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Abstract— When traversing uneven terrain, humans consider
their future steps for choosing the best location and timing of
their current step. Likewise, when planning multi-contact mo-
tions for legged robots (e.g. humanoids), a ‘prediction horizon’
has to be considered. However, planning several steps ahead
increases the dimensionality and non-linearity of an already
challenging problem, which makes online planning intractable.
We propose to reduce the problem complexity by using convex
relaxations in the prediction horizon. We realize this idea
within a Receding Horizon Planning (RHP) framework to
plan dynamically consistent centroidal trajectories of humanoid
walking on uneven terrain. This results in a novel formulation
that combines an accurate non-convex model with a relaxed
convex model, which we call RHP with multiple levels of model
fidelity. We evaluate three candidate multi-fidelity RHPs with
convex relaxations of the centroidal dynamics in the prediction
horizon. The best candidate is 1.4x-3.0x (average 2.4x) faster
than the traditional RHP that employs a single dynamics
model over the entire look-ahead horizon. We also validate
the resultant centroidal trajectories by tracking them with a
whole-body inverse dynamics controller in simulation. Lastly,
we find that incorporating angular dynamics in the prediction
horizon is important to the success of multi-fidelity RHP.

I. INTRODUCTION

We consider the problem of planning the motion of legged
robots (e.g. humanoids) on uneven terrain under the frame-
work of multi-contact motion planning. This problem is high-
dimensional, non-linear and subject to discrete changes in the
dynamics due to the making and breaking of contacts [1],
[2], [3], [4], [5], [6]. Traditionally, multi-contact motions
from a start position to a goal are pre-planned offline and
then tracked by a controller [2], [7], [8], [9], [10]. However,
due to imperfect control, state estimation errors and other
unforeseen perturbations that inevitably happen in the real
world, pre-planned motions can become invalid during their
execution. Hence, online motion re-planning is often required
to adapt to these perturbations. To facilitate reliable locomo-
tion in challenging environments, our long term objective is
to provide robots with the capability to re-plan online multi-
contact motions.

Towards this end, local re-planning strategies—such as
Receding Horizon Planning (RHP) [11]—can be a promising
approach. Similar to Model Predictive Control (MPC) [12],
[13], [14], [15], [16], RHP framework constantly plans online
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Fig. 1: Snapshots of our simulations (video available in
https://youtu.be/3FjKPmnYxvU). The centroidal trajectory is
generated from our multi-fidelity RHP framework and then
tracked by a whole-body inverse dynamics controller.

a few steps ahead of the current state and then partially
executes the motion plan with a controller. The motion plan
is usually computed by solving a finite-horizon Trajectory
Optimization (TO) problem [17]. For RHP frameworks,
having a look-ahead horizon with sufficient length is crit-
ical [18]. This is because the prediction of the future can
guide the immediate actions for execution to avoid short-
sighted decisions (e.g. causing the robot to fall, unable to
traverse gaps or the solver getting stuck in a local minima).

RHP usually plans over the entire look-ahead horizon
with a single dynamics model that captures the system
dynamics as accurately as possible. This results in expensive
computation, especially for planning multi-contact motions
on uneven terrain, where complex dynamics (usually non-
convex) needs to be considered.

To improve the computation efficiency of RHP for multi-
contact motions, we explore the possibility to relax the
complexity of the model along the look-ahead horizon. We
split the look-ahead horizon into execution horizon that
considers the first few steps of the motion (to be executed),
and prediction horizon that regards the remaining steps of
the motion (not executed). Although the execution horizon
needs to be planned accurately, we hypothesize that the



prediction horizon can instead use simplified models to guide
the decisions of the execution horizon. This results in a novel
type of RHP formulation for planning multi-contact motions
on uneven terrain, where appropriate selection of contact
locations and timings are critical. In this work, we call this
formulation as RHP with Multiple Levels of Model Fidelity.

Recently a similar approach [19] has successfully been
demonstrated for quadrupedal locomotion and humanoid
running on flat surfaces. Our work focuses on computing
centroidal trajectories [20] for the humanoid robot Talos [21]
walking on multi-contact scenarios, where the contact sur-
faces can be non-coplanar. In this context, the quality of
the angular dynamics approximation significantly impacts the
performances of the framework. We thus propose and com-
pare three candidate multi-fidelity RHPs that each relies on a
different approximation of the dynamics. In our experiments,
the best candidate is 1.4x-3.0x (average 2.4x) faster than the
baseline (traditional single-fidelity RHP). This is achieved
by employing a convex relaxation based on [22], [23] in
the prediction horizon. Although the optimal cost of the
resultant trajectories is higher, we show that these centroidal
trajectories can be successfully tracked by a whole-body
inverse dynamics controller [24] in simulation.

Our main contribution is the introduction and comparison
of several RHP formulations with multiple levels of model
fidelity for planning dynamically consistent centroidal tra-
jectories of humanoid walking in challenging multi-contact
scenarios. These formulations feature convex relaxation of
the system dynamics in the prediction horizon that allow
faster computation than the traditional formalism. Besides,
our investigation suggests that considering angular dynamics
in the prediction horizon is vital to the success of RHP.

II. RELATED WORK

Planning multi-contact motions in challenging environ-
ments (i.e. non-horizontal surfaces) necessarily requires the
consideration of the whole-body dynamics of the robot.
Such models consider the mass and inertia of every link
and relates the joint torques to base and joint accelerations.
In the past, impressive motions were demonstrated using
this model within TO [1], [25], [26], [27], [28], [29], [30].
However, given their high-dimensionality and non-convexity,
these approaches are usually computationally challenging for
RHP unless contact timings and locations are fixed [12].

An alternative for multi-contact motion planning is to
use a centroidal model [20]. The centroidal model is low-
dimensional as it only considers the dynamics of the total
linear and angular momenta expressed at the Center of
Mass (CoM). Further, approximations are introduced on the
geometric constraints of the robot and on the momentum
variation, which results from the motion of each individual
rigid body of the robot. While these approximations can lead
to failures to achieve a corresponding whole-body motion,
centroidal model is widely used for generating multi-contact
motions [31], [32], [33], [34], [35], [36], [37] due to its
reduced dimensionality. Unfortunately, the centroidal model

is non-convex1 except when strong limiting assumptions
(e.g. pre-defined gait, flat/co-planar surfaces) are made [38],
[39], [40], which makes efficient resolution of TO problems
challenging.

To improve the computational efficiency, two families of
approaches have been proposed. The first family comprises
conservative approaches that look for a solution in a sub-
set of all possible trajectories [37], [41], [42]. Although
fast computations are demonstrated, these methods usually
assume pre-defined contact locations and/or timings, which
limits their flexibility. In contrast, our approach only assumes
the sequence of the contact surfaces where the swing foot
will land on, while we simultaneously optimize centroidal
trajectories, contact locations and contact timings.

The second family introduces convex relaxations [22],
[23], [43], [8]. Despite the fact that the model complexity is
dramatically reduced, a potential issue is that these methods
may generate motions with significant violations of the angu-
lar dynamics constraint. Although it is possible to gradually
tighten the convex relaxation using iterative schemes, this
may require the design of customized solvers [22], [23]. In
our work, we propose a multi-fidelity RHP approach where,
in a single optimization formulation, a high-fidelity model is
employed in the execution horizon and a low-fidelity model
in the prediction horizon. This formulation is straightforward
and can be interfaced directly with off-the-shelf solvers.
Also, the combination of the high-fidelity and the low-fidelity
models can ensure the dynamic consistency of the motion
to be executed, while at the same time facilitate efficient
computation.

A similar framework to the one we propose was introduced
recently by [19]. The authors present a MPC framework
based on Differential Dynamic Programming (DDP) that
combines whole-body dynamics and a non-convex model
with reduced order (single-rigid body model [2], [34]) in
a single formulation. Successful MPC of 2D quadrupedal
locomotion and humanoid running has been demonstrated
on flat surfaces. In contrast, the emphasis of our work is
RHP of centroidal trajectories for uneven-terrain locomotion
of humanoid robots. This problem requires careful selection
of contact locations and timings to modulate the centroidal
momenta. In this regard, the simplified model applied in
the prediction horizon need to be carefully designed, as the
quality of the model can significantly affect the performance
of the framework. Further, instead of searching for non-
convex models with reduced order, we focus on finding
appropriate convex relaxations for the prediction horizon.

III. RATIONALE

Traditional RHP (see Fig. 2-a) employs a single-fidelity
model over the entire look-ahead horizon; in contrast, our
multi-fidelity RHP (Fig. 2-b) aims to obtain a computa-
tionally efficient TO formulation by relaxing the dynamic
constraints of our model along the look-ahead horizon.

1The centroidal model is non-convex due to the bilinear terms that arise
from the cross product operation.
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Fig. 2: Complexity comparison between traditional RHP and
our multi-fidelity RHP. We use orange to denote higher com-
putation complexity, while green means lower computation
complexity. Our multi-fidelity RHP formulation has reduced
complexity due to the introduction of convex relaxations in
the prediction horizon.

More specifically, we employ an accurate model of the
system (in our case, centroidal model) in the execution
horizon. This is to ensure that in each RHP cycle, the
motion for execution is dynamically consistent. Further, in
the prediction horizon, we introduce a convex relaxation
of the centroidal model. In this work, we explore and test
three convex relaxations. The resultant TO problems are
partially non-convex, and can be efficiently solved by off-
the-shelf Non-Linear Programming (NLP) solvers. We use
the following definitions and assumptions:

• We focus on the humanoid walking, where a step
consists of three contact phases: i) Pre-Swing (Double
Support) ii) Swing (Single Support) iii) Landing (Dou-
ble Support). This gives rise to a multi-phase TO formu-
lation, where the active contacts in each phase establish
phase-specific constraints (dynamics and kinematics).

• We do not consider impact dynamics (e.g. state jumps
when making contacts) in our formulation. This as-
sumption is reasonable for the walking gait, as the feet
can have near-zero touch-down velocity, which creates
negligible impacts.

• We define the execution horizon to always cover a one-
step motion plan, while the prediction horizon can look
ahead for multiple steps.

• The environment is modeled as a set of convex sur-
faces [44]. We pre-specify the sequence of contact

surfaces where the swing foot will land upon a priori,
but the contact locations (within each surface) and the
contact timings are optimized along with the centroidal
trajectory.

• The kinematic constraints of the CoM and relative
positions of active contacts are approximated as convex
polytopes attached to the foot in contact and thus
implemented as linear inequalities. These polytopes are
computed by the method described in [45].

IV. RECEDING HORIZON PLANNING WITH MULTIPLE
LEVELS OF MODEL FIDELITY

In this section, we first formulate the problem of finding a
feasible centroidal trajectory for a humanoid robot as a TO
problem. We then explain how this formulation is adapted in
the context of RHP with multiple levels of model fidelity.

Given a finite look-ahead horizon of n steps, the sequence
of contact surfaces S1, ...,Sn, the current state xcur and a
goal position of the robot xg , the TO computes a motion
plan divided into Nph phases (described in Section III).
The motion plan consists of the following terms2: 1) state
trajectory X = [x{1}, ...,x{Nph}]T of all phases; 2) control
input of all phases U = [u{1}, ...,u{Nph}]T ; 3) contact
locations of all footsteps P = [p{1}, ...,p{n}]T with p ∈ R3;
4) phase switching timings T = [t̃{1}, ..., t̃{Nph}]T . We
use superscript {q} ∈ {1, ..., Nph} to indicate quantities
associated to a phase {q}. In each phase, the state trajectory
and control are further discretized into knots and we use
k ∈ {1, ..., Nk} to denote the knot index. The discretized
formulation is given by:

min
X ,U,T ,P

Nph∑
q=1

J{q}(x{q},u{q}) + φ(xT ) (1a)

s.t. x0 = xcur (1b)
0 ≤ t̃{1} ≤ · · · ≤ t̃{Nph} ≤ Tmax (1c)
∀{i} ∈ {1, ..., n}:

p{i} ∈ Si (1d)
p{i} ∈ R{i−1} (1e)

∀{q} ∈ {1, ..., Nph},∀k ∈ {1, ..., Nk}:
c
{q}
k ∈ Kl, ∀l ∈ C{q} (1f)

x
{q}
k+1 = f

{q}
dyn(x

{q}
k ,u

{q}
k ), (1g)

where c ∈ R3 is the CoM position, φ(xT ) = (xT −xg)2 is
the terminal cost which encourages the robot to approach a
user-defined goal position xg , and J{q} is the running cost
for each phase which is a function of state and control.

The control input in our formulation is defined as the
collection of all contact forces u = [f1, ...,fNc

]T , where
f ∈ R3, Nc is the total number of contact points of the
robot. The definition of the state vector x in each phase
depends on the chosen dynamics model3.

2For simplicity, we do not explicitly write the time dependency of
continuous trajectories (i.e. state trajectory and control input)

3The state vector for centroidal model is x = [c,L]T , while the state
vector of our convex relaxations are x = [c]T .



TABLE I: Knot-wise model complexity of the centroidal
dynamics model and the three convex relaxations.

XXXXXXXXModel
No. of Decision

variables
Non-convex
Constraints

Convex
Constraints

Centroidal Dynamics 36 12 0
Convex (CoM only) 18 0 6

Convex (Rectangular Foot) 78 0 48
Convex (Point Foot) 12 0 12

Constraints are introduced in Eq.(1) as follows: (1b)
constrains the trajectory to start from the current state xcur;
(1c) constrains the phase switching timings to increase
monotonically and bounds the maximum duration by Tmax;
(1d) constrains each contact location p{i} to a pre-specified
contact surface Si = {p ∈ R3,dT

i p = ei, Sip ≤ si};
(1e) constrains each contact location p{i} to stay in the
reachable space R with respect to the other foot p{i−1} and
(1f) constrains the CoM to stay in the reachable space K
established by each stance foot l ∈ C{q}. These reachable
spaces are defined in a matrix form: R = {p ∈ R3,Rp ≤
r}, K = {c ∈ R3,Kc ≤ k}. Lastly, (1g) implements
the system dynamics constraints defined by f

{q}
dyn, which is

realized by one or a combination of the models as described
below. Next, we elaborate on the formulation of the dynamics
constraints (1g) with multiple levels of model fidelity.

1) Single-Fidelity RHP with Centroidal Dynamics (base-
line): The baseline follows the traditional TO paradigm
(See Fig. 2-a), in which we enforce centroidal dynamics con-
straints across the entire look-ahead horizon. The centroidal
dynamics constraints in discrete form with forward Euler
integration are given by:

c
{q}
k+1 = c

{q}
k + ∆

{q}
k ċ

{q}
k , (2a)

ċ
{q}
k+1 = ċ

{q}
k + ∆

{q}
k

(
1

m

∑
c∈C{q}

f
{q}
c,k − g

)
, (2b)

L
{q}
k+1 = L

{q}
k + ∆

{q}
k

∑
c∈C{q}

(pc − c
{q}
k )× f

{q}
c,k , (2c)

where m is the total mass, g is the gravitational acceleration,
L ∈ R3 is the angular momentum, pc and f

{q}
c,k are the

location and force associated to the active contact point c,
∆
{q}
k = (t̃{q} − t̃{q−1})/Nk is the time step. The robot feet

are rectangular and we use one contact force at each vertex
of the rectangle. Contact forces are further constrained by
the linearized friction cone −µf n̂

c ≤ f t̂1,t̂2
c ≤ µf n̂

c , where µ
is the friction coefficient, f n̂

c and f t̂1,t̂2
c respectively denote

the normal and tangential components of the contact force
fc. Further, to encourage a smooth trajectory, we penalize
acceleration and angular momentum in the running cost
J{q} =

∑Nk

k=1[∆
{q}
k (c̈

{q}
k )2 + ∆

{q}
k (L

{q}
k )2].

To increase computational speed, we propose to replace
the exact centroidal dynamics described above with convex
relaxations in the prediction horizon.

2) Linear CoM Dynamics (Candidate 1): Our first can-
didate only considers the linear CoM dynamics defined
by (2a)–(2b). As a result, the state vector reduces to x = [c]T

(a) (b) (c)

Fig. 3: Schematics of models used in the prediction horizon:
a) linear CoM dynamics (Candidate 1); b) convex relaxation
of angular momentum rate dynamics (dashed arrow) with
rectangular contacts (Candidate 2); c) convex relaxation of
angular momentum rate dynamics (dashed arrow) with point
contacts (Candidate 3).

and the running cost only penalizes acceleration J
{q}
1 =∑Nk

k=1 ∆
{q}
k (c̈

{q}
k )2. Further, to remove the non-convexity

introduced by time optimization, we simply fix the phase
switching time t̃{q},∀{q} ∈ [4, Nph] in the prediction
horizon.

3) Convex Relaxation of Angular Momentum Rate Dy-
namics with Rectangular Contacts (Candidate 2): Building
upon the first candidate, the second candidate adds a convex
outer approximation of the angular momentum rate dynamics
based on [22], [23]. Next, we briefly describe the formula-
tion.

In this model, each bilinear term αβ results from the
expansion of the cross product between the lever arm (pc−c)
and the contact force vector fc is reformulated as the
difference between two bounded quadratic terms ψ+ ∈ R
and ψ− ∈ R, along with two convex trust-region constraints
as shown below:

αβ =
1

4
(ψ+ − ψ−), ψ+ ≥ (α+ β)2, ψ− ≥ (α− β)2 (3)

Further, instead of explicitly considering the angular momen-
tum dynamics (2c), we decide to penalize ψ+ and ψ− in the
running cost to minimize the angular momentum rate, along
with the acceleration. An additional benefit is that we avoid
explicit modeling of angular momentum and thus retain a
low-dimensional model with the state vector of x = [c]T .

4) Convex Relaxation of Angular Momentum Rate Dy-
namics with Point Contacts (Candidate 3): To further reduce
the dimensionality of the TO problem, we propose the third
candidate in which we switch the rectangle foot to point foot
and apply the same dynamics modeling as in the second
candidate. As a result, the control input reduces to u =
[fL,fR]T , where fL and fR refers to the contact force vector
of the left and right point foot, respectively. This reduces the
number of auxiliary variables (ψ+ and ψ−) as well as the
associated trust region constraints introduced [22], [23].

To provide an intuition of the complexity of these candi-
date models, we illustrate their schematics in Fig. 3, and
compare their model complexity in terms of dimensionality,
number of non-convex and convex constraints in Table I.
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Fig. 4: (a) Scenario 1: up-and-down hill with 11.3◦ slopes; (b) Scenario 2: V-shape terrain with 13.5◦ slopes; (c) Scenario
3: Rubbles with 11.3◦-13.5◦ slopes; (d)-(f) Accumulated cost of each RHP for scenario 1-3; (g)-(i) Average Computation
time of different RHPs for scenario 1-3.

V. EXPERIMENTS AND RESULTS

To identify and analyze the advantages and the disadvan-
tages of our approach, we compare the performance of our
multi-fidelity RHP candidates against the single-fidelity RHP
(baseline) over a set of multi-contact scenarios.

A. Experiment Setup

We consider the following multi-contact scenarios: 1) up-
and-down hill (Fig. 4a); 2) v-shape terrain (Fig. 4b); 3)
rubbles (Fig. 4c). These scenarios feature non-horizontal
surfaces with different orientations, which impose challenges
in terms of angular momentum modulation. For instance, up-
and-down hill and v-shape terrain require special care on the
pitch-axis and roll-axis, respectively; while the rubbles need
careful momentum modulation around all axes. In each of
these scenarios, we use both the single-fidelity RHP (base-
line) and our multi-fidelity RHP candidates to plan offline
centroidal trajectories of the humanoid robot Talos [21] for
multiple planning cycles. Within each planning cycle, a TO
problem is solved given the current state of the robot and
the first step of the planned motion (execution horizon) is ex-
tracted. We validate the dynamic feasibility of these trajecto-

TABLE II: Minimum prediction horizon required for success
for each RHP framework under different scenarios.

Method up-and-down
hill

v-shape
terrain rubbles

baseline 1 1 1
Candidate 1 (CoM) Fail Fail Fail

Candidate 2 (Rectangle) 2 1 2
Candidate 3 (Point) 2 2 2

ries by tracking them via an inverse dynamics controller [24]
in simulation (video: https://youtu.be/3FjKPmnYxvU). The
TO problems are implemented in Python and solved by the
interior-point algorithm of KNITRO 10.10 [46]. Further, we
use the automatic differentiation framework CasADi [47] to
provide the gradients and the Hessian. All computations are
carried out on a laptop with an Intel Xeon E3-1535M v6
(Maximum 4.20 GHz) processor and 32 GB memory.

B. Performance Comparison

The relevant criteria for performance comparison are:
1) Minimum Prediction Horizon Required: We declare

a chosen RHP framework as successful, if the generated



centroidal trajectory can be tracked by the whole-body
controller in our simulation. Table II lists the minimum
prediction horizon (PH)4 required for a RHP framework to
be successful. We recall here that the length of PH is defined
by the total number of footsteps included.

Among all considered RHP frameworks, the candidate 1
(multi-fidelity RHP with linear CoM dynamics) always fails
to converge after a few planning cycles, no matter how many
steps look-ahead we include in the PH. In contrast, with only
1-step look-ahead in the PH, the baseline can successfully
plan trajectories across all considered scenarios. These tra-
jectories can be successfully tracked in our simulation. This
suggests that considering the angular dynamics in the PH is
necessary.

On the other hand, although candidates 2 and 3 can
successfully generate the centroidal trajectories with 1-step
PH, the whole-body controller fails to track the resultant tra-
jectories in most of the cases. To obtain centroidal trajectories
that can be tracked successfully in our simulation, candidate
2 and 3 require at least two steps look-ahead in PH.

2) Accumulated Cost: Next, we compare the quality of
the trajectories generated from each RHP framework. The
quality of the trajectories is measured by the accumulated
running cost reported from RHP frameworks. To obtain this
cost, we sum the running cost J of execution horizon for all
planning cycles. In our work, the cost encourages smooth
centroidal trajectories by penalizing large CoM acceleration
and angular momentum. To have a fair comparison, we nor-
malized the accumulated cost over the distance traveled along
the forward direction (x-axis). Fig. 4d-4f plot accumulated
cost for all RHP frameworks under different PH lengths.
Usually, the accumulated cost of each RHP framework tends
to improve if we increase the PH length. However, for the
cases with more than four steps look-ahead in the PH, there
is only minor improvements, which suggests that long look-
ahead horizon in RHP can be unnecessary for the scenarios
considered.

Further, we can find that the baseline always has the
least accumulated cost for all scenarios. In comparison, the
accumulated cost of candidate 2 and 3 are higher than the
baseline. Especially, much higher cost can be observed when
we only assign 1-step look-ahead in the PH. We find that
such centroidal trajectories tend to exhibit jerky movements
in our robot simulation, which causes failures of tracking
most of the time. With increased PH length (two steps look-
ahead in the PH and more), although the cost is still higher
than the baseline, the resultant centroidal trajectories can be
successfully executed in our whole-body simulation.

We speculate that, the convex outer approximation allows
violation on system dynamics in PH, which gives rise to
optimistic value function prediction of PH and in turn results
in higher accumulated cost of execution horizon. Further,
we notice candidate 3 have smaller cost than candidate 2.
We guess this is due to the conservative nature of the point

4In the result section only, we refer to the prediction horizon with PH
for brevity.

TABLE III: Mean and standard deviation of the computation
time. We run each RHP framework ten times for each
scenario with randomly selected initial guesses for the first
and the second planning cycles.

Method up-and-down
hill

v-shape
terrain rubbles

baseline (1-step PH) 1.63±1.56s 0.78±0.22s 1.84±1.67s
baseline (2-step PH) 2.93±2.02s 1.45±0.58s 3.53±3.16s

Candidate 2 (2-step PH) 1.30±0.59s 1.00±0.27s 1.12±0.24s
Candidate 3 (2-step PH) 0.58±0.03s 0.57±0.06s 0.62±0.07s

foot model, which may regularise the violation on system
dynamics in PH. We believe further investigation is needed
for understanding how the model simplifications in PH affect
the quality of resultant trajectories.

3) Computation Time: To highlight the computational
benefit of our approach, we compare the best computation
time of each RHP framework in Table III. For all RHP
frameworks, the best computation time is achieved when the
PH is set to the minimum length for success (See Table II).
We recall here from Section V-B.1 that for the baseline the
minimum PH length for success is one step (1-step PH),
while for candidate 2 and 3 the minimum PH length for
success is two steps (2-step PH). Further, we also include
the computation time for the baseline with 2-step PH for
completeness. In Table III, we observe that with the same
PH length (2-step PH), both candidate 2 and 3 achieve faster
computation than the baseline. More importantly, candidate 3
with 2-step PH achieves the best computation speed, which
is 1.4x-3.0x (average 2.4x) faster than the fastest baseline
(1-step PH).

We consider this computational improvement as signifi-
cant, because it suggests the potential of using candidate 3
in an online fashion. Rather than controlling the robot with
a high frequency, RHP can run in a slower frequency to
constantly update the reference trajectories for a controller
to track. Nevertheless, to ensure continuous operation of the
robot, it is required that the online RHP should at least
compute the motion plan for the next cycle before the robot
completes the execution of the current cycle. In Fig. 5, we
compare the computation time of each planning cycle—for
both the baseline with 1-step PH and candidate 3 with 2-
step PH—against the duration of the motion plan (to be
executed) in each cycle. These computation time and motion
duration are averaged over all the scenarios considered. We
can observe that the computation time of the baseline is
often larger than the motion duration and it exhibits large
standard deviation (also shown in Table III). This indicates
that the baseline is not suitable for online RHP. In contrast,
the mean computation time of candidate 3 is always smaller
than the motion duration, and the standard deviation of the
computation time is rather small (also shown in Table III).
This strongly supports the potential of employing candidate
3 for online RHP.

In addition, we evaluate how the computation time of each
RHP framework scales with respect to the length of PH.
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Fig. 5: Computation time of baseline with 1-step PH, candi-
date 3 with 2-step PH, and the duration of the planned motion
in each cycle. Each bar represents the average value across all
the scenarios considered. Since the humanoid robot swings
the same leg per two cycles, we warm-start each cycle with
the solution computed in two cycles before (except the first
and the second cycle whose initial guesses are not readily
available).

Fig. 4g-4i shows the average computation time5 for each
RHP framework with different lengths of PH. The average
computation time of all RHP frameworks grows roughly
linearly as the length of PH increases. This is expected as
the number of decision variables and constraints increases
too. More importantly, as the baseline (single-fidelity RHP)
is fully non-convex, its computation time grows rapidly.
In contrast, the computation time of multi-fidelity RHPs
(candidate 2 and 3) increases at a much smaller rate. Also,
although both candidate 2 and baseline assume rectangular
foot, candidate 2 achieves a much faster computation speed
than the baseline. This suggests that the convexification in
the prediction horizon can improve the computation time.
Finally, since candidate 3 reduces the model’s dimensionality
due to the point foot assumption in the prediction horizon,
further computational improvement is achieved.

VI. DISCUSSION

Our experiments first confirm that a prediction horizon
is vital to the RHP frameworks. As Table II lists, at least
1-step look-ahead in the prediction horizon is required to
achieve successful RHPs. Indeed, from an optimal control
point of view, the prediction horizon can be seen as a value
function approximation, which evaluates whether the motion
decisions made in the execution horizon are beneficial for
the future.

Second, we empirically demonstrate that it is possible to
achieve successful RHP while considering simplified dynam-
ics model (convex relaxations) in the prediction horizon. We
demonstrate this can significantly improve the computation
time, but comes with a price—the cost of the resultant
trajectories (jerkiness) is increased. Nevertheless, with the

5Each data point refers to the mean computation time averaged over
fourteen planning cycles.

proposed relaxations the resultant trajectories can be suc-
cessfully tracked by a whole-body controller. On the other
hand, the multi-fidelity RHP can fail to converge if we only
consider linear CoM dynamics in the prediction horizon. This
suggests that evaluating the evolution of angular dynamics
in the prediction horizon is important. We believe that
further investigations regarding the trade-off between the
computation efficiency and model complexity, as well as the
motion quality are necessary.

Lastly, we show that for the scenarios we considered,
in each planning cycle our multi-fidelity RHP can always
complete the computation of feasible trajectories within the
time window of the motion for execution. This suggests that
our multi-fidelity RHP has the potential to be applied in an
online fashion. To further improve the computation speed,
we can explore avenues of research. First, we can design
customized numerical solvers (e.g. hierarchical optimiza-
tion [48]) to better exploit the convexity of the formulation.
This can be done by solving the convex and non-convex parts
of the formulation alternatively until convergence. Secondly,
we can reduce the look-ahead horizon by learning the value
function approximation provided by the prediction horizon.

In our approach, we pre-define the sequence of contact
surfaces [44], [49] and the selection of gait pattern (i.e. the
sequence in which the feet make and break contacts with the
environment) [50]. Ideally, these discrete decisions should be
automatically resolved by the optimization. However, this
gives rise to combinatorial problems which are generally
difficult to solve. We believe that handling the combinatorial
complexity of the multi-contact problem in a computation-
ally efficient manner would be beneficial, as it can further
augment the flexibility of our approach.

VII. CONCLUSION & FUTURE WORK

In this work, we present a novel RHP formulation that
achieves efficient computation of centroidal trajectories for
bipedal walking in multi-contact scenarios. The proposed
formulation features system dynamics constraints with mul-
tiple levels of fidelity. More specifically, the execution hori-
zon uses an accurate, non-linear centroidal model, while
the prediction horizon relaxes the centroidal model into a
convex approximation. As a result the executed motion is
always dynamically consistent (at the centroidal level) while
the overall complexity of the RHP formulation is reduced.
Using the proposed formulation, we achieve a computational
improvement in the range of 1.4x-3.0x (average 2.4x) against
the baseline. We also illustrate that our approach can be po-
tentially used for online RHP, owing to its fast computation.
In the future, we plan to further improve the computation
time by explicitly exploiting the convexity or reducing the
problem dimensionality via value function learning.
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