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The notion of internal models has become central to the study
of visually guided reaching. Armed with this theoretical
framework, researchers are gleaning insights into long-
standing problems in the field, such as the ability to respond
rapidly to changes in the location of a reach target and the fine
control of the multi-joint dynamics of the arm. A key factor in
these advances is our increased understanding of how the
brain integrates feedforward control signals, sensory feedback,
and predictions based on internal models of the arm.
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Abbreviations
EMG electromyograph
PPC posterior parietal cortex
TMS transcranial magnetic stimulation

Introduction
The study of volitional movement has undergone rapid
progress over the past several years. A major factor in this
success has been the application of new theoretical ideas to
the design and analysis of psychophysical investigations.
Chief among these is the notion of internal models, hypo-
thetical computations in the brain that either predict the
outcome of some motor event (forward models) or calcu-
late the motor command required to achieve some desired
state (inverse models or feedforward controllers) [1].
Another key factor is the increased availability of function-
al imaging and transcranial magnetic stimulation (TMS),
techniques that allow researchers to identify the neural
substrates underlying complex behavioral phenomena. As
a result, it has become easier to interpret psychophysical
and computational findings in terms of our growing under-
standing of the neurophysiology of the sensorimotor
pathways [2]. 

In the past year, significant achievements have been made
in characterizing specific feedforward and feedback control
structures involved in reaching. In particular, new results
have clarified our understanding of the role of visual feed-
back in the early stages of reach planning and the ability to
precisely control the complex dynamics of multijoint
movements. Other major themes have been the role of
learning in the maintenance of internal models and the
manner in which intrinsic (e.g. joint, muscle) information

and extrinsic (e.g. perceptual, task-specific) information
are combined to form a motor plan. In this review, I will
discuss current trends in the study of goal-directed reach-
ing, focusing on these recent results.

Feedback control: on-line trajectory control in
the parietal cortex
Visually guided reaching begins with the selection of a tar-
get from the visual scene and the formation of a movement
plan. Recent studies of the posterior parietal cortex (PPC)
and superior parietal lobe (SPL) in monkey have demon-
strated that these areas contain the required combination
of visual, somatosensory, and motor signals to be able to
coordinate this first step [3–7]. New findings show that
these early planning areas are not only responsible for the
initial target selection and plan, but also play an ongoing
role throughout the movement.

A shift in target location occurring near the onset time of a
reaching movement can result in an on-line correction,
independent of whether subjects can see their hand or
whether the target jump was consciously perceived [8–12].
Desmurget and colleagues employed TMS to study the
role of the PPC in this behavior [13••]. Subjects were
instructed to reach and to make a saccade to a visual target
that was sometimes surreptitiously shifted during the sac-
cade. When TMS was applied to the contralateral PPC,
corrective responses to a target jump were eliminated,
whereas movement paths were unchanged for trials in
which the target was kept stationary. This suggests that the
completion of a feedforward plan does not require parietal
control, but that parietal feedback mechanisms can over-
ride a plan in progress. In addition, movements to the same
location with the ipsilateral hand were unaffected by the
TMS pulse, contrary to what would be expected if the
PPC were playing a purely visual role [3]. Other authors
argue that on-line reach corrections could be performed by
two separate systems: a fast, automatic feedback loop dri-
ven by the visual shift of the target, and a second, slower
mechanism that is under cognitive control [14•,15•].
Comparison of normal subjects and a patient with bilateral
lesions of the PPC suggests that only the fast mechanism
is dependent upon the PPC [15•].

Figure 1 shows a schematic of how this on-line correction
could occur. A comparator gauges the difference between
the current estimated hand location and the desired loca-
tion, and this information is sent downstream to a
controller responsible for generating the correct motor
commands (more will be said about the controller in the
next section). A key element of this schematic is the state
estimation based on mixing sensory feedback and internal-
ly generated predictions of hand location. There is ample
evidence for the importance of sensory feedback in the
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early stages of reach planning, including the strong influ-
ence that visual estimates of hand location have on a
pending movement [16,17•]. On the other hand, deaffer-
ented patients perform as accurately as normal subjects in
a visually ‘open loop’ version of the target-shift task [18],
suggesting that forward models [1,19–23,24•] must also
play a significant role (see also [25]). Indeed, it has also
been shown that hand-position estimates from sensory
feedback and from forward model predictions are com-
bined in a statistically optimal way [21]. 

Desmurget and colleagues argue that the PPC contains both
the state estimator for current arm position and the com-
parator [13••]. This idea is supported by evidence that PPC
and SPL contribute to the maintenance of internal repre-
sentations of the arm and hand [26–28]. On the other hand,
the PPC may only be responsible for updating the motor
plan, and other structures might contain the state estimator
and/or comparator. The cerebellum is a likely candidate
[20,29,30]. Patients with cerebellar ataxia are less likely to
make a corrected reach after a target shift, and they react
more slowly when they do [31]. A positron emission tomog-
raphy (PET) study of prism adaptation is also consistent
with this theory [32]. Clower et al. reported that adaptation
to prismatic displacement of the visual feedback led to
increased activity in the PPC but not in the cerebellum.
This result may seem at odds with the fact that cerebellar
damage interferes with prism adaptation [33,34]. However,
Clower et al. were specifically concerned with the locus of
adaptation, and so they chose as their baseline condition a
shifted-target paradigm similar to that discussed here. In
this latter task, the direction of the target displacement was
chosen randomly across trials in order to prevent adaptation.
The role of the comparator, for example, is the same in the
two tasks, and the lack of additional cerebellar activity in the
adaptation case is probably due to cerebellar activation
whenever movements result in a visual error signal [32].

Finally, it has recently been shown that the superior col-
liculus (SC) contains two populations of neurons that

respond to arm movements, one using a gaze-centered ref-
erence frame and one employing an intrinsic
representation, perhaps in a muscle or joint-based frame
[35,36]. These cells project to the spinal cord and are thus
ideally situated to play the role of the controller in
Figure 1. The PPC projects to the SC, both directly and
through frontal premotor areas [37], and these pathways
could form a system similar to that responsible for generat-
ing saccades for fast, visually driven control of the arm.

Feedforward control: interaction torques and
internal models
Whereas the early stages of visually guided movement are
seen to be under the control of feedback loops, evidence is
mounting that aspects of the later stages of motor control
rely less on feedback than many researchers previously
thought. Precise control of multijoint movements requires
control of the interaction torques that arise when the motion
of one joint causes acceleration at another [38]. The seminal
work of Sainburg and Ghez [39,40] showed that patients
who lack proprioception were unable to coordinate multi-
joint movements as a result of their inability to account for
interaction torques. The long delay times required for pro-
prioceptive feedback, as well as other observations [41], led
the authors to conclude that compensation for interaction
torques could be accounted for primarily by a feedforward
controller that requires either proprioceptive or visual feed-
back for its maintenance (see Figure 2).

Three new studies paint a clearer picture of this feedforward
mechanism. These papers all combined electromyograph
(EMG) recording with inverse dynamics modeling, in which
the various components of the joint torques, including the
interaction torques, are estimated from the measured trajec-
tory of the arm. Gribble and Ostry [42••] investigated
two-joint planar movements requiring only either rotation of
the shoulder or of the elbow. They found that the onset of
EMG activity at the stationary joint consistently preceded
movement onset, providing conclusive evidence that at least
some aspect of the compensation is feedforward. Two other

Figure 1

Schematic diagram of the internal models
used in the target-shift task. X* is the desired
location of the arm, U is the command signal
generated by the controller, and X is the
current state of the arm. X is estimated both
from sensory information and from the output
of a forward (predictive) model [19], and these
values (X^sens and X^ mod, respectively) are then
combined into a single state estimate, X^. The
comparator is responsible for determining the
correct movement, effectively subtracting the
current state estimate from the desired state.
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groups compared single-joint movements in a constrained
and an unconstrained condition. Koshland et al. [43] studied
a planar ‘center–out’ reaching task in which subjects typi-
cally exhibit little wrist motion, and Scheidt and Rymer [44]
studied subjects making a planar arm movement that
required only elbow rotation. In both cases, substantial
interaction torques were seen at the stationary joint, requir-
ing active compensation in the unconstrained movements,
as verified by EMG. Remarkably, fixing of the unused joint
had no effect on the timing or directional tuning [43] of
these EMG patterns, confirming that interaction torques are
accounted for by a feedforward mechanism.

As with deafferented patients, the multijoint movements
of patients with cerebellar ataxia show an inability of these
patients to account for interaction torques [45–47].
However, in the case of cerebellar subjects, visual feed-
back of the arm does not improve coordination, suggesting
an impairment of the inverse model itself. A recent imag-
ing study also supports the theory that the cerebellum
computes feedforward control signals [29]. 

Sainburg et al. [48] studied adaptation to a novel inertia
imposed upon the arm and saw evidence that the feedfor-
ward controller itself had adapted. It has also been reported
that subjects with hemiparesis are unable to control inter-
action torques in their paretic arm [49], and normal subjects
exhibit poorer anticipation of interaction torques in their
non-dominant limb [50]. In both of these cases, the rela-
tively impaired limb is used less often in everyday
volitional movements, suggesting that learning is a contin-
ual process driven by motor experience. It is likely that this
same internal model, or models closely allied with it, is
responsible for learning to reach in environments in which
novel forces are encountered [51–54]. In recent studies of
this kind, researchers have been able to demonstrate that

physiological changes correlate temporally with behavioral
measures of motor learning [55,56].

Finally, the existence of well-tuned feedforward con-
trollers has important theoretical implications. The
equilibrium point hypothesis [57] suggests that the spring-
like neuromuscular properties of the arm could be
exploited to simplify the task of the controller.
Specification of a trajectory of intermediate postures, or
equilibrium points, could be sufficient to execute an arm
movement without having to invert the dynamics of the
arm. Although the physical properties of the arm are sure-
ly exploited in order to simplify control [58,59,60•], they
are insufficient to account for the observations of this sec-
tion. In fact, interaction torques are an example of how the
mechanics of the arm can add complexity to the control
problem. Yet even in simple point-to-point reaching they
are compensated for with accurate predictive control.

Learning and multiple internal models
In the examples of the previous section, the inverse model
is adapted in the face of motor error. It is plausible, howev-
er, that other components of the system could also adapt. A
possible example comes from a case in which visual feed-
back plays an important role in computing the inverse
dynamics of the arm. When reaching while rotating the
torso, the arm is subjected to Coriolis forces, yet movement
of the torso does not disrupt accurate reaching. This situa-
tion is formally similar to the control of multijoint
interaction torques, suggesting that a feedforward model of
the trunk–arm dynamics is used to solve the problem. Cohn
et al. [61•] have shown that visual input plays a large role.
While sitting in a stationary seat, subjects viewed an image
of a room rotating about them. Reaching movements dis-
played errors consistent with the expectation of Coriolis
forces in the direction opposite to that of the visual rotation.

Figure 2

Schematic diagram of the internal models
used in controlling multijoint arm movements.
The desired motion of the arm X* is fed into
an inverse model of the arm, which acts as a
feedforward controller, producing a command
signal, Uff. There is also evidence for late
influence from a feedback control signal, Ufb
[48]. The two commands are combined,
through simple addition perhaps, to yield the
final control signal U. The feedback pathway is
illustrated in grey to reflect the fact that it
plays a subordinate role as a result of
feedback delays. The true state of the arm, X,
is estimated with a combination of the visual
and proprioceptive feedback. The state
estimate, X^, serves as input to the inverse
model, and is also compared to the desired
state to yield an estimate of the current motor
error (E^). The latter signal is used both in
feedback control and to drive adaptation of
the inverse model (dashed arrow) [75].

U
XX* Inverse

model Arm

Vision

X̂ State
estimator

Proprioception

Ê
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This result is compatible with the feedforward model of
Figure 2, in which the state estimator is fooled by the visu-
al input. Over time, proprioceptive and vestibular feedback
were sufficient to adaptively correct the response. The fact
that no after-effects were observed when the visual rotation
ceased suggests that the inverse dynamics model was not
altered, but rather that an adaptive state estimator learned
to discount visual feedback when assessing trunk rotation.
This interpretation could be tested by checking the extent
to which vision aids reaching in a real rotating environment
[53] before and after the visual adaptation.

Evidence for the existence of internal models is typically
found through careful behavioral manipulations that iso-
late one aspect of the planning or control of movement.
How then can the relationship between these models be
understood? An important advance has been the develop-
ment of an interference paradigm for addressing this issue.
Modifying techniques from earlier studies of the learning
of novel force fields [62], two laboratories have examined
the interactions between the learning of kinematic pertur-
bations, where the mapping from joint angles to visually
perceived hand location is altered, and dynamic perturba-
tions, in which the forces required to make a particular
movement are changed. Krakauer et al. [63••] allowed sub-
jects to adapt to reaching with a rotated visual map, with
altered arm inertia, or both. They found no interference
between the two tasks when learned sequentially or in par-
allel. Flanagan et al. reported similar results employing the
visual rotation task and the learning of compensation for a
viscous force field [64••]. These data imply a computation-
al separation of the two internal models, a theoretically
interesting finding in its own right, and a validation of the
standard procedure of studying the systems in isolation.

Task-dependent optimal control
The task of the feedforward controllers discussed above is
to allow for accurate control of the arm, which implies the
existence of a motor plan. Recent thinking on the planning
of reaching movements has been deeply influenced by the
‘minimum variance’ model of Harris and Wolpert [65,66•].
They posit a signal-dependent variability in movement
control, in which variability scales with the magnitude of
the command signal. Movement trajectories are then cho-
sen to minimize the resulting end-point variability. In
general, models that select movements by optimizing
some quantity related to the trajectory are called optimal
control models. The most successful prior theories were
also optimal control models, but they maximized general,
ad hoc criteria such as smoothness or efficiency, either
intrinsically [67,68] or extrinsically [69] defined. Those
models do not capture the task-specific planning effects
that have been observed in experimental data (e.g.
[70,71]). Although extrinsic models could be adapted to
include task-specific constraints in a natural way, they can-
not account for the physics of the arm and its controllers.
The opposite is true for intrinsic models. What is required
is a hybrid approach that utilizes the right combination of

criteria for any given task [70,72,73]. The minimum vari-
ance model provides a general framework for incorporating
intrinsic and extrinsic information [65]. The quantity
being optimised — the variance of the movement end-
point — is entirely task-dependent, and in the case of
simple point-to-point reaching, it is an extrinsic quantity.
However, by accounting for the signal-dependent noise in
movement production, the variance becomes a function of
intrinsic variables. From this perspective, the key is not
the choice of the optimization criterion nor even the model
relating control signal to noise. Rather, it is in the ability to
combine task-dependent criteria with a viable model of
movement production.

An example of the generality of the minimum variance
model can be seen in its application to obstacle-avoidance
trajectories. Sabes and colleagues [70,74] showed that
when subjects make reaching movements around obsta-
cles, movement paths vary in a predictable manner
depending on the spatial relationship between the obstacle
and the arm. We suggested a model in which the inertia of
the arm is taken into account to reduce the probability of
colliding with the obstacle. However, there is no a priori
reason why inertia should be favored over any other
dynamic or kinematic factor that contributes to motor
error. Hamilton and Wolpert have modeled the data from
[70] using the same signal-dependent noise model: vari-
ability of a neural command signal scales with the
magnitude of the signal. This assumption, combined with
a biomechanical model of the arm, allows them to compute
the expected end-point variability for a particular target
trajectory. They were then able to find the trajectories that
minimize the probability of collision with the obstacle and
found good matches with the experimental results
(A Hamilton, D Wolpert, personal communication).

Conclusions
Over the past year, researchers studying goal-directed
reaching have made significant progress, capitalizing on
recently developed theoretical and experimental tools. We
have a better understanding of high-level visual feedback
loops and of low-level feedforward mechanisms for con-
trolling multijoint movements. The notion of internal
models has been central in these advances. In most of this
work, evidence of predictive control or adaptive state esti-
mation is used to identify internal models. The next step
is to elucidate the structure of these models — in particu-
lar, to identify what information they use and how that
information is transformed for use by the motor system.
The minimum variance model has also been influential in
recent work, and the near future will undoubtedly see
more applications of this model, as well as the develop-
ment of new models that adopt a similar approach. Finally,
steady progress is being made in illuminating the neuro-
physiology of the sensorimotor pathways involved in
reaching. Continued effort will be required in order to
merge this information with the behavioral and computa-
tional viewpoints discussed here.
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