
Real-Time Motion Adaptation using Relative
Distance Space Representation

Yiming Yang, Vladimir Ivan and Sethu Vijayakumar
School of Informatics, University of Edinburgh, Edinburgh, UK

Email: {yiming.yang, v.ivan, sethu.vijayakumar}@ed.ac.uk

Abstract—Reacting to environment changes is a big challenge
for real world robot applications. This paper presents a novel
approach that allows the robot to quickly adapt to changes,
particularly in the presence of moving targets and dynamic ob-
stacles. Typically, a configuration space replanning or adaptation
is required if the environment is changed. Rather, our method
aims to maintain a plan, in a relative distance space rather than
configuration space, that can be valid in different environments.
In addition, we introduce an incremental planning structure that
allows us to handle unexpected obstacles that may appear during
execution. The main contribution is that the relative distance
space representation encodes pose re-targeting, reaching and
avoiding tasks within one unified cost term that can be solved
in real-time to achieve a fast implementation for high degree of
freedom (DOF) robots. We evaluate our method on a 7 DOF
LWR robot arm, and a 14 DOF dual-arm Baxter robot.

I. INTRODUCTION

In the field of robotics, motion planners usually take a snap-
shot of the environment, construct a model of the environment
and, using this mode, computes a trajectory consisting of a
series of robot configurations [1]. Each configuration typically
has one corresponding pose in working space (Figure 2a),
meaning that the robot trajectory in the world is fixed. Such
an approach is sufficient if the environment is known and
static. However, it is not suitable for real applications, where
the environment is changing and new objects may appear
and disappear. Controlling robots in dynamic environments
is one of the most difficult problems in robotics. It arises
in tasks such as manipulating moving objects, or interacting
with humans, as shown in Figure 1. The trajectory can be
invalidated due to various reasons, e.g. the trajectory is blocked
by obstacles, the target moves outside of the working envelope
of the robot, etc. In these cases, replanning is typically required
to calculate a new feasible plan. Replanning is, however,
an expensive process that causes delay, which makes real-
time implementation of fast, dynamic motion a significant
challenge.

There are different ways to allow robots to operate in
dynamic environments. One of them is to keep replanning
during execution based on the sensory information [2]. This is
a robust but also an expensive approach that normally can not
be used for tasks that require both accuracy and efficiency.
Recently, real time replanning following this approach has
been achieved by using many-core GPUs [3], where multiple
processors are created simultaneously to speed up the compu-
tation. Online replanning cost can be reduced by interleaving
planning with execution [4], where they split a whole trajectory

Figure 1: Robot-human close interaction. Left figure shows the robot’s
original motion, the right figure shows the adapted motion when
human subject pushes her hands to block the original trajectory.

into multiple sub-trajectories and only plan for one of them
at each step. One can also apply motion adaptation methods
such as Dynamic Movement Primitives (DMP) [5] when one
has access to a demonstrated trajectory, where any captured
motion gets encoded into a set of differential equations. These
methods can be used to handle perturbations during execution
[6] [7]. The Artificial Potential Field (APF [8]) method and
its derivatives have gained popularity in the field of mobile
robots to solve problems involving online collision avoidance.
APFs use the idea of imaginary forces acting on the robot,
where the obstacles have repulsive forces and target has an
attractive force. The robot is driven by the sum of all these
forces, calculated based on the minimum distance between
robot and obstacles/target. From this point of view, APFs can
be considered as a relative distance based approach. Park et
al. [6] introduced a dynamic potential field where the potential
field takes obstacles’ velocities into account to provide more
robust plans. Similar to global methods, the performance of
local planners such as APF can also be improved with the
aid of parallel computing [9]. A dynamical system (DS) based
approach is introduced in [10], where an original motion can
be modified on-the-fly to avoid convex obstacles. However,
it only considers the end-effector trajectory while there are
situations where the trajectories of other links are in collision
as well.

While these aforementioned methods aim to find valid
configuration space plans (Figure 2a), some approaches encode
the plans in alternate spaces [11] [12] (Figure 2b). Relationship
based representations have been studied in computer graphics
[13] [14] [15] for motion re-targeting problems and they have
been applied to robotics in [16], [15] and [17]. Rather than us-
ing configuration space, these methods represent the problems
in some alternate spaces in which the relationships between978-1-4673-7509-2/15/$31.00 ©2015 IEEE

sethu
Text Box
In: Proc. 17th IEEE International Conf. on Advanced Robotics (ICAR 2015), Istanbul, Turkey (2015).

Configuration
Space

Working
Space

Invalid

(a) One-to-one mapping from config-
uration space to working space.

Alternate
Space

Working
Space

Still
valid

(b) One-to-many mapping from alter-
nate space to working space

Figure 2: (a): the configuration space plan will be invalidated if the
working space state is in collision. (b): a state in alternate space is
still valid even if some of the working space states are in collision.

robot and environment are encoded, generating executable
plans by capturing relational invariances. The alternate space
states typically have multiple corresponding robot poses, as
shown in Figure 2b, such that the state can be still valid if some
of the corresponding poses are not. Typically these methods
need to know the relationship in advance and encode them
into the alternate space. In real world scenarios, there are many
situations in which one encounters unexpected and unmodelled
objects (e.g. moving obstacles, people) which is non-trivial to
handle online with these existing alternate space methods.

In order to allow the robots to handle unexpected objects,
for problems that involve reaching targets around dynamic
obstacles in particular, we present a relative distance based
space representation, in which we model the relative distances
between robot links, targets and obstacles. In addition, we
construct the relative distance space plan in an incremental
way, which gives the robot the ability to avoid not only
the obstacles which are known apriori during planning phase
but also the unexpected obstacles which are detected during
execution. We assume that there only exists one global minima,
such that we can employ a fast local method to remap from
relative distance space to joint space. In contrast to some other
end-effector trajectory adaptation methods, e.g. DS approach,
our method is able to adapt the trajectories of all robot links
simultaneously. We apply our approach on a 7 DOF robot arm
with a mock-up welding problem, as illustrated in Figure 1.
We also demonstrate the scalability of our method on a 14
DOF dual-arm Baxter robot with a water pouring task. In
both experiments, the robots operate in relatively unstructured
environments, where the robot needs to accomplish the tasks
while avoiding colliding with human.

II. RELATIVE DISTANCE SPACE

We will now present our method for capturing interactions
of the robot with its environment. Our objective is to create
a method that will: 1) capture the pose of the robot on
its own (for mimicking or pose re-targeting), 2) capture the
reaching behaviour (as the task objective), and 3) capture the
avoiding behaviour (obstacle avoidance). A representation that
simultaneously captures these three kinds of interactions would
provide a powerful tool for transferring, adapting, and planning
robot motion for a wide range of reaching and manipulation
tasks in environments with dynamic obstacles.

Assume a robot has N joints qi(i ∈ N) which control the

obstacle

target startφobs

φlink

φgoal

φobs
*

φlink
*

φgoal
* = 0

Figure 3: Desired and current relative distances. The target state Φ∗ =
[φ∗

link , φ
∗
goal , φ

∗
obs] is constructed before execution, and start/current

state Φ = [φlink , φgoal , φobs] is computed during each control
iteration. Not all of the relative distances are shown here, we only
show one example for each type of distances. Note that φobs is not
required if there is no obstacle.

robot’s links. The planning problem is formalized as

min
q1,...,qN

N∑
i=1

c(qi) (1)

where c(·) is the state-dependent cost function. Typically,

c(qi) = cpose(qi) + cgoal(qi) + cobs(qi) + crest(qi) (2)

where cpose(·) is the cost for maintain particular poses, cgoal(·)
is the cost for reaching goal, cobs(·) is the cost for collision
avoidance and crest(·) is the cost for other constraints such as
joint limits. However, we argue that since the first three costs
represent such closely-tied behaviours, i.e. reaching target in
a particular way while avoiding obstacles, one can unify them
into one cost term in relative distance space. That is

c(qi) = cD(qi) + crest(qi) (3)

where cD(·) is the cost in relative distance space states that
should solve pose re-targeting, reaching and avoiding in a
coherent, consistent way. ctD(qi) = ‖Φ∗ − Φt‖ denotes the
actual cost at time t, where Φ∗ is the desired state in relative
distance space, and Φt is the state at time t. The rest of this
section explicitly explains how to compute Φ∗ and Φt.

We attach M number of virtual points pj (j ∈ M) to the
robot’s links. These virtual points are usually joint and end-
effector positions. We will also attach E number of virtual
points pe (e ∈ E) to the centre of the obstacles in the
environment. The relative distance space models the edges
(φjl) between each pj and pl, l ∈ M ∪ E and j 6= l. Note
that pj always represents a robot link and pl represents another
object (other robot links, targets, obstacles), meaning that we
model three different types of distances (Figure 3):

1) φjl = φlink , if pl is a point on different robot link.
2) φjl = φgoal , if pl is a point on target.
3) φjl = φobs , if pl is a point on obstacle.

Note that we ignore the fourth type where j, l ∈ E, since the
edges between two environmental objects are not controllable.

We define the relative distance between robot links as

φlink = wjl‖pj − pl‖, (4)

where wjl is the weighting factor of the edge between pj and
pl. For φgoal and φobs , the relative distance can be Euclidean,
e.g. φjl = wjldjl, djl = ‖pj − pl‖. However, this will cause
a series of problems. For example, distant targets will have
a dominant influence on the motion. We can apply a non-
linear growth model ψ(j, l) on the distance metric to generate a
smoother and more robust behaviour for targets and obstacles:

φjl = wjlψ(j, l). (5)

Different non-linear models can be applied here. In general,
from a reaching and avoiding point of view, distant obstacles
should not affect the robot, and distant target should not
introduce unacceptable large effort. An inverse exponential
model has the property that starts from the origin and quickly
converges to a maximum value, based on which here we show
one possible model for handling the interactions with targets
and obstacles

ψjl = 1− e−kdjl , (6)

where k > 0 is a constant. The relative distance increases
exponentially with djl, and converges to a maximum value 1
(φjl converges to wjl). A distant obstacle (djl � 0) will not
affect the robot if we set φ∗obs = wjl = wsafe , i.e. φ∗obs ≈
φobs = wsafe , where wsafe is a non-negative constant. For
reaching task, we set φ∗goal = 0, meaning that a distant target
can only introduce a prescribed maximum effort to the system,
i.e. ‖φ∗goal − φgoal‖ ≤ wjl,∀d ≥ 0.

In order to solve a motion transfer, adaptation and planning
problem, we require the current state Φt, which we compute
using Equations 4-6, and a desired state

Φ∗ = [φ∗link , φ
∗
goal , φ

∗
obs] (7)

φ∗link constrains robot poses that can be used for imitation
problems, where the reference value φ∗link can be computed
from demonstration data. Minimizing the difference between
the demonstrated and current relative distances will then result
in transferring the motion based on the relative distances
between the links. However, from target reaching point of view,
the robot pose is often used as a secondary task, along side
a primary reaching task, or it is not used at all. In this case,
the relative link distance term can be ignored entirely. φ∗goal is
usually set to zero for reaching tasks. One can also set φ∗goal
to other values, e.g. keeping the end-effector and target with
particular distance. φ∗obs = wsafe , as discussed earlier.

We construct the desired relative distance space target Φ∗

by combining all three distance terms: φ∗link, φ∗goal and φ∗obs .
The state is, however, only valid if we keep updating the posi-
tions of the links, obstacles and target. We use an operational
space controller to track the changes in the environment. For
this we require the Jacobian of the relative distance space.

First we compute end-effector Jacobian of the points pl
using standard kinematics tools as

Jeff =
∂Φeff (q)

∂q
∈ R3M×N , (8)

where Φeff (q) is the joint space to end-effector space forward
map. Our goal is to find the Jacobian between relative distance
space and joint space

J =
∂Φ(q)

∂q
= W

∂Ψ

∂q
∈ RX×N , (9)

where X = (M+E)(M+E−1)
2 , W is the weighting matrix and

Ψ = [ψjl], j ∈ M, l ∈ M ∪ E. The distances between two
obstacles or obstacle and target are not considered, so the
number of controllable distances is X .

Jx,i =
∂φjl
∂qi

= wjl
∂ψjl
∂qi

, (10)

where x ∈ X , and ∂ψjl ∈ [∂ψlink

∂qi
,
∂ψgoal

∂qi
, ∂ψobs

∂qi
] depend on

edge types. If pose retargeting is required,

∂ψlink

∂qi
= d̄j1j2 =

(pj1 − pj2) · (Jeff
j1,i
− Jeff

j2,i
)

djl
, (11)

otherwise ∂ψlink

∂qi
= 0. Here, · is the dot product, and Jjntj,i ∈

R3×1 is the position Jacobian of point pj w.r.t. the joint i.

For target reaching and collision avoidance, φjl ∈
{φgoal , φobs}, the first derivative of Equation 6 yields

∂ψjl
∂qi

= kd̄jle
−kdjl , (12)

where d̄jl is the relative distance Jacobian to end-effector space

d̄jl =
(pj − pl) · Jeff

j,i

djl
. (13)

Note that the Jacobian entries for goal and obstacles are the
same, however, since they have different desired value, φ∗obs 6=
φ∗goal , the effect of their Jacobian entries are different.

Now we have the desired relative distance space state Φ∗,
current state Φt and the Jacobian that are required by the cost
function (Equation 1 and 3). In general, this problem can be
solved by any optimization based planners. However, from a
real-time implementation point of view, we choose a Jacobian-
pseudo-inverse IK type controller due to its simplicity and
efficiency. We discuss the performance in Section III-B.

III. INCREMENTAL PLANNING STRUCTURE

For the obstacles which are known in advance, their relative
distances can be encoded during planning phase. However,
when we deal with unexpected obstacles, such as humans
walking into the workspace of the robot, we have to modify
the distance relationship space on the fly in order to avoid
the costly replanning. This will involve adding and removing
obstacle vertices, as illustrated in Figure 4.

A. Incremental Planning Structure

Assume we have a desired alternate space target

Φ∗ = [φ∗0, φ
∗
i , . . . , φ

∗
M+E] ∈ R(M+E)×(M+E) (14)

where M + E is the number of vertices (links, obstacles and
targets combined), and

φ∗i = [φ∗i0, φ
∗
i1, . . . , φ

∗
i,M+E]T (15)

target

start

φobs

Φt=0

Φt=t1

Φt=t2

Φ*

add φobs

remove φobs

obstacle

Figure 4: Incremental planning structure, i.e. modifying the relative
distance state online. The desired state Φ is computed without
obstacle. The robot starts from a state (Φt=0) with no local obstacle.
Obstacle is detected at time t1, new entries will be added into both
Φ∗ (φt=t1

obs = wobs) and Φt=t1 . At time t2 > t1, the obstacle is no
longer close to the robot, the entries for the obstacle are removed.

is the vector that describes the desired distances between vertex
i and all other vertices. When a new obstacle k is detected,
the original goal Φ∗ is no longer valid. We want to have a new
target in alternate space in the form of

Φ∗new =

[
Φ∗ φ∗k
φ∗k

T 0

]
∈ R(M+E+1)×(M+E+1). (16)

Note that Φ∗ is still valid since it only depends on old vertices,
meaning that we only need to compute φ∗k and reuse the old
plan as part of the new plan. The key to achieving real-time
implementation is to minimise online computation. In our case,
it is straight forward to get φ∗k and modify the plan without
heavy computation. From Equation 15 we have

φ∗k = [φ∗k0, φ
∗
k1, . . . , φ

∗
k,M+E]T (17)

= [w0
safe , w

1
safe , . . . , w

M+E
safe]T (18)

where wmsafe ,m ∈ M ∪ E are the distances that the obstacle
needs to keep from other objects (robot links). In practice
these distances may vary based on the shape of the links and
obstacle, their velocities, etc. When we add new obstacles, we
only need to resize the distance space, keeping the old plan for
the existing vertices, and fill in φ∗k to get a new plan Φ∗new. We
can continuously add or remove vertices to the distance space
during execution without the need to perform replanning.

B. Complexity Analysis

In this section we analyse the computational complexity
of our approach. In our experiments we assume that the
state is valid when the robot’s pose is collision free and the
end-effector gets closer to or is at the target position. The
computation can be separated into two main steps: construc-
tion phase and solving phase. In the construction phase, we
compute the current relative distance space state, Φ, and the
relative distance space Jacobian, J. The desired state Φ∗ is
calculated once before execution, and it will get modified when
new obstacles are detected, also, during construction phase.
In solving phase, we solve operational space control problem
using Equation 1 and 3. The order of complexity of the method
is O(1

2M(M + E)) in the worst case where we consider

φgoal
φlink

φobs

obstacle

target

current
pen pose

desired
pen pose

Figure 5: LWR mock-up welding experiment setup. The LWR robot
arm is mounted with a laser pen, the task is to use the laser pen
to weld along the target surface. We add an additional virtual point
along the pen, and set its desired position to be above the real laser
tip, such that the robot will keep the pen orthogonal to the surface.
The lines represent the current relative distances, φlink in grey, φobs

in red, and φgoal in green.

edges between all robot links and all obstacles and targets.
Furthermore, if we consider a reaching problem, without the
pose re-targeting, we can omit the edges between the robot
links entirely, which reduces the computational complexity to
O(ME).

We analyse the computational time of our method with
different total number of edges X = M + E on a reaching
problem. The increase of the construction time is negligible
compared to the increase of the solving time. An evaluation
of maximum controlling speed with different X is illustrated
in Table I. The result suggests that the proposed method can
solve the adaptation problem in most common scenarios very
efficiently. We have used a 3GHz Intel Core 2 Quad CPU.

Table I: Maximum controlling frequency with different space size
X = M + E. For example, X = 10 can be used for single arm
(M = 7) robot in simple environment (1 target and 2 obstacles, i.e.
E = 3). In contrast, X = 20 should be more than enough for single
arm robot in most complex environment (e.g. KUKA LWR, Figure 5),
X = 30 should be sufficient for a dual-arm upper body robot (e.g.
Baxter robot, Figure 9), and X = 50 for humanoids.

Space Size (X) 10 20 30

Control Speed (Hz) 750± 50 630± 20 600± 30

Space Size (X) 50 70 100

Control Speed (Hz) 490± 20 350± 10 215± 5

IV. EXPERIMENTS

We evaluate our approach with two different experiments.
The first experiment uses a 7 DOF KUKA LWR robot arm
to mock-up a dynamic welding task (Section IV-A), and the
second experiment is a liquid pouring task in a close robot-
human interaction scenario on a 14 DOF dual-arm Baxter robot
(Section IV-B). The experiment setup will be detailed in each
section accordingly. The tasks are implemented using EXten-
sible Optimization Toolset (EXOTica)1, which is a planning

1EXtensible Optimization Toolset (EXOTica) planning framework.
http://wcms.inf.ed.ac.uk/ipab/slmc/research/EXOTica

(a) Incremental planning, adding new obstacle information to the original plan.

Obstacle

Start Pose

Original
Goal Pose

Adapted
Goal Pose

Obstacle

(b) Trajectory Adaptation.

Figure 6: (a): A new obstacle (unconnected one) is detected during execution, then new relative distances will be added into the original state
when it gets close. (b) Example of trajectory adaptation, where the green lines are the original (end-effector and elbow) trajectories and the
red ones are the adapted trajectories under multiple obstacles constraint.

Figure 7: Experiment results on LWR robot hardware. Each figure contains two sub figures, where the right one is the real world environment,
and left is the corresponding simulated environment. Top left figure shows the original task without (close) obstacle; top right figure shows
that new obstacles are added into the relative distance space state on the fly; bottom figures show the avoiding behaviour when the human gets
close.

framework for solving robotics motion planning problems.

A. LWR Mock-up Welding Task

In the first experiment we aim to show that an accurate
manipulation task can be accomplished by only using rela-
tive distance based representation. The experiment setup is
illustrated in Figure 5. In addition, we add an extra virtual
end-effector along the physical end-effector’s z axis and a
corresponding virtual target to keep the laser pen orthogonal to
the target plane. We set different weighting factors for the laser
tip, virtual point and obstacles (wtip > wobstacle � wvirtual),
so that the pen will be kept orthogonal to the target if there
is no other constraints. The orientation will be sacrificed
to ensure physical end-effector position and collision free
constraints in presence of obstacles. We use a real-time object
pose recognition and tracking framework [18] to detect and
track the target.

The robot links’ collision bodies are represented by a set
of spheres with radius of 7cm and the safety threshold wsafe =
5cm. The number of φobs can vary based on the number of
obstacles. Since this is a reaching and avoiding problem, the
robot pose constraint is not considered, i.e. φ∗link = φlink = 0.

We run the experiment with four different scenarios: 1)
static target without obstacles, 2) moving target without ob-
stacles, 3) static/moving target with dynamic obstacles present
before planning started, and 4) static/moving target with unex-
pected obstacles present during execution. We record the laser
tip position error and the pose offset over a same time duration
across the four scenarios. The position error is illustrated in
Figure 8a, where the y axis is the Euclidean error between
real laser tip position and desired ones. We can see that
during all experiments, the errors of the laser tip are very
small (1.1±0.44mm). The error during the second scenario is
larger due to the fast movement of the target. In the presence

1 2 3 4

En
d-

ef
fe

ct
or

 P
os

itio
n

Er
ro

r (
m

)

0

0.005

0.01

0.015

0.02

0.025

0.03
End-Effector Position Error

Static Target, No Obstacle
Moving target, No Obstacle
Pre-known Obstacle
Unexpected Obstacle

1 2 3 4

O
rie

nt
at

io
n

O
ffs

et
 (d

eg
re

e)

0

10

20

30

40

50

60
Orientation Offset

Static Target, No Obstacle
Moving target, No Obstacle
Pre-known Obstacle
Unexpected Obstacle

(a) End-effector position error.

1 2 3 4

En
d-

ef
fe

ct
or

 P
os

itio
n

Er
ro

r (
m

)

0

0.005

0.01

0.015

0.02

0.025

0.03
End-Effector Position Error

Static Target, No Obstacle
Moving target, No Obstacle
Pre-known Obstacle
Unexpected Obstacle

1 2 3 4
O

rie
nt

at
io

n
O

ffs
et

 (d
eg

re
e)

0

10

20

30

40

50

60
Orientation Offset

Static Target, No Obstacle
Moving target, No Obstacle
Pre-known Obstacle
Unexpected Obstacle

(b) Laser pen orientation offset.

Figure 8: (a): In all four scenarios, the laser tip errors are very small
(1.1 ± 0.44mm). Note that the error in the second scenario is larger
due to the random fast movement of the target. (b): Pen orientation
offset that keeps the laser orthogonal to the target surface, it will
be sacrificed to maintain the end-effector position in the presence of
obstacles. The offsets in scenario 3 and 4 are at the same level, the
slight difference is due to random noise.

of obstacles, the orientation is sacrificed to ensure laser tip
position and collision free constraints (Figure 8b). Examples
of adapted motion in simulation is shown in Figure 6. Note
that the robot can adapt not only end-effector trajectory, but
also the trajectories of all links. Figure 6b shows an example
of adapting end-effector and elbow trajectories simultaneously.

In real world experiments, human subject’s motion are
tracked in real-time using XSENS motion tracking system. A
set of obstacles are created to represent the human subject, as
shown in Figure 7. Each figure consists two subfigures, left
and right ones, where the right one is the snapshot of the real
world environment and left one is the corresponding simulated
environment. These results show that we can accomplish ac-
curate manipulation tasks under dynamic obstacle constraints.

B. Baxter Liquid Pouring Task

In this experiment, we evaluate the scalability of our
method on a 14 DOF Baxter robot (Figure 9). The robot holds
a cup with one hand, keeps it horizontal and uses the other
hand to grasp a bottle to simulate a water pouring task. We
use one big unified relative distance space state to encode
the tasks for both hands as well as the possible collision
avoidance constraints. Similar to the laser pen orientation
in last experiment, here we add extra virtual point (centre
of the bottle) to maintain the cup and bottle’s orientation.
Two goal distances are specified, i.e. φ∗goal(tip) = 0 and
φ∗goal(centre) = dc, where the first one is used to make sure
the bottle’s tip is at correct position and the later one is used
to control the pouring angle. In practice, we set dc to zero,
meaning that the bottle should be kept orthogonal to the cup.

The experiment consists of three different scenarios: 1)
perturb the robot from the side on which the hand is holding
the bottle; 2) perturb the robot from the side on which the
hand is holding the cup, where the cup’s desired position is
not fixed, meaning the robot can shift both arms to avoid the
human; and 3) move the cup randomly by moving the robot’s
hand. The task here is to keep the bottle tip directly above
the cup and keeps the bottle as orthogonal as possible. The
result (Figure 10a) shows that in most cases the bottle can

φgoal (tip)
φgoal
* (tip) = 0

φgoal (centre)
φgoal
* (centre) = dc

obstacle

Figure 9: Baxter water pouring experiment. The robot holds a cup
with one hand and a bottle with the other hand. The main task is to
keep the bottle tip above the cup and avoid obstacles, the secondary
task (lower weighted) is to keep a certain orientation between the
bottle and the cup. The poses in both figures are equivalent in relative
distance space, (i.e. φ∗

goal(tip) = 0, φ∗
goal(centre) = dc, where dc

is a constant (the length of the solid green line). In practice we set
dc = 0, i.e. keep the bottle orthogonal to the cup.

S1 S2 S3

Bo
ttl

e
Ti

p
Er

ro
r (

m
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Bottle Tip Error

S1: Static Cup
S2: Adapted Cup
S3: Moving Cup

S1 S2 S3

O
rie

nt
at

io
n

O
ffs

et
 (d

eg
re

e)

0

2

4

6

8

10

12

14

16

18

20
Bottle Orientation Offset

S1: Static Cup
S2: Adapted Cup
S3: Moving Cup

(a) Bottle tip position error.

S1 S2 S3

Bo
ttl

e
Ti

p
Er

ro
r (

m
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Bottle Tip Error

S1: Static Cup
S2: Adapted Cup
S3: Moving Cup

S1 S2 S3

O
rie

nt
at

io
n

O
ffs

et
 (d

eg
re

e)

0

2

4

6

8

10

12

14

16

18

20
Bottle Orientation Offset

S1: Static Cup
S2: Adapted Cup
S3: Moving Cup

(b) Bottle orientation offset.

Figure 10: (a): The bottle tip position error. The error in S3 is larger
due to the fast random movement of the cup that the robot failed to
follow. (b): The orientation offsets from the desired pouring angle,
the offsets are at a similar level across different scenarios.

be placed in the correct place with an acceptable mismatch
(0.1cm-1cm). The error in the third scenario is larger due
to the fact that the robot can not follow the cup when it is
moved by human with high velocity. Orientation offsets are
similar across three scenarios as shown in Figure 10b, which
suggests that the robot is able to "pour" the liquid into the
cup with an acceptable pouring angle under dynamic obstacle
constraint. Examples of adapted motions under each scenario
are illustrated in Figure 11. The video of the experiments is
available at https://youtu.be/A1dhiLyLo5U.

V. DISCUSSION

The experiments show that the proposed method can be
used for solving accurate manipulation tasks with moving
target and dynamic obstacles. The robot can avoid not only
the existing obstacles, but also obstacles that are arbitrarily
added into the scene during the execution.

Our method has a few limitations, one of which is the
local minima problem. Although relative distance space plan
can adapt to environmental changes, the robot still fails to
converge to the target in some situations (e.g. trapped in large
concave or long convex obstacles), where a global replanning
is required to find another valid plan. Another limitation is

Figure 11: Experiment 2: Baxter robot water pouring task. In the first scenario (column 1), the human subject only disturb the robot from
the left, the cup’s position is fixed, the robot needs to adapt its right arm (with bottle) to fill the water while avoiding human; in the second
scenario (column 2), the robot gets perturbed from the right, which means it needs to move its left arm (with the cup) to another collision free
pose, and meanwhile the relationship between the bottle and cup needs to be maintained; in the third scenario (column 3), the cup’s position
is controlled by another human subject, the robot needs drive its right hand with the bottle to follow the cup while avoiding the human.

that, the method creates relative distance space plans based
on end-effector space or configuration space trajectories. One
may argue that if there exists a way to provide the original
trajectory in relative distance space, then the proposed method
can be used directly.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel method to encode pose re-
targeting, reaching and avoiding problems into an unified term,
the relative distance space. By constructing this space, we
model the relative distances between robot links, targets and
obstacles. An incremental planning structure is also proposed
that allows the planner to manage the relative distance space
in a dynamic way, which gives us the ability to interact
with unexpected obstacles. We evaluated the system on two
platforms with different tasks, showing that the proposed
method can be applied to various realistic applications.

Future work will be focused on detecting local minima in
relative distance space and then finding a new feasible plan,
e.g. global replanning or selecting an alternate plan from some
pre-calculated dictionary of initial plans.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cam-
bridge University Press, 2006.

[2] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime Motion Planning using the RRT*,” in ICRA, pp. 1478–
1483, May 2011.

[3] J. Pan and D. Manocha, “GPU-based parallel collision detection
for real-time motion planning,” in Algorithmic Foundations of
Robotics IX, pp. 211–228, Springer, 2011.

[4] C. Park, J. Pan, and D. Manocha, “High-DOF Robots in
Dynamic Environments Using Incremental Trajectory Optimiza-
tion,” IJHR, 2014.

[5] S. Schaal, “Dynamic movement primitives-a framework for
motor control in humans and humanoid robotics,” in Adaptive
Motion of Animals and Machines, pp. 261–280, Springer, 2006.

[6] D.-H. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement
reproduction and obstacle avoidance with dynamic movement
primitives and potential fields,” in Humanoids, pp. 91–98, 2008.

[7] P. Englert and M. Toussaint, “Reactive phase and task space
adaptation for robust motion execution,” in IROS, pp. 109–116,
2014.

[8] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots,” in Robotics and Automation, pp. 500–505, 1985.

[9] K. B. Kaldestad, S. Haddadin, R. Belder, G. Hovland, and
D. A. Anisi, “Collision avoidance with potential fields based
on parallel processing of 3D-point cloud data on the GPU,” in
ICRA, pp. 3250–3257, IEEE, 2014.

[10] S. M. Khansari-Zadeh and A. Billard, “A dynamical system
approach to realtime obstacle avoidance,” Autonomous Robots,
vol. 32, no. 4, pp. 433–454, 2012.

[11] E. S. Ho and T. Komura, “Character motion synthesis by
topology coordinates,” in Computer Graphics Forum, vol. 28,
pp. 299–308, 2009.

[12] E. S. Ho, T. Komura, and C.-L. Tai, “Spatial relationship
preserving character motion adaptation,” ACM Trans. Graph.,
vol. 29, no. 4, p. 33, 2010.

[13] R. A. Al-Asqhar, T. Komura, and M. G. Choi, “Relation-
ship descriptors for interactive motion adaptation,” in ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
pp. 45–53, ACM, 2013.

[14] E. Ho, T. Komura, S. Ramamoorthy, and S. Vijayakumar,
“Controlling humanoid robots in topology coordinates,” in IROS,
pp. 178–182, 2010.

[15] V. Ivan, D. Zarubin, M. Toussaint, T. Komura, and S. Vijayaku-
mar, “Topology-based Representations for Motion Planning and
Generalisation in Dynamic Environments with Interactions,”
IJRR, vol. 32, pp. 1151–1163, 2013.

[16] E. Ho and H. Shum, “Motion adaptation for humanoid robots
in constrained environments,” in ICRA, pp. 3813–3818, 2013.

[17] T. Nierhoff, S. Hirche, W. Takano, and Y. Nakamura, “Full body
motion adaption based on task-space distance meshes,” in ICRA,
pp. 1865–1870, 2014.

[18] K. Pauwels, V. Ivan, E. Ros, and S. Vijayakumar, “Real-
time object pose recognition and tracking with an imprecisely
calibrated moving RGB-D camera,” in IROS, pp. 2733–2740,
2014.

