
PoseFusion2: Simultaneous Background Reconstruction and Human
Shape Recovery in Real-time

Huayan Zhang1, Tianwei Zhang1,∗, Tin Lun Lam1,2,∗, and Sethu Vijayakumar3,4

Abstract— Dynamic environments that include unstructured
moving objects pose a hard problem for Simultaneous Localiza-
tion and Mapping (SLAM) performance. The motion of rigid
objects can be typically tracked by exploiting their texture and
geometric features. However, humans moving in the scene are
often one of the most important, interactive targets – they are
very hard to track and reconstruct robustly due to non-rigid
shapes. In this work, we present a fast, learning-based human
object detector to isolate the dynamic human objects and realise
a real-time dense background reconstruction framework. We go
further by estimating and reconstructing the human pose and
shape. The final output environment maps not only provide the
dense static backgrounds but also contain the dynamic human
meshes and their trajectories. Our Dynamic SLAM system
runs at around 26 frames per second (fps) on GPUs, while
additionally turning on accurate human pose estimation can be
executed at up to 10 fps.

I. INTRODUCTION

Increasingly, robots are expected to work in close collab-
oration with humans in dynamic environments. Such collabo-
rative working spaces may contain multiple types of dynamic
objects that invalidate classical SLAM frameworks. Many
recent works [1], [2], [3], [4] have addressed the problem by
attempting to identify and remove the dynamic objects, in
order to apply the classical static SLAM frameworks. These
methods directly remove dynamic objects to improve the
robustness of the front-end visual odometry (VO) and cannot
represent the interactive targets (e.g., humans) of the robot.
The reconstruction of dynamic human object is challenging
for the SLAM system. Because, first, tracking of non-rigid
surfaces poses difficulties for the visual odometry of moving
cameras. Second, non-rigid surface representation is very
expensive for 3D rendering.

In this paper, we focus on the human rich dynamic envi-
ronments and propose a real-time dynamic SLAM solution
with human object recovery. We firstly follow the human
segment removal idea of PoseFusion (PF) [1] — adopting
learning-based method [5] detect and remove human objects
for precise static background reconstruction. We then recover
them using SMPL [6] human models for robot interaction.
Finally, the recovered meshes, human motion trajectories,

1The Shenzhen Institute of Artificial Intelligence and Robotics for Society
(AIRS), 518129 Shenzhen, China.

2The Chinese University of Hong Kong, Shenzhen, 518172 Shenzhen,
China.

3The School of Informatics, University of Edinburgh, Edinburgh and The
Alan Turing Institute, UK.

4The author is a visiting researcher with the Shenzhen Institute of
Artificial Intelligence and Robotics for Society (AIRS).

∗Corresponding Author: zhangtianwei@cuhk.edu.cn;
tllam@cuhk.edu.cn

Frames: 62 73 82 91 100

Fig. 1: Dynamic Scene Reconstruction. Our proposed method
performed dynamic human object removal, tracking and recovery
and static environment mapping in 26 fps. The green line is the
estimated human moving trajectory.

and camera trajectory are presented within the reconstructed
static background maps. Our contributions are:
• A fast learning-based method to track moving humans

and to filter the background’s residual human bodies
(around 26 fps without online mesh rendering).

• An improved loop closure in long distance/large area
dynamic human environments.

• A fast human pose and shape recovering pipeline to
stack the dynamic human meshes with their moving
trajectories.

II. RELATED WORKS

A. Dynamic SLAM solutions

Most of the existing dynamic SLAM solutions try to
deal with the dynamic environment problem by finding and
removing dynamic objects. Based on their object recognition
approaches, we divide the current state-of-the-art into motion
segmentation-based and object detection-based methods.

Object detection-based dynamic SLAM methods usu-
ally utilize advanced deep learning-based object detectors to
remove dynamic objects, and then enable the classical static
SLAM frameworks in the dynamic environments. Zhang
et al. [1] combined Openpose [7] skeleton estimator into
ElasticFusion (EF) [8] to remove dynamic human body point
clouds in dense background reconstruction. Bescos et al. [2]



Reconstruction with Human Recovery

Joint EstimationRGB Image Human Detection Human Model

Depth Image Depth Filter Visual SLAMDepth Cut

𝒞𝑖

𝒟𝑖

ℎ𝑖

𝒟𝑏

ℎ𝑖
𝑡

𝒞𝑖
ℎ

𝒯𝑖

𝑝𝑐

Fig. 2: Approach Flowchart. We adopt a fast Dual Bounding Box (the yellow and red boxes) object detector to separate humans objects
from backgrounds. The segmented human shapes are recovered to human models and finally represented together with reconstructed
backgrounds.

proposed DynaSLAM which applied Mask-RCNN [9] to
detect human objects in RGB images and adopted ORB-
SLAM2 [10] for camera tracking. The Mask-RCNN outputs
accurate human silhouettes, but it takes abound 300 ms per
frame.

Motion segmentation based approaches attempted to
find dynamic pixels or point clouds rather than recognizing
moving objects. Scona et al. proposed StaticFusion [3] that
combined scene flow computation with EF’s Visual VO
to achieve real-time static background reconstruction in a
small-sized room. Judd et al. provided a multi-object motion
segmentation method in [4], which applied sparse feature
points alignment to separate and track multiple rigid objects.

B. Dynamic Human Reconstruction

The general solution for dynamic object reconstruction
in dynamic environments is to omit the rigid backgrounds
and explicitly model the scene’s non-rigid components. Tra-
ditional methods use the pre-scanned template and match
the template to live RGB or RGB-D streams, a recent work
based on this idea is e.g., livecap [11]. They developed the
deep learning framework of template-based human motion
tracking and obtained real-time performance. Another is
the volumetric approach. Newcombe et al. proposed the
first template-free on-the-fly framework in [12] for non-
rigid surfaces reconstruction. More recently, SurfelWarp [13]
extended this framework and cut down the memory and
computation cost by employing Surfel rather than a 3D
volume representation.

To deal with the noise and reduce online computation, an-
other group of methods fit learned human models, e.g., SM-
PLify [6] and SMPL-X [14], to sparse Pose Estimation
results for shape recovery. Kanazawa et al. proposed Human
Mesh Recovery (HMR) [15] which developed a Generative
Adversarial Network to recover 3D SMPL human shapes
from the estimated 2D joint key-points. Based on HMR,
Muhammed et al. developed an efficient Video Inference for
Human shape Estimation (VIBE) [16].

C. Human Shape Recovery within SLAM

In terms of Human Shape Recovery in SLAM applica-
tions, there are not many exemplars yet that work robustly.
The first attempt was [17]. The authors take dense RGB-
D SLAM reconstruction results and SMPL-X human model
as input to generate Offline Static data, which contain
expressive 3D human bodies that naturally interact with the
3D environment. Then, Rosinol et al. proposed a human node
concept in dynamic SLAM scene and a graph CNN approach
to regress SMPL vertices and track the human torsos in
[18]. More recent, Li et al. proposed SplitFusion (SpF) [19]
which, in parallel, reconstructs rigid backgrounds and non-
rigid human objects.

Overall, dense key-point tracking based non-rigid dy-
namic human reconstructing methods such as [19] [12] [13]
are able to show more surface details e.g., hairs, clothes
folds and emotions. However, it’s hard to improve noise
robustness and online efficiency. Model-based human shape
estimation approaches, such as [14] [16] [15] can efficiently
output barebone 3D human meshes with the help of fast
learning-based 2D human pose estimation tools. This scheme
is promising for real-time systems and the basic human
mesh is good enough for Human Robot Interactive (HRI)
applications. However, these model based methods require
rich body joint movement input to ensure accurate whole
body shape recovery. This requirement is usually hard to
satisfy in SLAM systems where human target moves in close
proximity to the mobile robots.

III. SYSTEM FRAMEWORK AND METHODS

In this study, we present a fully automatic system which
simultaneously reconstructs static background and recover
3D dynamic human objects in the environments. To improve
the loop closure performance in dynamic environments, we
integrates BundleFusion [20] as the baseline method. Differ-
ent from SpF, as a trade-off between real-time performance
and human mesh accuracy, we implement human tracking
in feature-based SLAM and reconstruct dynamic 3D human
silhouette bodies using the model-based method. The method
pipeline is shown in Fig. 2. The various components of the



Algorithm 1 Human Detection and Outlier Filtering

Input: Color image Ci and Depth image Di
Output: Human detection Dh and Filtered background Db

1: h← human_detection(Ci)
2: for each hti ∈ hi do
3: Dth,Db ← scene_separation(Di, hti)
4: htmin, h

t
max ← compute_histogram(Dth)

5: end for
6: bmin, bmax ← compute_histogram(Di)
7: for each hti ∈ h do
8: xtul, y

t
ul, x

t
lr, y

t
lr ← magnify_range(λ ∗ hti)

9: for u ∈ (ixtul,
i xtlr), v ∈ (iytul,

i ytlr) do
10: if Db(u, v) /∈ (bmin − 0.1, bmax + 0.1) then
11: Db(u, v)← 0
12: end if
13: if Dth(u, v) /∈ (htmin − 0.2, htmax + 0.2) then
14: Db(u, v)← Dth(u, v)
15: Dth(u, v)← 0
16: end if
17: end for
18: end for

pipeline are detailed in the following section: 1) we adopt
a fast Bounding Box (BBox) object detector to separate
humans from backgrounds (Section III-A); 2) we remove
and track the moving human objects for static backgrounds
reconstruction using a dual BBox method (Section III-B); 3)
finally the separated human segments are fed into 2D pose
and 3D shape estimation (Section III-C).

A. Fast Human Detection and Outlier Filtering

An RGB-D stream is taken as input, where the image
pair is denoted as fi = (Ci,Di), where Ci : Ω → R3 and
Di : Ω→ R stand for the i-th color image and depth image,
respectively. Ω ⊂ R2 is the image domain. Fig. 2 shows
the system framework, each human body is detected by a
learning-based algorithm, and human detection is refined
based on geometric relationship. The RGB frame Ci is first
input into YOLOv4 [5] for human detection. YOLOv4 is
a one-stage detection method that can detect 80 types of
objects in the RGB image. To speed up object detection as
much as possible, we applied an accelerated implementation
of YOLOv4 named tkDNN. It speeds up the inference of
YOLOv4 while maintaining accuracy.

Once the object is detected, the categories, bounding
boxes, and confidence of all objects in the scene can be
derived. The bounding box is composed of the coordinate
values of the upper left point (xul, yul) and the lower right
point (xlr, ylr) in the image plane. We store N bounding
boxes containing human bodies with confidence c > 0.5
as a set hi = {h1i , h2i , ..., hNi }, where N is the number of
humans detected in Ci. We use hti = (ixtul,

i ytul,
i xtlr,

i ytlr) to
represent the t-th bounding box in hi. The detected human
body is treated as the non-rigid object in our framework,
which is only used for human motion tracking and recovery.
The static part will be used for performing SLAM.

However, it is not feasible to remove the range of the
human body in the depth image directly based on the
detection results in the RGB image. The reasons are as
follows:
• The object detector may output an incomplete bounding

box of human detection.
• The depth image and color image are not strictly

aligned, which may lead to the human bodies’ residual.
• The high-speed movement of the human and the depth

camera results in the blur of the captured image, and
the depth ranging based on ToF will be disturbed.

To deal with these problems, we remove the remnant
outliers based on geometric features in the depth image.
Considering that the outliers are near the bounding boxes
hi, their depth values must be close to the human body. We
use histogram statistics to detect abnormal depth values. The
data distribution of the human part will differ significantly
from the background. We first divide Di into background Db
and human parts based on hi. Each human part is denoted
by Dth. Then, we can get the histograms of Db and each
Dth. For the interval with the most occurrences, we use it as
the principal component of Db and each Dth. It means that
the depth of Db is mainly in interval (bmin, bmax), and each
Dth is mainly in interval (htmin, h

t
max). To preserve more

background details, we filter the abnormal depth near each
hti and recover parts of the background. More specifically,
we extend the filtering range to λ ∗ hti to filter boundary
depth residuals. λ is an experimentally selected constant.
After the above steps, the filtered background Db is used for
performing SLAM. The human detection Dh is input to the
next step. The pseudocode for human detection and outlier
filtering is presented in Algorithm 1.

B. Human motion tracking

Human motion tracking aims to find the movement
trajectory of each human character during SLAM. From
the previous stage, we have the human detection Dh and
filtered background Db. We firstly estimate the camera pose
in the world coordinate system Fw. The initial position of
the camera is taken as the origin of Fw. Then, we calculate
the position of each human in the camera coordinate system
Fc. Based on temporal and spatial patterns, we finally get
the movement trajectory of each human.

Following the RGB-D fusion framework [20], the camera
pose Ti ∈ SE(3) is estimated by using an efficient global
pose algorithm. Ti denotes a 4 × 4 rigid transformation
relative to Fw. It is formulated as an optimization problem
of sparse features and dense photometric and geometric
constraints. The Ti can be solved from the energy function:

Ti = arg min
Ti
{wsEs(Ti) + wdEd(Ti)} (1)

in which Es(Ti) is sparse term for coarse alignment, Ed(Ti)
is the dense term for refined alignment, and ws and wd
are weights corresponding to the sparse and dense term,
respectively. This energy function is solved by a GPU-based
algorithm [20]. Our method only estimates the camera pose



in the filtered background Db so that we can get the robust
motion estimation.

Then, the position of each human relative to Fc is cal-
culated. We use the center point of each ht as the reference.
Instead of directly extracting the depth values of the center
point in the depth frame, we calculate the average depth
values dm in each Dth. The reasoning is that the center point
is not necessarily located on the human body when it is not
upright, such as in a sitting pose. The 3D center point pc
relative to Fc is defined in homogeneous coordinates and
computed by the pinhole camera model:

pc = (
xul + xlr − 2cx

2fx
dm,

yul + ylr − 2cy
2fy

dm, dm, 1)T

(2)
where fx, fy, cx, cy are the intrinsic parameters of the cam-
era. Each pc relative to Fw in the i-th frame can be calculated
as:

ipwc = Tipc (3)

After these steps, we can get the position of each human
body during SLAM. However, it cannot generate a continu-
ous trajectory. We only get a series of discrete key points;
these points do not correspond to each human body. The
reason is that the hi calculated at each moment does not
contain a unique identity. The human body represented by
hti and hti−1 in the last time may be different. To address this,
we design a heuristic to generate a continuous trajectory for
each human character. We assume that if the center point of
hti and hti−1 are closest, they represent the same human.

C. Human Shape Recovery in Static Reconstruction

We use a model-based method to recover the human body.
Following the human recovery framework VIBE [16], we use
the SMPL model to express the human shape and pose. The
2D human joint is estimated in the range of each hti based
on Openpose [7]. Each human joint is projected to 3D planes
to find the orientation of the human body. Then, the SMPL
model’s parameters are estimated based on pose prior and
shape prior. After the above steps, each human’s model can
be recovered. However, the recovered model does not yet
contain spatial information. To recover the human model in
static reconstruction, we must find their spatial relationship,
which we represent by a transformation matrix T wh .

The human’s base coordinate system Fh is located in
their waist. It has the same x-axis orientation as Fw, but the
y-axis and z-axis are reversed. So we firstly rotate Fh by 180
degrees about the current x-axis to make Fh and Fw the same
direction. The human model output by VIBE is inferenced
in Fc. To get the posture of the human model under Fw,
we then rotate it based on camera pose’s rotation part
Ri ∈ SO(3). Finally, we displace Fh according to human’s
3D center point ipwc under Fw. The final transformation is
computed as:

T wh =

[
RiRx,θ ipwc

0 1

]
(4)

where Rx,θ represents a rotation of angle θ about the current
x-axis and θ = 180. After we have inferred T wh and the
human model, it can be recovered in the static reconstruction.

IV. EXPERIMENTS RESULTS AND EVALUATIONS

We evaluate the proposed approach under three metrics:
visual odometry, scene mapping and time efficiency. To
ensure the scalability of the method to different application
scenarios, we test it on both benchmark dynamic SLAM data
sets and real world environments. The public data sets used
include:

1) TUM RGB-D SLAM data set [21]: A benchmark
containing RGB-D and ground-truth data for the evaluation
of VO and visual SLAM systems – the fr3 sequences
are iconic and one of the earliest dynamic SLAM scene
standards, complete with online evaluation tools [22].

2) HRPSlam humanoids robot dynamic SLAM dataset
[23]: The first humanoid robot dynamic SLAM data set,
HRPSlam2 (23543 frames, 879.2 seconds) scene is very chal-
lenging, as it involves several cases of robot’s falling and re-
initializing. These sudden motions caused by the robot falling
and the discontinuity of visual information predicated higher
camera relocation and global loop closure requirements for
SLAM approaches.

In addition, the real-world AIRS indoor dynamic scenes,
shown in Fig. 1 and 6, are captured with an Azure Kinect
sensor. All the reported results were obtained on a desktop
with Intel CoreTM i9-9980XE CPU @ 3.00 GHz × 36, 128
GB System memory and Four GeForce RTX 2080 Ti GPUs.

TABLE I: Absolute Trajectory Error RMSE (cm)

Sequence DynaSLAM SF PF BF Ours

fr1/xyz 1.0 1.4 1.9 2.0 2.0
fr1/desk2 2.2 5.2 4.0 7.7 7.7

fr3/walking_xyz 1.7 9.2 4.8 Fail 5.1
HRPSlam2.1 4.2 51.4 31 7.5 7.1
HRPSlam2 5.4 174 Fail 34.5 10.8

A. Visual Odometry Evaluations

The SLAM solution’s VO is usually evaluated by the
camera tracking Absolute Trajectory Errors (ATE). We com-
pute ATE’s root-mean-square deviation (RSME) via the tools
in [22]. We compared the proposed method with state-of-the-
art (SOTA) dynamic environment reconstruction methods:
DynaSLAM, StaticFusion (SF), PoseFusion (PF) and the
baseline approach BundleFusion (BF).

Table I shows the VO performances on TUM data set
sequences (the sequences start from fr) and HRPSlam
[23] RGB-D data sets. The first two fr1 sequences are
static environments. All the methods achieve very small
errors, which indicate that all methods work equally well
in static environments. Note that ours and BF have the
same error values in static scenes since we adopted BF
as the basic method. The lower three rows are dynamic
sequences. In TUM dynamic sequence fr3/walking_xyz, our
proposed method achieves 5.1 cm ATE, which is better than



Fig. 3: Absolute Trajectory Errors (m) comparison in HRPSlam2 sequence. The shaded areas indicate the five times camera was violently
disturbed from robot falling. Our method achieved the smallest errors amonst the online SLAM methods and succeeded in camera relocation
under difficult fall scenarios.

Fig. 4: The ATE of SOTA SLAM methods in the TUM fr3
dynamic sequence. Our method ATE was close to PF and better
than SF.

SF’s 9.2 cm (see the red curve in Fig. 4). Without the
Dual-BBox algorithm, the ATE degrades to 5.9 cm. These
results indicate that the proposed Dual-BBox strategy (we
set λ = 1.2 in TUM and HRPSlam experiments, it costs
3.5 ms per frame) efficiently improves the VO performance
to the SOTA level. PF spent more than 500 ms on human
3D point cloud segmentation to obtain 4.8 cm ATE. For the
other SOTA methods, DynaSLAM achieved the best camera
tracking result of 1.7 cm since it spends much time on
accurate human mask segmentation. BF result is not shown
since it failed in this sequence. The reason is that BF divides
front-end VO and back-end global loop closure into two
pipelines run on two separate GPUs. This framework design
greatly improves global mapping performance in large room
size scenes.

The plots in Fig. 3 shows the ATE values along with
the frame IDs in HRPSlam2 whole sequence. The curves
of different colors stand for: Our method (red), DynaSLAM
(purple), StaticFusion (blue) and BundleFusion (green). Note
that the ATE trajectories started from a non-zero offset since
the evaluation tool [22] tried to align the whole global
trajectories to the GTs. HRPSlam2.1 is the sequence before
the robot first fall of HRPSlam2. All five methods are able to
track the camera pose in this sequence, but in the following

sequence, the method without robust camera repositioning
fails. In this difficult scene, as our method applied advanced
dynamic object detection and removal technique, VO er-
rors are competitive to the other SOTA online methods. It
achieved 10.8 cm ATE which is better than BF (34.5 cm) and
SF (174 cm), as evidenced in the reconstructed maps (Fig. 8).
Offline approach DynaSLAM obtained a smaller RMSE
error of 5.4 cm with the help of Mask-RCNN’s careful
human silhouette segmentation. The PF camera tracking
comprehensively fails after the humanoids falling at frame
5480 and it cannot re-locate the camera pose after the fall.
There are two reasons to this. Firstly, PF applied Openpose
as human object key-point detector, but it failed to find
the human objects without heads (In HRPSlam, the camera
is mounted on the robot facing the ground). Secondly, PF
and SF are based on the ElasticFuison [8] framework. They
emphasize local small area loop closure, but they lack robust
global loop detection back-ends.

We evaluate the scene reconstruction performance of the
dense SLAM methods from two aspects. The first is the
performance of human object representation. The second is
the ability to close the global loop in dynamic scenes.

B. Human Object Representation Evaluations

SplitFusion (SpF) and our method has the ability to
simultaneously recover human shape and static backgrounds.
SpF implements a VO and non-rigid tracking parallel
pipeline. Its VO thread is exactly the same as PF, thus, its
static background reconstruction performance is similar to
ours. For the foreground human objects, SpF reconstructs
the human mesh via non-rigid tracking, while we replace the
human object by the estimated SMPL mesh. The proposed
approach is superior to SpF in three perspectives. Firstly,
Fig. 5 shows the fr3_walking_xyz sequence scene recon-
structions, from which it can be found that SpF non-rigid
tracker can not track fast-moving objects, e.g., calves, feet,
and hands, while our model-based method represents the
complete human shapes, see the red circle area. Moreover,
SpF cannot distinguish connected objects, for instance, the
chair was fused into the green human object. Such mesh
representation is hard to recognize as an interactive target. As
a comparison, our method output complete and clear human
meshes. In addition, our method can effectively track moving



Ours SplitFusion

Fig. 5: Reconstruction results on fr3_walking_xyz sequence of TUM dataset. The input images are as same as Fig. 2. On the left, our
method outputs complete and clear human meshes. On the right, SpF failed to track the fast subject (see missing feet circled in red). In
addition, it cannot distinguish connected objects, e.g., in the blue circle, the chair was fused into the green human mesh.

(a) AIRS scene (b) AIRS scene trajectories (c) TUM fr3 scene (d) TUM fr3 trajectories

Fig. 6: Scenes reconstruction with human meshes and trajectories. (a), AIRS room scene. (b), the estimated trajectories in (a). (c), TUM
fr3 scene, three recovered meshes for each object were represented to show their motions. (d), human object trajectories of (c).

human targets by BBox center trajectory. As shown in Fig. 6,
the two examples of AIRS and TUM scenes demonstrate
that our method can insert a recovered human subject at a
location along the estimated trajectory. In (a), we inserted the
objects to their last seen positions; the 2D estimated object
trajectories together camera’s were plotted in (b). In the TUM
scene (c), we represented three recovered meshes for each
object to show their pose changes. Since TUM camera moved
in a vertical plane, it was not plotted in (d).

C. Scene Reconstruction Evaluations

Our Dynamic environment mapping performance of a
real dynamic scene is shown in Fig. 1. This sequence was
captured in AIRS using an Azure Kinect RGB-D sensor.
The proposed method performed dynamic human object
removal, static environment mapping, and human object
tracking and recovery at 21 fps, with the green line indicating
the recovered human motion trajectory. Next, Fig. 7 captures
the results of another AIRS dynamic scene reconstruction
with multiple moving subjects. For SF, BF, and our proposed
method, the mapping proceedings are shown. As DynaSLAM
is an online VO and offline mapping approach, in the second
row, only the feature-based camera tracking processes are
shown. SF kept VO accuracy in the first 300 frames (image
1 to 2, third row), but it did not achieve sufficient loop closure
to maintain global mapping. The moving objects in the third
image result in a big VO drift error for BF, it then reduced
these drift by global loop closure after the objects moving
out of view. Our method removed the moving human objects
simultaneously with local mapping. Therefore, we kept VO

TABLE II: Computation Speed fps of TUM Database

DynaSLAM SpF SF PF BF Ours
1.58 0.2- 16.74 0.3- 24.04(37.89) 25.84

robustness and further improved the mapping results using
BF’s key-frame strategy.

The mapping performance of the HRPSlam2 scene in Fig.
8 clearly demonstrates the global loop closure capability of
these methods in a dynamic environment. See the first image,
The trajectory of SF cannot be aligned with GT. Because it
cannot re-locate itself after the camera tracking fails. In the
second image, BF lost robustness in dynamic environments.
However, with closed-loop detection, It realigned the camera
pose to GT trajectory several times when the obstacle moved
away, see the long slash lines. DynaSLAM remained robust
VO performance, except for the failure in the full occlusion
case that happened at HRPSlam2 dataset Frame 18570. To
reduce the influence of the dynamic humans on the closed-
loop detection, 1) we developed YOLOv4 based dual-BBox
human object detector, which enhanced the human detection
robustness in such a not full body visible scene. 2) We
selected BF as the basic approach, the advanced key-frame
processing and storing strategies contribute to reliable global
loop closure. With these two improvements, our method
accomplished excellent camera re-location and continue the
mapping system even under difficult fall scenarios plus full
occlusion case.



Frame ID 5 360 770 1146

RGB input

DynaSLAM

SF

BF

Ours

Fig. 7: AIRS real dynamic scene reconstruction proceedings. As DynaSLAM is an online VO and offline mapping approach, the camera
tracking with sparse ORB feature points are shown with frame IDs. For SF, BF, and our proposed method, the resultant mappings are
shown. Please refer to text for discussion of the results

Fig. 8: Mapping performances in HRPSlam2 sequence that contains difficult humanoid robot falling cases. From left to right: SF performed
wrong loop detection; BF VO failed in dynamic scene, but it re-located the camera pose after humans moving away. DynaSLAM also
failed in the robot fall near the end; Our method accomplished excellent re-location and mapping results. For the details please refer to
Section IV-A.



D. Time Cost Evaluations

The online processing fps comparison is shown in Tab. II.
The first four methods use a single GPU and BF uses two
GPUs. The fps of SpF and PF depend on the situations within
the dynamic scenes. For SpF, the frames containing complex
non-rigid motions cost more computation time; for PF, the
number of human objects and visible body joints result in
lower fps performance. In the TUM dynamic sequence, SpF
is lower than 0.2 fps, and PF is lower than 0.3 fps on average.
DynaSLAM spends more than 500 ms on Mask-RCNN 2D
human object segmentation, and then applies ORB based VO
front end for camera tracking. BF performed at 37.89 fps
in static scenes, e.g., f1/xyz, but it drops to 24 fps in a
dynamic scene since the back-end loop detector fails when it
tries to close the loop in dynamic environments. Our method
achieved 25.84 fps in the TUM dataset which contains two
fast-moving human objects (see Fig. 6 (c) and (d)) and 27.79
fps in HRPSlam dataset which contain five moving humans
(see Fig. 8). Our real-time performance in such hard dynamic
scenes benefits from speed-up resulting from the usage of
four-GPU – here, we adopted BF’s dual-GPU system design
as a basic supplemented with a YOLOv4 based dual-BBox
human object detector and SMPL model-based human mesh
recovery pipeline.

V. CONCLUSIONS

In this paper, we present a real-time dense RGB-D SLAM
approach for reconstructing accurate static backgrounds to-
gether with representing human pose and shape in dynamic
humans environment. To the best of our knowledge, this
is the first SLAM approach that provides both static back-
grounds and dynamic human objects in real-time. The whole
system runs at 26 fps without online GUI rendering (21 fps
with GUI). The represented human mesh is also directly
amenable to be deployed for human-robot collaborative loco-
manipulation with mobile robots to efficiently reason over
target actions in unknown dynamic environments. Future
research directions include involving temporal coherence to
refine the estimated 3D human shape and optimizing the loop
detector by considering environment semantic information.

ACKNOWLEDGEMENT

This work is supported by the Shenzhen Institute of Ar-
tificial Intelligence and Robotics for Society (2019-ICP002),
The Alan Turing Institute and EU H2020 project Enhanc-
ing Healthcare with Assistive Robotic Mobile Manipulation
(HARMONY, 9911237).

REFERENCES

[1] T. Zhang and Y. Nakamura, “Posefusion: Dense rgb-d slam in dynamic
human environments,” in Proceedings of the 2018 International Sym-
posium on Experimental Robotics, 2020, pp. 772–780.

[2] B. Bescos, J. M. Fácil, J. Civera, and J. Neira, “Dynaslam: Tracking,
mapping, and inpainting in dynamic scenes,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 4076–4083, 2018.

[3] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon, and D. Cremers,
“Staticfusion: Background reconstruction for dense rgb-d slam in
dynamic environments,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2018, pp. 1–9.

[4] K. M. Judd, J. D. Gammell, and P. Newman, “Multimotion visual
odometry (mvo): Simultaneous estimation of camera and third-party
motions,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 3949–3956.

[5] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[6] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black,
“SMPL: A skinned multi-person linear model,” ACM Trans. Graphics
(Proc. SIGGRAPH Asia), vol. 34, no. 6, pp. 248:1–248:16, Oct. 2015.

[7] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose:
realtime multi-person 2d pose estimation using part affinity fields,”
IEEE transactions on pattern analysis and machine intelligence,
vol. 43, no. 1, pp. 172–186, 2019.

[8] T. Whelan, R. F. Salas-Moreno, B. Glocker, A. J. Davison, and
S. Leutenegger, “Elasticfusion: Real-time dense slam and light source
estimation,” The International Journal of Robotics Research, vol. 35,
no. 14, pp. 1697–1716, 2016.

[9] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International conference on computer vision,
2017, pp. 2961–2969.

[10] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transac-
tions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[11] M. Habermann, W. Xu, M. Zollhoefer, G. Pons-Moll, and C. Theobalt,
“Livecap: Real-time human performance capture from monocular
video,” ACM Transactions on Graphics (TOG), vol. 38, no. 2, pp.
1–17, 2019.

[12] R. A. Newcombe, D. Fox, and S. M. Seitz, “Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 343–352.

[13] W. Gao and R. Tedrake, “Surfelwarp: Efficient non-volumetric single
view dynamic reconstruction,” in Robotics: Science and System (RSS),
2018.

[14] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. Osman,
D. Tzionas, and M. J. Black, “Expressive body capture: 3d hands,
face, and body from a single image,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 975–10 985.

[15] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-
end recovery of human shape and pose,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
7122–7131.

[16] M. Kocabas, N. Athanasiou, and M. J. Black, “Vibe: Video inference
for human body pose and shape estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 5253–5263.

[17] Y. Zhang, M. Hassan, H. Neumann, M. J. Black, and S. Tang,
“Generating 3d people in scenes without people,” in Computer Vision
and Pattern Recognition (CVPR), June 2020.

[18] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone, “3D dynamic
scene graphs: Actionable spatial perception with places, objects, and
humans,” in Robotics: Science and Systems (RSS), 2020.

[19] Y. Li, T. Zhang, Y. Nakamura, and T. Harada, “Splitfusion: Simulta-
neous tracking and mapping for non-rigid scenes,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 5128–5134.

[20] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
fusion: Real-time globally consistent 3d reconstruction using on-
the-fly surface reintegration,” ACM Transactions on Graphics (ToG),
vol. 36, no. 4, p. 1, 2017.

[21] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 573–580.

[22] Useful tools for the RGB-D benchmark. [Online]. Available:
https://vision.in.tum.de/data/datasets/rgbd-dataset/tools

[23] T. Zhang and Y. Nakamura, “HRPSlam: A benchmark for RGB-D
dynamic slam and humanoid vision,” in 2019 Third IEEE International
Conference on Robotic Computing (IRC), 2019, pp. 110–116.

https://vision.in.tum.de/data/datasets/rgbd-dataset/tools

	Introduction
	Related Works
	Dynamic SLAM solutions
	Dynamic Human Reconstruction
	Human Shape Recovery within SLAM

	SYSTEM FRAMEWORK AND METHODS
	Fast Human Detection and Outlier Filtering
	Human motion tracking
	Human Shape Recovery in Static Reconstruction

	Experiments Results and Evaluations
	TUM RGB-D SLAM data set tum-dataset
	HRPSlam humanoids robot dynamic SLAM dataset hrpslam

	Visual Odometry Evaluations
	Human Object Representation Evaluations
	Scene Reconstruction Evaluations
	Time Cost Evaluations

	Conclusions
	References

