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Abstract—In this paper, we aim to improve the robustness of
dynamic quadrupedal locomotion through two aspects: 1) fast
model predictive foothold planning, and 2) applying LQR to
projected inverse dynamic control for robust motion tracking. In
our proposed planning and control framework, foothold plans
are updated at 400 Hz considering the current robot state
and an LQR controller generates optimal feedback gains for
motion tracking. The LQR optimal gain matrix with non-zero off-
diagonal elements leverages the coupling of dynamics to compen-
sate for system underactuation. Meanwhile, the projected inverse
dynamic control complements the LQR to satisfy inequality con-
straints. In addition to these contributions, we show robustness of
our control framework to unmodeled adaptive feet. Experiments
on the quadruped ANYmal demonstrate the effectiveness of the
proposed method for robust dynamic locomotion given external
disturbances and environmental uncertainties.

Index Terms—Legged Robots, Whole-Body Motion Planning
and Control, Motion Control

I. INTRODUCTION

LEGGED robots have evolved quickly in recent years.

Although there are robots, such as Spot from Boston

Dynamics, which have been deployed in real industrial sce-

narios, researchers continue to explore novel techniques to

improve locomotion performance. A popular technique is the

staged approach which divides the larger problem into sub-

problems and chains them together. Typically the pipeline is

composed of state estimation, planning and control, which

may be running at different frequencies. The motion planner

typically runs at a slower frequency comparing to controller

due to model nonlinearities and long planning horizons. The

lower-level feedback controller runs at a higher frequency to

resist model discrepancies and external disturbances. After

years of evolution, optimization becomes the core approach

for motion planning and control of legged robots.
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Fig. 1. ANYmal with adaptive feet stepping on rough terrain.

A. Related planning methods

Legged robot motion planning is a trade off between several

criteria: formulation generality, model complexity, the plan-

ning horizon and computational efficiency. While the goal is

to maximize all at once, this is not realistic given current

available computational resources. As a result, different design

choices lead to different formulations.

To generate motions in a more general and automated

fashion, trajectory optimization (TO) has been used. In [1], a

Zero Moment Point (ZMP)-based TO formulation is presented

to optimize body motion, footholds and center of pressure

simultaneously. It can generate different motion plans with

multiple steps in less than a second. In a later work [2],

a phase-based TO formulation is proposed to automatically

determine the gait-sequence, step timings, footholds, body

motion and contact forces. Motion for multiple steps can be

still generated in few seconds. In these two works, the TO

formulations are both extremely versatile in terms of motion

types that can be generated, however, online Model Predictive

Control (MPC) has not been demonstrated yet.

A linearized, single rigid-body model has been proposed

[3][4] to formulate the ground reaction force as a QP op-

timization problem and which can be solved in an MPC

fashion. In both works, the footstep locations are provided

by simple heuristics. Online TO based on a nonlinear single

rigid-body model has been given in [5], and can generate

stable dynamic motion for quadruped robots based on a given

contact sequence. A whole-body dynamic model has been

considered in [6][7] to generate robot motion in a MPC
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fashion. Crocoddyl [8] improves the computation speed further

more. A frequency-aware MPC is proposed in [9] to deal with

the bandwidth limitation problem for real hardware. In those

four works, the contact planning problem has been decoupled

from the whole-body motion planning problem.

Footstep optimization on biped robots has been proposed in

[10] [11]. An underactuated linear inverted pendulum model

(LIPM) has been used to formulate the footstep optimization

problem. The idea has been extended and generalized to both

biped and quadruped robots in our previous work [12]. In

this work, we realize real-time footstep optimization that can

be executed in a MPC fashion and test it on the hardware

ANYmal.

B. Related control methods

In recent years, there has been a convergence among

legged robot researchers to formulate the control problem

as a Quadratic Program (QP) with constraints. The problem

can be further decomposed into hierarchies to coordinate

multiple tasks within whole-body control [13][14][15]. These

optimization-based controllers usually rely on manually tuned

diagonal feedback gain matrices. Also, these controllers only

compute the best commands for the next control cycle, and

therefore are not suitable for dynamic gaits with underac-

tuation. Classical optimal control theory, such as LQR, can

consider long or even infinite time horizons and generate op-

timal non-diagonial gain matrices exploiting dynamic coupling

effects which benefit underactuated systems such as a cart-pole

[16].

Classical LQR does not consider any constraints except

system dynamics. However, for legged robots, we have to

satisfy inequality constraints such as torque limits and friction

cones on contact feet. The works [17][18] proposed to use the

classical LQR controller for bipedal walking, but inequality

constraints were not enforced. In this paper, we propose an

LQR controller for dynamic gait control under the framework

of projected inverse dynamics [19][20]. Projected inverse

dynamic control enables us to control motion in a constraint-

free subspace while satisfying inequality constraints in an

orthogonal subspace. In our previous work, we used Cartesian

impedance controllers within the constraint-free subspace to

control both the base and swing legs during static walking

of a quadruped robot. Here, we use LQR in the constraint-

free subspace to replace the Cartesian impedance controller

for base motion control and to handle the underactuation in

the trotting gait.

C. Contributions

This paper focuses on improving the robustness of dynamic

quadrupedal gaits. The trotting and pacing gaits of a quadruped

robot will be studied and demonstrated in simulations and

real experiments (see Fig. 1). The main contributions lie in

the computation speed of the MPC and the optimal feedback

control. As an additional contribution, our approach is shown

to be valid both with the default spherical feet and the adaptive

feet [21] with flexible soles. The main contributions are listed

as follows:

1) We propose to formulate foothold planning as a QP

problem subject to LIPM dynamics, which can be solved

within the control cycle of 2.5ms. Running re-planning

at high frequency allows the robot to be responsive

to disturbances and control commands. The higher the

updating frequency of the MPC, the better the reactivity

achieved by the robot.

2) We use unconstrained infinite-horizon LQR to generate

optimal gains for base control in order to improve the

robustness of the controller and cope with underac-

tuation. Meanwhile, we inherit the advantage of our

previous projected inverse dynamic framework to satisfy

the inequality constraints in an orthogonal subspace,

which is different to the purely QP-based controllers

[13][14][15].

D. Paper organization

The paper is organized in accordance with the hierarchical

structure of the whole system, which is shown in Fig. 2. Given

the desired velocity, the foothold planner plans future footsteps

based on the current robot state which is explained in Section

II. Section III describes the derivation of the LQR for base

control. Simulations, experiments and discussions are given in

Section IV. Finally, Section V draws the relevant conclusions.

II. MOTION GENERATION

When considering dynamic gaits such as trotting, two

contact points cannot constrain all six degrees of freedom

(DOF) of the floating base. The system becomes underactuated

as one DOF around the support line is not directly controlled.

Researchers have been using the LIPM as an abstract model

for balance control in this situation. The Centre of Mass (CoM)

position and velocity can be predicted by solving the forward

dynamics of the passive inverted pendulum. In order to keep

long term balance, the next ZMP point has to be carefully

selected to capture the falling CoM. For trotting, the ZMP

point always lies on the support line formed by the supporting

leg pair. As a result, the footholds optimization problem can

be transformed to a ZMP optimization problem.

A. MPC formulation

The dynamics of the linear inverted pendulum is as follows:

ẍCoM =
g

zCoM

(xCoM − px)

ÿCoM =
g

zCoM

(yCoM − py)
(1)

where xCoM , yCoM and zCoM are the CoM position coor-

dinates, px and py are the coordinates of ZMP, g represents

the acceleration of gravity. Considering zCoM as constant, the

dynamics become linear and result in the following solution:

xCoM (t) = A(t)x0
CoM +B(t)px

yCoM (t) = A(t)y0
CoM +B(t)py

(2)

where xCoM = [xCoM ẋCoM ]⊤, yCoM =
[yCoM ẏCoM ]⊤, are the state vectors, and x0

CoM and
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Fig. 2. Control framework block diagram. All the modules are running at 400 Hz. The joystick sends desired walking velocities. The MPC generates desired
ZMPs. The ZMPs are mapped to foot placements which generate swing foot trajectories by interpolation. The desired base trajectory is generated based on
desired ZMPs. An LQR and two impedance controllers are employed to track desired base trajectory and swing foot trajectories in the constraint-free space.
Constraints, such as torque limits and friction cone, are satisfied in the constraint space.

y0
CoM are the initial state vectors. A(t) and B(t) are defined

as

A(t) =

[

cosh(ωt) ω−1 sinh(ωt)
ω sinh(ωt) cosh(ωt)

]

(3)

B(t) =

[

1− cosh(ωt)
−ω sinh(ωt)

]

(4)

while ω =
√

g/zCoM .

For a periodic trotting gait with fixed swing duration Ts,

assuming instant switching between single support phases, the

states of N future steps along x direction can be predicted

given step duration Tsi

xCoM1
= A(Ts1)xCoM0

+B(Ts1)px1

xCoM2
= A(Ts2)xCoM1

+B(Ts2)px2

...

xCoMN
= A(TsN )xCoMN−1

+B(TsN )pxN

(5)

where xCoM0
is the state at the moment of first touchdown,

which can be computed from

xCoM0
= A(t0)x

0
CoM +B(t0)px0

(6)

where t0 is the remaining period of the current swing phase.

x0
CoM and px0

are the current CoM state and ZMP location

given by the state estimator which also runs at 400 Hz.

Also, considering the kinematic limits of the swing feet, the

following inequality constraints are enforced:
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(7)

where d is a constant value derived from kinematic reacha-

bility relative to the stance feet. Additionally, Eq. (7) can also

be used to avoid stepping into unfeasible pitches on the ground

by redefining d.

The state along y direction has the same evolution as shown

in Eq. (5). Regarding ZMPs as the system inputs, we define

the cost function of the MPC as follows

N
∑

i=1

1

2
[Qi(ẋCoMi

− ẋCoMd
)2 +Ri(pxi

− pxi−1
)2] (8)

where ẋCoMd
is the desired CoM velocity in the x direction,

Qi and Ri are weight factors. The cost function for the y
direction has the same form as Eq. (8). The MPC is formulated

as a QP minimizing Eq. (8) subject to Eq. (5) and Eq. (7).

Solving the QP results in the optimal ZMPs for the future N
steps p∗

x = [p∗x1
p∗x2

. . . p∗xN
]⊤.

Similarly, solving another QP for y direction yields the co-

ordinate p∗
y = [p∗y1

p∗y2
. . . p∗yN

]⊤ for the optimal ZMPs

in this direction. It should be noted that the cost function for

y direction is slightly different to Eq. (8), which is as follows

N
∑

i=1

1

2
[Qi(ẏCoMi

− ẏCoMd
)2 +Ri(pyi

− pyi−1
− s(−1)iry)

2]

(9)

where ry is a constant distance between right and left ZMPs.

ry 6= 0 for pacing gait to avoid self-collision while ry = 0
for trotting gait. s indicates the support phase the robot is in,

s = 1 for left support and s = −1 for right support.

We only use the first pair p∗
1 = (p∗x1

p∗y1
) to generate the

swing trajectory. Since the MPC is running in the same loop

of controller, the position p∗
1 = (p∗x1

p∗y1
) keeps updating

during a swing phase given the updated CoM state (x0
CoM

y0
CoM ) and desired CoM velocity (ẋCoMd

ẏCoMd
).

B. Reference trajectories of trotting gait

This section explains the algorithms to generate the desired

trajectories of swing feet and the CoM for trotting gait based

on the results of the MPC. The MPC provides the optimal

ZMP that should be on the line connecting the next pair of

support legs. We choose the ZMP to be the middle point of

the support line for trotting gait. We keep the distance from

the ZMP to each support foot location to be a fixed value r.

Then we use the following equations to compute the desired

footholds when the feet are swinging (in Fig. 3):

LF :

[

pLF
x

pLF
y

]

=

[

p∗x1

p∗y1

]

+ r

[

cos(θ0 +∆θ)
sin(θ0 +∆θ)

]

RH :

[

pRH
x

pRH
y

]

=

[

p∗x1

p∗y1

]

+ r

[

− cos(θ0 +∆θ)
− sin(θ0 +∆θ)

]

RF :

[

pRF
x

pRF
y

]

=

[

p∗x1

p∗y1

]

+ r

[

cos(θ0 −∆θ)
− sin(θ0 −∆θ)

]

LH :

[

pLH
x

pLH
y

]

=

[

p∗x1

p∗y1

]

+ r

[

− cos(θ0 −∆θ)
sin(θ0 −∆θ)

]

(10)
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Fig. 3. Geometrical relationship between footholds and ZMPs. We assign the
current ZMP (p0) to be the middle point of the support line at the touchdown
moment. The desired footholds (p∗LF, p∗RH) are calculated from the desired
ZMP (p∗

1
) and two foot pair parameters r and θ. r determines the distance

between the foot pair and θ determines the orientation of the foot pair with
respect to the robot heading direction. Nominal values are used for these two
parameters. If there is a given steering command ωz , the orientation can be
updated θ = θ0 + ωz · dt.

where LF, RH, RF and LH are the abbreviations for left-fore,

right-hind, right-fore and left-hind feet. θ0 is a constant angle

measured in the default configuration while ∆θ is the rotation

command sent by the users. For pacing gait, θ0 = 0.

Here we do not tackle the height changing issue. We use

the current height of support feet to be the desired height

of desired footholds for swing feet. The peak height during

swing is a fixed relative offset. This technique has to be

adapted for some tasks such as climbing stairs. However the

robustness of the planner and controller can handle slightly

rough terrains, as we demonstrate through experiments. After

determining the desired footholds, we use cubic splines to

interpolate the trajectories between the initial foot positions

and desired footholds for the swing feet, and feed the one

forward time step positions, velocities and accelerations to the

controller.

The desired positions and velocities for CoM are determined

by the LIPM, i.e., Eq. (2) where the initial states x0
CoM and

y0
CoM are updating with 400 Hz as well. Setting the variable

t in Eq. (2) to be a constant value t = 2.5 ms results in

the desired CoM positions and velocities along x and y for

controller. We set the desired height of CoM to be a constant

value with respect to the average height of the support feet.

III. LQR FOR BASE CONTROL

We continue to use our projected inverse dynamic control

framework [20] as it allows us to focus on designing trajectory

tracking controllers without considering physical constraints.

The physical constraints will be satisfied in an orthogonal

subspace. This framework gives us the opportunity to use the

classical LQR without any adaptation.

The dynamics of a legged robot can be projected into

two orthogonal subspaces by using the projection matrix

P = I− J+
c Jc [22][23] as follows:

Constraint-free space:

PMq̈+Ph = PSτ (11)

Constraint space:

(I−P)(Mq̈+ h) = (I−P)Sτ + J⊤

c λc (12)

where q =
[

Ix
⊤

b q⊤

j

]⊤

∈ SE(3) × R
n, where Ixb ∈

SE(3) denotes the floating base’s position and orientation with

respect to a fixed inertia frame I , meanwhile qj ∈ R
n denotes

the vector of actuated joint positions. Also, we define the gen-

eralized velocity vector as q̇ =
[

Iv
⊤

b Bω
⊤

b q̇⊤

j

]⊤

∈ R
6+n,

where Ivb ∈ R
3 and Bωb ∈ R

3 are the linear and angular

velocities of the base with respect to the inertia frame ex-

pressed respectively in the I and B frame which is attached

on the floating base. M ∈ R
(n+6)×(n+6) is the inertia matrix,

h ∈ R
n+6 is the generalized vector containing Coriolis,

centrifugal and gravitational effects, τ ∈ R
n+6 is the vector

of torques, Jc ∈ R
3k×(n+6) is the constraint Jacobian that

describes 3k constraints, k denotes the number of contact

points accounting foot contact and body contact, λc ∈ R
3k

are constraint forces acting on contact points, and

S =

[

06×6 06×n

0n×6 In×n

]

(13)

is the selection matrix with n dimensional identity matrix

In×n.

Note that Eq. (11) together with Eq. (12) provides the whole

system dynamics. The sum of the torque commands generated

in the two subspaces will be the final command sent to the

motors as shown in Fig. 2. In this paper, we focus on trajectory

tracking control in the constraint-free subspace. We refer to our

previous paper [20] for the inequality constraint satisfaction

in the constraint subspace. The swing legs are controlled by

impedance controllers proposed in our former paper [20]. In

this paper, we propose to replace the impedance controller

for base control with an LQR controller, benefiting from

the optimal gain matrix instead of the hand-tuned diagonal

impedance gain matrices.

The similar works of [17][18] did not enforce any inequality

constraints with the classical LQR controller. The advantage

of using projected inverse dynamics is that we can satisfy hard

constraints, such as torque limits and friction cone constraints,

in the constraint space by solving a QP as shown in Fig. 2,

in case the LQR controller and impedance controller generate

torque commands that violate those inequality constraints.

A. Linearization in Cartesian space

Based on Eq. (11), we derive the forward dynamics

q̈ = M−1
c (−Ph+ Ṗq̇) +M−1

c PSτ (14)

where Mc = PM+ I−P is called constraint inertia matrix

[22]. Eq. (14) could be linearized with respect to the full state

vector
[

q⊤ q̇⊤
]⊤

. However, the resulting linearized system

would not be controllable as the corresponding controllability
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matrix is not full rank. Instead of resorting to one more

projection as done in [17], we linearize the dynamics in the

Cartesian space to control only the base states rather than all

the states of a whole robot.

Just using a selection matrix, we can derive the forward

dynamics with respect to Ixb

ẍb = JbM
−1
c (−Ph+ Ṗq̇) + JbM

−1
c PSτ = f(Ixb, ẋb, τ )

(15)

where Jb = [I6×6 06×n]6×(n+6), ẋb =
[

Iv
⊤

b Bω
⊤

b

]⊤
.

By using Euler angles for the orientation in Ixb, we can

define the state vector as

X =

[

Ixb

ẋb

]

12×1

(16)

We linearize Eq. (15) to state space dynamics around a con-

figuration (q0, q̇0, τ 0) where τ 0 is the gravity compensation

torques, yielding

Ẋ = Ab
0X+Bb

0τ (17)

Eq. (17) is detailed as
[

ẋb

ẍb

]

=

[

0 I

A21 A22

] [

Ixb

ẋb

]

+

[

0

B2

]

τ (18)

where A21, A22 and B2 are defined as

A21 =
∂f(Ixb, ẋb, τ )

∂Ixb

|q0,q̇0,τ0
(19)

A22 =
∂f(Ixb, ẋb, τ )

∂ẋb

|q0,q̇0
(20)

B2 =
∂f(Ixb, ẋb, τ )

∂τ
= JbM

−1
c PS|q0

(21)

For simplicity, we use a central finite difference method

to compute the partial derivatives of Eq. (19) and Eq. (20).

The deviation factor for finite difference we used for the

experiments is 1× 10−5.

B. LQR controller

We consider Eq. (17) as a linear time-invariant system and

solve the infinite horizon LQR problem to compute the optimal

feedback gain matrix K. The cost function to be minimized

is defined as

J =

∫ ∞

0

(X⊤QX+ τ
⊤Rτ )dt (22)

and the resulting controller for the base control is

τm2
= K(Xd −X) + τ d (23)

where Xd is the desired state, τ d is the feedforward term

derived from inverse dynamics based on the desired state.

We use ADRL Control Toolbox (CT) [24] to solve the

infinite-horizon LQR problem and obtain the K matrix. It

should be noted that the linearization is computed in every

control cycle based on the current configuration (q0, q̇0, τ 0).
The K matrix is updated at 400 Hz, which is different to [18]

where they only compute the K matrices corresponding to few

key configurations. We think linearization should be updated

around current configuration in order to improve computation

accuracy if the computation is fast enough.

In practice, we increase the weights in R of Eq. (22) for

swing legs, relying more on the support legs for base control.

Otherwise, the torque commands of Eq. (23) can affect the

tracking of swing trajectories too much.

In addition, the motion planner in Section II feeds the

desired CoM trajectory to the controllers, whereas the LQR

controller controls the base pose. In theory, we should replace

Ixb with xCoM in Eqs. (11)(12) and transform the dynamic

equations to be with respect to CoM variables as in [25]. Then

the LQR controller will directly track the desired CoM trajec-

tory. In this paper, we approximately consider the translation of

base along x and y aligned with CoM since the base dominates

the mass of the whole robot.

IV. VALIDATIONS

We use a torque controllable quadruped robot ANYmal

made by ANYbotics to conduct our experiments. The onboard

computer has an Intel 4th generation (HaswellULT) i7-4600U

(1.4 GHz-2.1 GHz) processor and two HX316LS9IBK2/16

DDR3L memory cards. The robot weights approximately

35 kg and has 12 joints actuated by Series Elastic Actuators

(SEAs) with maximum torque of 40N ·m. The real-time

control cycle is 2.5ms. The control software is developed

based on Robot Operating System 1 (ROS 1). We use the

dynamic modeling library Pinocchio [26] to perform the model

linearization of Section III. An active set method based QP

solver provided by ANYbotics is used to solve the QPs for the

MPC planner and the controller. A video of the experimental

results can be found at: https://youtu.be/khP6PQ9xuso.

A. Trotting speed

We first tested the fastest walking speed when using the

proposed algorithms. Figure 4 shows the recorded speeds

along x direction in real robot experiment and in simulation. In

simulation, the robot could stably trot forward with maximum

speed 1.2 m/s. On real robot, the maximum speed reached

0.6 m/s. The results are reasonable since the trotting gait does

not have a flying phase. The fact that the real robot cannot

achieve as fast motion as in simulation is also reasonable

considering model errors and other uncertainties. Model errors

also cause drifting on the real robot which is difficult to

resolve without external control loops. Constant values for
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c
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Fig. 4. Recorded fastest trotting speeds on real robot and in simulation. The
desired velocities are generated from LIPM dynamics, i.e. Eq. (2), which
explains why the reference velocities are not smooth.

https://youtu.be/khP6PQ9xuso
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Fig. 5. Footstep and swing trajectory replanning under disturbances. The robot is walking forward and an external force (green arrow) is applied to the base
of the robot. The push results in a sudden change of the CoM position and velocity. The footstep planner uses the updated state to replan the footholds. The
swing trajectories (red lines) are updated accordingly.

Fig. 6. Kicking the robot during trotting. Benefiting from the 400 Hz MPC
update frequency, the robot can quickly update the optimal footholds to
recover from disturbances.

the parameters of the gait planner were employed. They are

Ts = 0.3, zCoM = 0.42, g = −9.8, N = 3, Qi = 1000,

Ri = 1, θ0 = 0.56, r = 0.41. It should be noted that the

prediction number N in the MPC does not need to be as large

as possible with the concern of computation efficiency. We

tested N = 2 ∼ 5, and they showed similar performance.

B. Push recovery

In this subsection, we demonstrate the benefit of high

frequency replanning for disturbance rejection. We first use

simulation to show the replanned footholds and trajectories

as shown in Fig. 5. The disturbance is added when RF and

LH feet are swinging. The disturbance results in sharp state

changes. The MPC computed the new footholds after receiving

the updated state. Figure 6 presents snapshot photos of the

push-recovery experiment on the real robot during trotting

while recorded state data is shown in Fig. 7. The robot was

kicked four times roughly along the y direction. We can see

the peak velocity of y reached −1m/s during the last two

kicks, but it was quickly regulated back to normal using one

or two steps. The orientation did not change too much after

kicking, which also indicates the robustness of the method.

C. Balance control

Most of the trotting gait control algorithms rely on quick

switching of swing and stance phases to achieve dynamic

0 5 10 15 20 25

t (sec)

-1

-0.5

0

0.5

1

V
e

lo
c
it
y
 (

m
/s

)

0 5 10 15 20 25

t (sec)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

V
e

lo
c
it
y
 (

m
/s

)

0 5 10 15 20 25

t (sec)

-0.4

-0.2

0

0.2

0.4

0.6

P
o

s
it
io

n
 (

m
)

0 5 10 15 20 25

t (sec)

-0.3

-0.2

-0.1

0

0.1

O
ri
e

n
ta

ti
o

n
 (

ra
d

)

Fig. 7. Recorded state when the robot was kicked four times. The desired
Euler angles were 0. The robot was quickly regulated back to normal even
though the velocity reached −1m/s after kicking.

Fig. 8. Visualization of the gain matrix as computed by the LQR controller
during trotting. The size of the gain matrix is 18 by 12. The first 6 columns
correspond to the position and orientation while the remaining 6 columns are
for velocity control. Off-diagonal gains demonstrate that dynamic coupling
effects may be exploited for control.

balance. Recently researchers demonstrated that quadruped

robots with point feet can stand on two feet to maintain balance

[27][28]. Although we did not manage balancing on two feet

on our robot, we compared the longest period of swing phase

of trotting when using our proposed LQR controller versus

the default trotting controller of ANYmal [29]. The longest

swing phase when using LQR is 0.63 s whereas the default

controller only achieved 0.42 s. When the base is controlled

by our previous impedance controller, the longest swing phase

is 0.4 s. This verifies the improved performance of our LQR

controller in terms of balance control. Figure 8 shows two gain
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matrices for the two phases of trotting during this experiment.

It should be noted that the gain matrices are updated in

every control cycle (but the changes are small). We can see

that the elements of the first 6 rows are 0 because of the

existence of selection matrix S. The Q12×12 we used in the

experiment was Q = diag(diag(1500)6×6, diag(1)6×6). The

R18×18 was switched depending on the phase. The diagonal

elements corresponding to the two swing legs in R are 10

times larger than the other diagonal elements for stance legs

and the base, reducing the efforts of swing legs in balance

control. The elements in R for stance legs and the base we

used in this experiment are 0.03.

D. Trotting on slippery terrains

The most important advantage of the proposed control

framework compared to similar works [17][18] is that we

can satisfy inequality constraints while using LQR for tra-

jectory tracking. We do not change the classical LQR to be

a constrained LQR. By contrast, using the projected inverse

dynamic control allows us to satisfy inequality constraints in

the constraint subspace. The LQR controller only serves as a

trajectory tracking controller and does not need to consider the

inequality constraints. The QP optimization in the constraint

subspace plays the role of trading off different constraints. For

example, as we have shown in our previous paper [20] for

static gait, trajectory tracking performance will be sacrificed

to prevent slipping if torque commands for trajectory tracking

generate contact forces beyond the friction cones. Here we

demonstrate that our proposed controller can satisfy friction

cone constraints for dynamic gaits as well. Figure 9 shows

the controller can keep the contact forces within the friction

cone after reducing the friction coefficient to match the actual

friction coefficient of the terrain. The smallest friction coef-

ficient we achieved in simulation for trotting in spot on flat

terrain is 0.07. However it is difficult to trot on such slippery

terrain because the trajectory tracking is quite poor in this

situation.

E. Transition from trotting to pacing

Pacing gait is a more dynamic gait compared to trotting

since the CoM is always off the supporting line. The difference

between trotting and pacing in terms of the MPC formulation

is that there will be a constant offset ry between pyi
and

pyi−1
(see Fig. 10) in the cost function Eq. (9) in order to

avoid conflicts of the right and left feet. In our experiment,

we specified a transition motion of shifting the base to a side

to start pacing. We can also remove this transition motion by

reducing the gait period or reducing the distance between left

and right feet. The gait period in this experiment was 0.44 s
with ry = 0.08m. On the controller side, we used the same

Q and R for trotting and pacing.

F. Outdoor test with adaptive feet

In this subsection, we test the versatility of our approach

with adaptive feet SoftFoot-Q [21] in outdoor environments.

Figure 11 shows a typical case of the adaptive feature.

Fig. 9. The friction cone constraints are satisfied by the controller. The blue
arrows represent the actual contact forces while the green cones denote the
friction cones.

Fig. 10. A base shifting motion is needed to transit from trotting to pacing.

Compared to the traditional sphere feet, the adaptive feet

have larger contact surface. Those features will benefit the

traversability of rough terrains with rocks, loose gravel and

rubble by enlarging the contact surfaces with ground. We per-

formed experiments in trotting locomotion on rough terrains

outside our lab as shown in Fig. 12. It should be noted that

our controller did not take the two DOF (one DOF less than

the case with a spherical foot) passive ankle into account.

The model errors caused by the adaptive feet were treated as

disturbances by the controller, where the success of the tests

shows the robustness of our controller.

V. CONCLUSIONS

This paper presents a full control framework for dynamic

gaits where all the modules are running with the same fre-

quency. The robustness of the dynamic walking is improved

significantly by two factors. The first factor is the MPC plan-

ner, which mostly contributes to rejecting large disturbances,

such as kicking the robot, because the MPC uses footsteps

to regulate the state of the robot. The second factor is the

LQR controller for balancing control, which also undertakes

the duty of trajectory tracking. The method is general and

shown to able to work both with spherical and adaptive

feet. The latter were seen to reduce the slipping chance

on rough terrains. The outdoor experiments demonstrate the

robustness of locomotion after adopting the proposed methods

and assembling the adaptive feet.

Future work will focus on adapting the current planner to

consider terrain information to handle large slopes and stairs.

Also, the new feet can be used to measure the local inclination

of the ground which can improve the accuracy of the terrain

information, similar to [30].
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Fig. 11. The SoftFoot-Q, an adaptive foot for quadrupeds. θ1 and θ2 indicate
the passive joints of the ankle.

Fig. 12. Trotting out of the lab with adaptive feet on rubble terrain.
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