281{287, 1997.

