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Decentralized Ability-Aware Adaptive Control for
Multi-robot Collaborative Manipulation

Lei Yan, Theodoros Stouraitis, and Sethu Vijayakumar

Abstract—Multi-robot teams can achieve more dexterous, com-
plex and heavier payload tasks than a single robot, yet effective
collaboration is required. Multi-robot collaboration is extremely
challenging due to the different kinematic and dynamics capabil-
ities of the robots, the (enforced) limited communication between
them, and the uncertainty of the system parameters. In this
paper, a Decentralized Ability-Aware Adaptive Control (DA3C) is
proposed to address these challenges based on two key features.
Firstly, the common manipulation task is represented using the
proposed nominal task ellipsoid, which is used to maximize each
robot’s force capability online by optimizing its configuration.
Secondly, a decentralized adaptive controller is designed to be
Lyapunov stable in spite of significant heterogeneous actuation
constraints of the robots and uncertain physical parameters
of the object and environment. In the proposed framework,
decentralized coordination and load distribution between the
robots is achieved without communication, while only the control
deficiency is broadcast if any of the robots reaches its force limits.
In this case, the object’s reference trajectory is modified in a
decentralized manner to guarantee stable interaction. Finally, we
perform several numerical and physical simulations to analyse
and verify the proposed method with heterogeneous multi-robot
teams in collaborative manipulation tasks.

Index Terms—Distributed robot systems, redundant robots,
manipulation planning, motion control, robust/adaptive control.

I. INTRODUCTION

Collaboration with other agents can often be beneficial. For
example, a multi-robot team like the one shown in Fig. 1] is
more dexterous and robust in heavy and large object manip-
ulation tasks [1] than a single robot. Also, in human-robot
collaboration scenarios [2], the human’s input can improve the
intelligence and adaptability of the team. Yet, collaboration is
not trivial, due to the effects of one agent’s actions on the
planning, control and decision of others.

Here, we investigate multi-robot collaborative manipulation
tasks, where a decentralized robot team needs to achieve
a common objective, while each robot has different motion
and force capabilities. To perform such collaborative tasks,
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Fig. 1: Pictorial description of the multi-robot collaborative manipulation
setup, where the ability of each robot is illustrated as a force polytope.

each robot within the team should maximize its contribution
to the task, appropriately distribute the load among other
robots, and adapt its behaviour according to the capabilities
of the other robots in the team. Traditional centralized control
methods have been used for multi-robot collaboration, but
assume access to an accurate model of the robot team and full
observability of the state of the other robots and the object.
However, when considering the characteristics of real-world
multi-robot teams [3]], the most pressing problems are: (i)
heterogeneity of the robots’ capabilities, (ii) uncertainty of the
system’s physical parameters and (iii) lack of high bandwidth
communication between the robots.

Therefore, we propose a method to maximize the force
capability of each robot while designing a decentralized
adaptive controller. Using this framework, we achieve the
shared manipulation task under modelling uncertainties, input
constraints and band-limited communication.

Motion and force capabilities: A manipulability metric [4]
was first proposed as a measure of the capability of robotic
mechanisms, and has been broadly used for redundancy con-
trol [3)]. Utilizing the task-oriented manipulability measure,
the optimal joint configuration of a redundant manipulator can
be determined [6]. An efficient closed-form calculation of the
task space manipulability was presented for a 7-DOF manipu-
lator [7]]. For a multiple-arm system, the task-space force and
velocity manipulability ellipsoids were given in [§]]. Based on
the study of the weighting matrix for dynamic manipulability
of robots, two physically meaningful choices for weighting
matrix were provided [9]. To simplify the calculation of the
dynamic manipulability, the weighted manipulability ellipsoid
can be used to approximate the manipulability polytope [10].
In this paper, the weighted force manipulability ellipsoid
(WFME) will be adopted to optimize the force polytope of
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Fig. 2: Flowchart of decentralized ability-aware adaptive control.

the manipulator.

Redundancy exploitation: For dexterous manipulation [[L1],
[12], redundant manipulators were adopted to enlarge
workspace, avoid singularities and collisions with the environ-
ment. Further, manipulator’s redundancy can also be explored
to maximize manipulability [13]. The stiffness feasibility re-
gions of redundant manipulators and a global task-oriented
stiffness optimization were used to select robot poses [14] and
configurations [15]] for force and stiffness control, respectively.
This highlights the important role of the robot’s configuration
in interaction tasks. The configuration of a redundant robot was
also optimized while manipulating an object in space, to min-
imize disturbances on the base [16]. Geometry-aware methods
were used to provide a manipulability-based redundancy res-
olution [[17], [18]], which enabled tracking of manipulability
ellipsoids. Yet, the desired ellipsoid is either pre-defined by a
human expert or pre-recorded from demonstrations. Here, we
define a nominal task ellipsoid which is generated from the
manipulation task automatically and present a task-oriented
manipulability optimization to match the WFME of the robot
with the nominal task ellipsoid.

Decentralized adaptive control: A decentralized model ref-
erence adaptive controller was proposed to deal with un-
certain physical parameters of the collaborative multi-robot
system [19]. For manipulation tasks with inaccurate kinematic
model, the adaptive controller was used to handle the closed
kinematic chain constraint and achieve accurate motion track-
ing with minimum-norm actuation force [20]. Recently, Deep
Neural Networks were adopted to model system uncertain-
ties in model reference adaptive control [21]. In studies of
multiple mobile manipulators, distributed coordination control
and synchronous cooperation control were presented to deal
with time delays and switching topologies [22]. A distributed
cooperation scheme was adopted for networked mobile ma-

nipulators, which exploits the formation-based task allocation
and task-oriented strategy [23]]. A distributed impedance con-
troller has also been used for collaborative manipulation with
event-triggered communication [24]. Recently, a decentralized
adaptive controller [1]] for multiple collaborative mobile robots
was introduced. This controller can track the reference velocity
trajectory without a priori knowledge of the agent’s position
and payload properties. Yet, all adaptive controllers described
above did not consider force and torque constraints (manipu-
lability) of the robots.

Considering a multi-robot collaborative manipulation task,
a decentralized ability-aware adaptive control (DA3C) frame-
work (shown in Fig. [2) is proposed. Our method can handle
both uncertain system parameters and input constraints without
full communication between the robots. In the investigated
multi-robot collaborative manipulation setup each robot has
access to the desired manipulation task, which is described as
a nominal task ellipsoid. Each robot tracks the nominal task
ellipsoid using the task-oriented manipulability optimization
method, while the DA>C enables multi-robot coordination with
respect to the common manipulation task. This paper’s main
contributions are summarised as follows:

1) A nominal task ellipsoid is defined based on the common
manipulation task, and it is used to optimize the force
capability of each manipulator.

2) A decentralized adaptive controller under input con-
straints is designed and proven to be Lyapunov stable.

3) Different heterogeneous multi-robot systems with in-
put and communication constraints realize collaborative
manipulation tasks using the proposed decentralized
ability-aware adaptive control that guarantees stability
and convergence.

The remainder of this paper is organized as follows. The
preliminary work is presented in Section [[} In Section we
define the nominal task ellipsoid and present the task-oriented
manipulability optimization. The decentralized ability-aware
adaptive control is described in Section In depth analysis
of the proposed method is carried out in Section where
several numerical and physical simulations of collaborative
manipulation tasks are performed. The conclusion and future
work are discussed in Section

II. PRELIMINARIES
A. Manipulability Ellipsoid and Force Polytope

Generally speaking, the force manipulability ellipsoid can
be used to approximately describe the force capability of the
manipulator. In the simplest case, if we consider an arbitrary n-
DOF manipulator robot k& with the same torque limit across all
its joints, we can obtain the force manipulability ellipsoid [4]]
using joint torque 7y such that ||7%||2 < 1. This ellipsoid is a
subset of all realizable forces and is defined as

F (JJ]) F <1, €]

where J}. is the Jacobian matrix of robot k and F}, is the force
(and torque) at the end-effector of robot k.

However, typically manipulators have different torque limits
for each joint, expressed as |7{| < T,;mm for i = 1,...,n,
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where Té,max is the maximum torque of i-th joint of robot k.
Thus, the force polytope [10] of the manipulator is described
by 2n bounding inequalities as

— Tk,max < Jng < Tk,max- (2)

As shown on the left side of Fig. [3] the force polytope
corresponding to joint torque limits in (Z) can be approximated
by the weighted force manipulability ellipsoid (WFME) as

Fr o wW!Iw,Jl'F, <1, 3)

1

s Tm
Tk,max

where W, = diag (7'1 L AR

) is a weighting matrix
k,max
used to formulate the WFME.

B. Object’s Dynamics

For multiple robot collaborative manipulation scenarios, the
equation of motion of the object can be written as

MU,

[ Lo + w, % (Lw,) ] =F +Fy+G,, 4)

where m,, and I, are the mass and inertia of the target object,
v, and w, are respectively the linear velocity and angular
velocity of the object, G, = [m,g”, 0]7 is the gravity, F
is the linear and rotational friction force which is modelled
as Fy = [ 11" = [~wvf, —prw!]", pu and i, are the
linear and rotational friction coefficients, respectively. F; is the
external force exerted on the object (in this paper it is task-
related). All the variables are expressed in the world coordinate
system.

IITI. TASK-ORIENTED NULL-SPACE MANIPULABILITY
OPTIMIZATION

To utilize each robot’s maximum capability, its force poly-
tope needs to be optimized with respect to the manipulation
task. As WFME is a conservative approximation of the force
polytope as shown in we optimize WFME instead to
maximize each robot’s force capability. To do this, we first
define the nominal task ellipsoid to encode the task’s force
characteristics. Second, we optimize the robot’s null-space
motion to match the WFME with the nominal task ellipsoid.

A. Nominal Task Ellipsoid

The nominal task ellipsoid is defined as an ellipsoid of
revolution, also called a prolate spheroid, whose two principle
axes have the same length, while the third principle axis is the
longest. The nominal task ellipsoid can be generated by the
transformation of unit sphere as

{ee =Cecs | [les]| < 1}, @)

where c. is the Cartesian coordinates of the nominal task
ellipsoid, ¢, is the Cartesian coordinates of the unit sphere.
C is the transformation matrix and can be calculated as
C = R, R; with R, being the scaling matrix and R, being
the rotation matrix. The scaling matrix R, is defined as
R, = diag (I, 1, 1,), where I, l,,, ., are the lengths of the
principle axes. In this paper, [, = 1 corresponds to the longest

) A" &
' Fy=[-3,4,5] Fi=[3,4,5]
WFME 4~

Force
polytope

Isotropic ellipsoid F;=[3,0,0]

Cf:1 Cf=0.4

Fig. 3: Force polytope and WFME (left). Nominal task ellipsoids correspond-
ing to different manipulation tasks where F represents the desired force along
different directions (right).

axis that is aligned with the desired force. I, = I, = cyl;
correspond to the other two axes and c¢; € (0,1] can be set
according to the task requirements, e.g. ¢; = 1 (isotropic
ellipsoid in Fig. 3) for manipulation tasks that require force to
be equally distributed along different directions, while ¢y < 1
(other cases in Fig. 3) for manipulation tasks that require force
along a specific direction.

Given the desired force F}; on the object and the unit vector
a, of the longest axis, the common perpendicular vector u
and the included angle ¢ between them, can be obtained by

F, X ay ( F, -a, )
w= 7% and ¢ = acos L2 ) (6)
[y x ag| | E:llllax|

respectively. Therefore, the rotation matrix R,—which is used
to align the longest axis with the desired force—can be
obtained according to the angle-axis representation as

R, = Ezcy + (1 — c¢)uuT +u” s, 7

where s, = sin(¢), ¢, = cos(¢), Es is the 3 x 3 identity
matrix and ©* is the skew symmetric matrix of w.
From (), we can obtain the following equation

c’M; " ¢c. <1, with M, = CC7T, (8)

where the symmetric positive definite matrix M, represents
the nominal task ellipsoid. A few nominal task ellipsoids for
different manipulation tasks are visualized in[Fig. 3] The shape
of nominal task ellipsoid is determined by the coefficient cy,
while its orientation is determined by the direction of the
desired force F;.

B. Null-Space Manipulability Optimization

As multiple robots manipulate the object jointly, the end-
effector of each robot is assumed to be fixed on the object via
the corresponding grasping point. Thus, the velocity of each
robot’s end-effector a;, can be derived from the velocity of
the object x, as

. E3 —T‘]:
Tk = { 0 E;
where Gy, is the grasp matrix of robot k, r;, is the position
vector from the object’s center of mass to the grasping point
of robot k, and &, = [v] w(ﬂT. By differentiating (9) the

0

acceleration constraint can be obtained as

] &, = G, 9)

iy, = GlLd, + Gha,. (10
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At the same time, the pseudo-inverse solutions for joint

velocity @, and acceleration @, of each robot are
@k :J]i.il:k and ék :Jg (wk_']k@k>7 (11)

respectively; where J ,I is the pseudo-inverse of Jy.

In this paper, the null-space motion of the redundant manip-
ulators is used to optimize the force manipulability. Given the
current WFME of robot k and a desired nominal task ellipsoid
(Section [[TI-A), using the tensor representation and exploiting
the fact that ellipsoids lie on the Riemannian manifold of
symmetric positive definite (SPD) matrices [18], the velocity-
level inverse kinematics with task-oriented manipulability op-
timization can be derived as

O = Iy + (1 I[J) (J{}k)T K vee (M) . (12)
The first term of the right hand side is same as (II), while
the second term projects the difference between the nominal
task ellipsoid and WFME to the null space motion of the
manipulator. K s is the scaling matrix, vec () denotes the
vectorization of symmetric matrices with Mandel notatior['}
M kf = Log,,r M, the operator Log is logarithm map [23]
which can find the tangent vector between two points in the
SPD manifold. M kf represents the WFME of robot k and is
defined as

-1
M} = (HWIwW,JF) . (13)

The force manipulability Jacobian J {/[k projects the scaled
rate of change of M,{ to the joint velocity O}, and it is

obtained as

oMt
me :—ﬁ XlMI{ ><2M1{7
o1 F (14)
OM{ " _ody +aJ,”{X 7
00, 00, 7V T ae, T

where Jy = JkaT Wy, X, is the n-mode tensor prod-
ucﬂ [26]. The force capability optimization is achieved in the
null space of manipulation task by using the proposed task-
oriented manipulability optimization (12).

IV. DECENTRALIZED ABILITY-AWARE
ADAPTIVE CONTROL

According to the force polytope shown in Fig. [3| the
maximum operational force along any specific direction can
be calculated. Subsequently, the decentralized ability-aware
adaptive controller (DA®C) computes the control inputs in
accordance with the force capability of each robot.

A. Force Capability

The maximum operational force of each manipulator along
the specific task direction F; is calculated by

max | Frllo (15a)
Fy,

S.t. ‘Hkék+ck+Gk+JkTFk| < Th,mae  (15b)

FXF, =0, (15¢)

The Mandel representation [€] (as a column-vector) of any second rank,
symmetric tensor € is defined as follows: [e] = [e11, €22, \/ﬁslz}T.
21-mode and 2-mode: A x1 UT = UTA, Ax, VT = AV

where H, is the inertia matrix of robot k, C}, is the Coriolis
and centrifugal force of robot k, Gy, is the gravity of robot k.
The force polytope is defined by and can be obtained
from the dynamic equation of the manipulator, while is
used to define the specific task direction.

B. Ability-Aware Adaptive Controller

In order to track the desired trajectory of the object during
decentralized multi-robot collaborative manipulation, we pro-
pose an ability-aware adaptive controller in which the force
capability of each robot is considered.

According to (@), the ideal reference dynamics model of the
object can be written as

iZ:A*:I.)Z—FB* (Ft*_Ncg)a (16)

where A* is a Hurwitz stable matrix1 written as A* =
- ril* E; 0 —Fs 0

o , B* = Mo , and
0 —p It 0 I

%
Ny = [ w, ;T;fwo)@l is a stacked vector of gravity term
and nonlinear term in (4), and m} and I} are nominal mass
and inertia matrix of the object. Given the bounded reference
(desired) trajectory ) and &) of the object, the bounded
reference control input F}*, which represents the external force
exerted on the object, can be computed from (I6).

To design the adaptive controller, the actual object’s dynam-
ics model can be rewritten in the following linear form with

respect to the system state &, as

K
io= A&, + » By (F.—Uy),
k=1

A7)

wherem% and gk are unknown %o%stant (I)natrices, A =
input of robot k, K is the total number of robots, U, =
Wq’;g@k is unknow nonlinear function caused by modelling
uncertainties which can be approximated by a Radial Basis
Functions (RBFs) neural network, ngk is the weight matrix
for the RBFs, &, is the vector of RBFs and output bias.

For each robot, the adaptive control input is designed as

Fy =K@, + KL F + KL Ny + WhHDy,  (18)

where K, K., K,; and Wy, are control gain matrices.
Considering the force capability of each robot, the control
input constraints of DA®C are guaranteed by positive -
modification [27]]. Therefore, the modified ideal reference
dynamics model (see (I6)) and the actual system dynamics
(see (I7)) with input constraints are rewritten as

K
:i: = A*;L'Z + B* (Ft* + ZK};]CAFIC — Ncg) , (19
k=1

K
&0 = Ao+ Y By (Fi+ AF, - Uy),
k=1

(20)

where K¢, is the control gain matrix, AFj, is the control
deficiency, which is described in Appendix A, and is used to
generate the adaptive augmentation for the reference model.
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Fig. 4: Simulation results with and without manipulability optimization.
Furthermore, by defining the tracking error e = &, — &,
the tracking error dynamics can be obtained as
K
= A%e — Z B*K} AF+
k=1

e =i, -
2D
Z By (Kl + KLF, + Kl Noy + Wiy ) |

where K = K — K* is the error matrix of control gain and
K™ is ideal control gain (see Appendix B).

Last, the following adaptive laws are adopted in order to
guarantee asymptotic tracking of the reference trajectory.

Kwk = —Iyx.e PBkyK’rk‘ =TI, F/e" PBy,

Koi = —TNoyeT PBy, Wy = — Ty @e” PB;, (22)

I%f;c == kaAerTPB*,
where P is unique SPD solution of the Lyapunov equation,
PA*+ A*TP = —Q < 0, where Q is any SPD matrix; I,
Iy, Iy, T'sr, and I'yy, are SPD gain matrices. The proof for

asymptotic stability and asymptotic tracking using the above
adaptive laws can be found in Appendix B.

C. Computed-Torque Control for Each Robot

According to the constrained operational force and the
adaptive reference trajectory of the object, the controller of
each robot can be designed as the following well known
computed-torque feedforward control,

T =Hj, (@k + Kpék + Kvék)

(23)
+ Cy + Gi + i1 (Fy + AFy)

where @, @), are the error vectors of joint angle and joint
angular velocity, and K, K, are the corresponding gains.

D. Level of Communication

In the proposed ability-aware adaptive controller, the levels
of communication between the robots in the team may vary
depending on the different states of the multi-robot system. As
long as the desired operational force of each robot is within
its force polytope, each robot can be controlled in a fully
decentralized manner. Each robot should know the object’s
velocity and the grasping location on the object. However,
in cases where a robot would need to exceed its capabilities
to track the reference input—desired operational force lies
outside of the force polytope—then, the control deficiency
AFj, of each robot should be broadcast to all the robots of
the team. The control deficiency of all the robots will be used
in (T9) to modify the unfeasible reference control input for
each robot, which results in a coordinated adaptation of the
robot team.

V. RESULTS

First, we perform three ablation studies to demonstrate the
benefits of each one of the proposed components and their
combination. Second, we demonstrate the adaptation capabil-
ities of the DA®C framework in a decentralized manipulation
setup. Third, we validate DA®C on a physical simulation,
where three heterogeneous robots manipulate an object. The
control frequency of all the simulations is set to 500 Hz.

A. Ablation Studies

1) Force Capabilities with and without Manipulability Op-
timization: In this ablation study, three 4-DOF planar robots
manipulate an object from initial position [0, 0] m to final
position [-0.1, -0.2] m. The maximum joint torques of robot
A, B and C are set to 0.8, 0.6 and 0.6 N m, respectively. The
simulation results without and with task oriented manipula-
bility optimization are shown in [Fig. 4] Using the proposed
method the WFME of each robot is optimized through the
null-space motion to track the nominal task ellipsoid (yellow
ellipsoid), and consequently the force capability (red arrow)
along the specific task direction is increased.

2) Ability-Aware vs Ability-Agnostic Adaptive Controller:
The second ablation study compares the tracking performance
of the proposed ability-aware adaptive controller (DA3C) with
an ability-agnostic adaptive controller [1]]. The task considers
three robots manipulating an object, with 20kg mass and
20kgm? inertia (along z-axis), on a plane with a sliding
friction coefficient of 0.2. The adaptive controllers are initiated
with 80% of these values. The reference control input is
set to Fy = 4 x [sin(0.4t), sin(0.3t)]T N. The maximum
force F,,,, of each robot is set to [1.0, 1.0] N, and the
constant vector § (see Appendix A) is set to 10% of Fiqz.
The object’s trajectories with ability-agnostic control (green
line) and ability-aware control (blue line) are shown in
For the ability-agnostic adaptive controller, the control input
(see exceed the force constraints, hence, we limit
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Fig. 9: State of the object (1st column) and control inputs of robot A (2nd column) and robot B (3rd column) and robot C (4th column). In region ), the
mass of the object is increased from 20 kg to 30 kg. In region @), the friction coefficient is decreased from 0.2 to 0.1, while in region @, the force capability

of robot B is reduced to 1/3 while robot C is shut off.

the control input to the maximum force. This results in a
significant deviation of the object’s trajectory from the desired
one (see[Fig. 3). On the other hand, given the limited capability
of each robot in the ability-aware controller (see
the new reference trajectory (red dashed line) deviates from
the original one (blue dashed line) according to the control
deficiency of all the robots as shown in such that the
multi-robot system can track the modified trajectory accurately
with average tracking error 0.009 m/s and 0.013 m/s along
x-axis and y-axis, respectively.

3) DA3C with and without Manipulability Optimization:
Here, we compare the proposed ability-aware adaptive con-
trol with and without manipulability optimization. The three
manipulators of are used to manipulate the
same object as in [Section V-A2)). The reference trajectory is
circular and is described with v, = —0.1 % & * sin(Ft) m/s,
vy = 0.1 % § x cos(§t) m/s and w, = 0. The nominal task
ellipsoid is a sphere to equally allot the force capabilities along
different directions. The velocity tracking errors of the object
are shown in (left). The average tracking errors along
two axes with manipulability optimization are (0.0138, 0.0143)
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m/s, which outperforms (0.0138, 0.0301) m/s corresponding
to the one without. In the right part of we can observe
all the control inputs along with the force limits (regions). The
DA3C with manipulability optimization regulates the robot’s
configuration to achieve similar force capabilities along both
directions, such that tracking performance is balanced in both
directions.

B. DA3C on-the-fly Adaptation

Here, we show that the proposed method is capable of
handling changes with respect to the mass of the object, the
friction coefficient and also tolerant to faults of team members.
We consider the same circular task, where the mass of the
object is increased from 20 kg (white region @) to 30 kg
(green region ) at 30 s, the friction coefficient is decreased
from 0.2 (green region ) to 0.1 (blue region @) at 50 s, and
the max force of robot B is reduced to 1/3 while robot C is
shut off (purple region @) at 70 s. The results are shown
in the control inputs of the robots increase when
the object’s mass is increased and decrease when the friction
coefficient is decreased. Further, it is worth noting that in the
purple region @), the control input of robot A is increased and
the reference trajectory is adapted, due to the loss of robot C
and the reduced capability of robot B.

C. DA3C for Multi-Robot Collaboration

To verify the proposed DA®C framework, three heteroge-
neous robots, the torque-controlled Kuka-iiwa (A), the Franka-
panda (B), and one position-based admittance controlled mo-
bile manipulator (C), are used to manipulate an object on a
surface (see in[Fig. 10), where both the object’s mass, and the
friction between the object and the surface are unknown. The
task is a circular motion and the maximum force for all the
robots is limited to 10 N, while the constant § (see Appendix
A) are set to 1, 2, and 3 N, respectively. For the torque-
controlled robots, the feedback gains K,,, K, in are set to
diag([16, 16, 16, 12, 12, 12, 12]) and diag([0.2, 0.2, 0.2, 0.1,
0.1, 0.1, 0.1]), respectively. The interaction between the object
and the robots is modelled with a spring-damper (stiffness
5000 N/m and damping 500 Ns/m). The physical simulation
and visualization are developed in MATLAB Simscape and
Simulink.

The object’s desired and actual trajectories, and the force
profiles of each robot are shown in The reference
trajectory is modified according to the control deficiency, due
to the limits on the robots’ force capabilities. Robot C does not
always track the desired force accurately, due to the admittance
controller. Thus, its safety zone is set larger (green area) to
always experience forces within its limits. Also, such force
deviations introduce further unmodelled interaction forces, due
to the formed closed-chain. Yet, each robot adapts its control
gains on-the-fly to cope with these deviations too.

VI. CONCLUSION

In this paper we propose a decentralized ability-aware adap-
tive control (DA3C)) framework for multi-robot collaborative

manipulation, which can handle uncertain system parameters,
input constraints and band-limited communication. The key
idea is that the force capability of each robot is maximized by
exploiting its null-space motion, while the designed adaptive
controller enables decentralized coordination according to the
capability of each robot. The proposed method achieves accu-
rate trajectory tracking irrespective of the low-level controllers,
and can be used for heterogeneous fixed-base and mobile-base
multi-robot systems. An open challenge is the inclusion of
joint position limits into the ability-aware adaptive controller.
In our future work, we plan to use DA3C for human-robot
co-manipulation experiments where the access to human’s
capability is not straightforward.

APPENDIX A
CONTROL INPUT WITH p-MODIFICATION

The control input with p-modification is written as

— 1 F) Fk
F, = m <Fk +/LFknmxsat <F§ >)

kmaz
Fk, [Pl < Ff e 24)
= 1+M (Fk + “kaax) o B> F
1+u (B = 1Fa) s Fi < —F{ 0,
where p is positive design constant, F,fmax = Fimaz — 0,

0 is a constant vector, 0 < 6 < Fipaw, and Fipee is the
maximum force of robot k& which is obtained from (15]). The
corresponding control deficiency can be calculated as

F
— F}.
kaax) b

APPENDIX B
LYAPUNOV STABILITY ANALYSIS
In order to match (T9) and (20), we can choose the ideal
gain matrices K7, K[, K7, and K], according to the
following forms:

AFk = Frmazsat ( (25)

ZBkKTk =

B ka —Bk.

A+ZBkak =
k=1

_ZBkKnk: - *7

Accordmg to the error dynamics in (21I)), we consider the
following Lyapunov function candidate:

(26)

V(eK) = eTPeJthr( KL Koy
1Krk) Ztr(K 'K, )

tr (WﬁFJWM) + Ztl’ (Ii'kaI‘ﬁijk) ,
k=1

Wk

+S (f( @7

k=1

"
] =

k=1
By using the adaptive law (22), the derivative of Lyapunov
functio decreases along the tracking error dynamics as

v (evka:kvkrkvknka-f{fka‘;v(ﬁk) =-e'Qe<0. (28)

3For two real column matrices @ € R™ and b € R™: tr (baT) =a7Tb.
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Fig. 10: A heterogeneous multi-robot team manipulates an object. The object’s circular motion is illustrated with respect to the yellow circle, which is fixed
in the world frame.

0.05
/é\ 0 actual trajectory
== - = —desired trajectory

. modified trajectory

-0.05

Robot A min Robot B min Robot C min
-0.05 0 0.05 0 5 10 15 20 5 10 15 20 0 5 10 15 20
Pi(m) t(s) t(s) t(s)

Fig. 11: Desired, modified reference and actual trajectory of the object (I1st column), and desired (dashed line) and actual (solid line) end-effector forces
of robot A (2nd column), robot B (3rd column) and robot C (4th column). By setting robot-specific safety zones (green region), the force of each robot is
guaranteed not to violate its actual limits after a few iterations.

Therefore, given a bounded reference input, we can conclude
that the system can achieve asymptotic tracking by using
Barbalat’s Lemma.
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