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Abstract

Hyperbolic embeddings have recently gained attention in machine learning due
to their ability to represent hierarchical data more accurately and succinctly than
their Euclidean analogues. However, multi-relational knowledge graphs often
exhibit multiple simultaneous hierarchies, which current hyperbolic models do not
capture. To address this, we propose a model that embeds multi-relational graph
data in the Poincaré ball model of hyperbolic space. Our Multi-Relational Poincaré
model (MuRP) learns relation-specific parameters to transform entity embeddings
by Möbius matrix-vector multiplication and Möbius addition. Experiments on
the hierarchical WN18RR knowledge graph show that our Poincaré embeddings
outperform their Euclidean counterpart and existing embedding methods on the
link prediction task, particularly at lower dimensionality.

1 Introduction

Hyperbolic space can be thought of as a continuous analogue of discrete trees, making it suitable for
modelling hierarchical data [28, 10]. Various types of hierarchical data have recently been embedded
in hyperbolic space [25, 26, 16, 32], requiring relatively few dimensions and achieving promising
results on downstream tasks. This demonstrates the advantage of modelling tree-like structures in
spaces with constant negative curvature (hyperbolic) over zero-curvature spaces (Euclidean).

Certain data structures, such as knowledge graphs, often exhibit multiple hierarchies simultaneously.
For example, lion is near the top of the animal food chain but near the bottom in a tree of taxonomic
mammal types [22]. Despite the widespread use of hyperbolic geometry in representation learning,
the only existing approach to embedding hierarchical multi-relational graph data in hyperbolic space
[31] does not outperform Euclidean models. The difficulty with representing multi-relational data in
hyperbolic space lies in finding a way to represent entities (nodes), shared across relations, such that
they form a different hierarchy under different relations, e.g. nodes near the root of the tree under one
relation may be leaf nodes under another. Further, many state-of-the-art approaches to modelling
multi-relational data, such as DistMult [37], ComplEx [34], and TuckER [2] (i.e. bilinear models),
rely on inner product as a similarity measure and there is no clear correspondence to the Euclidean
inner product in hyperbolic space [32] by which these models can be converted. Existing translational
approaches that use Euclidean distance to measure similarity, such as TransE [6] and STransE [23],
can be converted to the hyperbolic domain, but do not currently compete with the bilinear models
in terms of predictive performance. However, it has recently been shown in the closely related field
of word embeddings [1] that the difference (i.e. relation) between word pairs that form analogies
manifests as a vector offset, suggesting a translational approach to modelling relations.

In this paper, we propose MuRP, a theoretically inspired method to embed hierarchical multi-relational
data in the Poincaré ball model of hyperbolic space. By considering the surface area of a hypersphere
of increasing radius centered at a particular point, Euclidean space can be seen to “grow” polynomially,
whereas in hyperbolic space the equivalent growth is exponential [10]. Therefore, moving outwards
from the root of a tree, there is more “room” to separate leaf nodes in hyperbolic space than in
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Euclidean. MuRP learns relation-specific parameters that transform entity embeddings by Möbius
matrix-vector multiplication and Möbius addition [35]. The model outperforms not only its Euclidean
counterpart, but also current state-of-the-art models on the link prediction task on the hierarchical
WN18RR dataset. We also show that our Poincaré embeddings require far fewer dimensions than
Euclidean embeddings to achieve comparable performance. We visualize the learned embeddings and
analyze the properties of the Poincaré model compared to its Euclidean analogue, such as convergence
rate, performance per relation, and influence of embedding dimensionality.

2 Background and preliminaries

Multi-relational link prediction A knowledge graph is a multi-relational graph representation of a
collection F of facts in triple form (es, r, eo)∈E×R×E , where E is the set of entities (nodes) and
R is the set of binary relations (typed directed edges) between them. If (es, r, eo)∈F , then subject
entity es is related to object entity eo by relation r. Knowledge graphs are often incomplete, so the
aim of link prediction is to infer other true facts. Typically, a score function φ : E×R×E →R is
learned, that assigns a score s=φ(es, r, eo) to each triple, indicating the strength of prediction that a
particular triple corresponds to a true fact. A non-linearity, such as the logistic sigmoid function, is
often used to convert the score to a predicted probability p=σ(s)∈ [0, 1] of the triple being true.

Knowledge graph relations exhibit multiple properties, such as symmetry, asymmetry, and transitivity.
Certain knowledge graph relations, such as hypernym and has_part, induce a hierarchical structure
over entities, suggesting that embedding them in hyperbolic rather than Euclidean space may lead
to improved representations [28, 25, 26, 14, 32]. Based on this intuition, we focus on embedding
multi-relational knowledge graph data in hyperbolic space.
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Figure 1: (a) Geodesics in the Poincaré disk, indicating the shortest paths between pairs of points. (b)
The model predicts the triple (es, r, eo) as true and (es, r, e

′
o) as false. (c) Each entity embedding has

a sphere of influence, whose radius is determined by the entity-specific bias.

Hyperbolic geometry of the Poincaré ball The Poincaré ball (Bdc , gB) of radius 1/
√
c, c> 0 is a

d-dimensional manifold Bdc = {x∈Rd : c‖x‖2<1} equipped with the Riemannian metric gB which
is conformal to the Euclidean metric gE = Id with the conformal factor λcx = 2/(1 − c‖x‖2), i.e.
gB = (λcx)2gE. The distance between two points x,y∈Bdc is measured along a geodesic (i.e. shortest
path between the points, see Figure 1a) and is given by:

dB(x,y) =
2√
c

tanh−1(
√
c‖ − x⊕c y‖), (1)

where ‖ · ‖ denotes the Euclidean norm and ⊕c represents Möbius addition [35]:

x⊕c y =
(1 + 2c〈x,y〉+ c‖y‖2)x + (1− c‖x‖2)y

1 + 2c〈x,y〉+ c2‖x‖2‖y‖2
, (2)

with 〈·, ·〉 being the Euclidean inner product. Ganea et al. [13] show that Möbius matrix-vector
multiplication can be obtained by projecting a point x∈Bdc onto the tangent space at 0∈Bdc with the
logarithmic map logc0(x), performing matrix multiplication by M∈Rd×k in the Euclidean tangent
space, and projecting back to Bdc via the exponential map at 0, i.e.:

M⊗c x = expc0(Mlogc0(x)). (3)

For the definitions of exponential and logarithmic maps, see Appendix A.
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3 Related work

3.1 Hyperbolic geometry

Embedding hierarchical data in hyperbolic space has recently gained popularity in representation
learning. Nickel and Kiela [25] first embedded the transitive closure1 of the WordNet noun hierar-
chy, in the Poincaré ball, showing that low-dimensional hyperbolic embeddings can significantly
outperform higher-dimensional Euclidean embeddings in terms of both representation capacity and
generalization ability. The same authors subsequently embedded hierarchical data in the Lorentz
model of hyperbolic geometry [26].

Ganea et al. [13] introduced Hyperbolic Neural Networks, connecting hyperbolic geometry with deep
learning. They build on the definitions for Möbius addition, Möbius scalar multiplication, exponential
and logarithmic maps of Ungar [35] to derive expressions for linear layers, bias translation and
application of non-linearity in the Poincaré ball. Hyperbolic analogues of several other algorithms
have been developed since, such as Poincaré GloVe [32] and Hyperbolic Attention Networks [16].
More recently, Gu et al. [15] note that data can be non-uniformly hierarchical and learn embeddings
on a product manifold with components of different curvature: spherical, hyperbolic and Euclidean.
To our knowledge, only Riemannian TransE [31] seeks to embed multi-relational data in hyperbolic
space, but the Riemannian translation method fails to outperform Euclidean baselines.

3.2 Link prediction for knowledge graphs

Bilinear models typically represent relations as linear transformations acting on entity vectors. An
early model, RESCAL [24], optimizes a score function φ(es, r, eo) = e>s Mreo, containing the
bilinear product between the subject entity embedding es, a full rank relation matrix Mr and the
object entity embedding eo. RESCAL is prone to overfitting due to the number of parameters
per relation being quadratic relative to the number per entity. DistMult [37] is a special case of
RESCAL with diagonal relation matrices, reducing parameters per relation and controlling overfitting.
However, due to its symmetry, DistMult cannot model asymmetric relations. ComplEx [34] extends
DistMult to the complex domain, enabling asymmetry to be modelled. TuckER [2] performs a Tucker
decomposition of the tensor of triples, which enables multi-task learning between different relations
via the core tensor. The authors show each of the linear models above to be a special case of TuckER.

Translational models regard a relation as a translation (or vector offset) from the subject to the object
entity embeddings. These models include TransE [6] and its many successors, e.g. FTransE [12],
STransE [23]. The score function for translational models typically considers Euclidean distance
between the translated subject entity embedding and the object entity embedding.

4 Multi-relational Poincaré embeddings

A set of entities can form different hierarchies under different relations. In the WordNet knowledge
graph [22], the hypernym, has_part and member_meronym relations each induce different hierarchies
over the same set of entities. For example, the noun chair is a parent node to different chair types
(e.g. folding_chair, armchair) under the relation hypernym and both chair and its types are parent
nodes to parts of a typical chair (e.g. backrest, leg) under the relation has_part. An ideal embedding
model should capture all hierarchies simultaneously.

Score function As mentioned above, bilinear models measure similarity between the subject entity
embedding (after relation-specific transformation) and an object entity embedding using the Euclidean
inner product [24, 37, 34, 2]. However, a clear correspondence to the Euclidean inner product does
not exist in hyperbolic space [32]. The Euclidean inner product can be expressed as a function of
Euclidean distance and norms, i.e. 〈x,y〉 = 1

2 (−dE(x,y)2 + ‖x‖2 + ‖y‖2), dE(x,y) = ‖x− y‖.
Noting this, in Poincaré GloVe, Tifrea et al. [32] absorb squared norms into biases bx, by and replace
the Euclidean with the Poincaré distance dB(x,y) to obtain the hyperbolic version of GloVe [27].

Separately, it has recently been shown in the closely related field of word embeddings that statistics
pertaining to analogies naturally contain linear structures [1], explaining why similar linear structure

1Each node in a directed graph is connected not only to its children, but to every descendant, i.e. all nodes to
which there exists a directed path from the starting node.
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appears amongst word embeddings of word2vec [20, 21, 19]. Analogies are word relationships of
the form “wa is to w∗a as wb is to w∗b”, such as “man is to woman as king is to queen”, and are in
principle not restricted to two pairs (e.g. “...as brother is to sister”). It can be seen that analogies have
much in common with relations in multi-relational graphs, as a difference between pairs of words (or
entities) common to all pairs, e.g. if (es, r, eo) and (e′s, r, e

′
o) hold, then we could say “es is to eo as

e′s is to e′o”. Of particular relevance is the demonstration that the common difference, i.e. relation,
between the word pairs (e.g. (man, woman) and (king, queen)) manifests as a common vector offset
[1], justifying the previously heuristic translational approach to modelling relations.

Inspired by these two ideas, we define the basis score function for multi-relational graph embedding:

φ(es, r, eo) = −d(e(r)s , e(r)o )2 + bs + bo

= −d(Res, eo + r)2 + bs + bo,
(4)

where d : E×R×E →R+ is a distance function, es, eo ∈Rd are the embeddings and bs, bo ∈R
scalar biases of the subject and object entities es and eo respectively. R∈Rd×d is a diagonal relation
matrix and r∈Rd a translation vector (i.e. vector offset) of relation r. e(r)s =Res and e

(r)
o =eo + r

represent the subject and object entity embeddings after applying the respective relation-specific
transformations, a stretch by R to es and a translation by r to eo.

Hyperbolic model Taking the hyperbolic analogue of Equation 4, we define the score function for
our Multi-Relational Poincaré (MuRP) model as:

φMuRP(es, r, eo) = −dB(h(r)
s ,h(r)

o )2 + bs + bo

= −dB(expc0(Rlogc0(hs)),ho ⊕c rh)2 + bs + bo,
(5)

where hs,ho∈Bdc are hyperbolic embeddings of the subject and object entities es and eo respectively,
and rh ∈ Bdc is a hyperbolic translation vector of relation r. The relation-adjusted subject entity
embedding h

(r)
s ∈Bdc is obtained by Möbius matrix-vector multiplication: the original subject entity

embedding hs∈Bdc is projected to the tangent space of the Poincaré ball at 0 with logc0, transformed
by the diagonal relation matrix R∈Rd×d, and then projected back to the Poincaré ball by expc0. The
relation-adjusted object entity embedding h

(r)
o ∈Bdc is obtained by Möbius addition of the relation

vector rh∈Bdc to the object entity embedding ho∈Bdc . Since the relation matrix R is diagonal, the
number of parameters of MuRP increases linearly with the number of entities and relations, making
it scalable to large knowledge graphs. To obtain the predicted probability of a fact being true, we
apply the logistic sigmoid to the score, i.e. σ(φMuRP(es, r, eo)).

To directly compare the properties of hyperbolic embeddings with the Euclidean, we implement the
Euclidean version of Equation 4 with d(e

(r)
s , e

(r)
o ) = dE(e

(r)
s , e

(r)
o ). We refer to this model as the

Multi-Relational Euclidean (MuRE) model.

Geometric intuition We see from Equation 4 that the biases bs, bo determine the radius of a hy-
persphere decision boundary centered at e(r)s . Entities es and eo are predicted to be related by r if
relation-adjusted e

(r)
o falls within a hypershpere of radius

√
bs + bo (see Figure 1b). Since biases are

subject and object entity-specific, each subject-object pair induces a different decision boundary. The
relation-specific parameters R and r determine the position of the relation-adjusted embeddings, but
the radius of the entity-specific decision boundary is independent of the relation. The score function
in Equation 4 resembles the score functions of existing translational models [6, 12, 23], with the main
difference being the entity-specific biases, which can be seen to change the geometry of the model.
Rather than considering an entity as a point in space, each bias defines an entity-specific sphere of
influence surrounding the center given by the embedding vector (see Figure 1c). The overlap between
spheres measures relatedness between entities. We can thus think of each relation as moving the
spheres of influence in space, so that only the spheres of subject and object entities that are connected
under that relation overlap.

4.1 Training and Riemannian optimization

We use the standard data augmentation technique [11, 18, 2] of adding reciprocal relations for every
triple, i.e. we add (eo, r

−1, es) for every (es, r, eo). To train both models, we generate k negative
samples for each true triple (es, r, eo), where we corrupt either the object (es, r, e

′
o) or the subject
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(eo, r
−1, e′s) entity with a randomly chosen entity from the set of all entities E . Both models are

trained to minimize the Bernoulli negative log-likelihood loss:

L(y, p) = − 1

N

N∑
i=1

(y(i)log(p(i)) + (1− y(i))log(1− p(i))), (6)

where p is the predicted probability, y is the binary label indicating whether a sample is positive or
negative and N is the number of training samples.

For fairness of comparison, we optimize the Euclidean model using stochastic gradient descent
(SGD) and the hyperbolic model using Riemannian stochastic gradient descent (RSGD) [5]. We note
that the Riemannian equivalent of adaptive optimization methods has recently been developed [3],
but leave replacing SGD and RSGD with their adaptive equivalent to future work. To compute the
Riemannian gradient∇RL, the Euclidean gradient∇EL is multiplied by the inverse of the Poincaré
metric tensor, i.e. ∇RL = 1/(λcθ)

2∇EL. Instead of the Euclidean update step θ ← θ − η∇EL,
a first order approximation of the true Riemannian update, we use expcθ to project the gradient
∇RL ∈ TθBdc onto its corresponding geodesic on the Poincaré ball and compute the Riemannian
update θ ← expcθ(−η∇RL), where η denotes the learning rate.

5 Experiments

To evaluate both Poincaré and Euclidean models, we first test their performance on the knowledge
graph link prediction task using standard WN18RR and FB15k-237 datasets:

FB15k-237 [33] is a subset of Freebase [4], a collection of real world facts, created from FB15k [6]
by removing the inverse of many relations from validation and test sets to make the dataset more
challenging. FB15k-237 contains 14,541 entities and 237 relations.

WN18RR [11] is a subset of WordNet [22], a hierarchical collection of relations between words,
created in the same way as FB15k-237 from WN18 [6], containing 40,943 entities and 11 relations.

To demonstrate the usefulness of MuRP on hierarchical datasets (given WN18RR is hierarchical and
FB15k-237 is not, see Section 5.3), we also perform experiments on NELL-995 [36], containing
75,492 entities and 200 relations, ∼ 22% of which hierarchical. We create several subsets of the
original dataset by varying the proportion of non-hierarchical relations, as described in Appendix B.

We evaluate each triple from the test set by generating ne (where ne denotes number of entities in
the dataset) evaluation triples, which are created by combining the test entity-relation pair with all
possible entities E . The scores obtained for each evaluation triple are ranked. All true triples are
removed from the evaluation triples apart from the current test triple, i.e. the commonly used filtered
setting [6]. We evaluate our models using the evaluation metrics standard across the link prediction
literature: mean reciprocal rank (MRR) and hits@k, k ∈ {1, 3, 10}. Mean reciprocal rank is the
average of the inverse of a mean rank assigned to the true triple over all ne evaluation triples. Hits@k
measures the percentage of times the true triple appears in the top k ranked evaluation triples.

5.1 Implementation details

We implement both models in PyTorch and make our code, as well as all the subsets of the NELL-995
dataset, publicly available.2 We choose the learning rate from {1, 5, 10, 20, 50, 100} by MRR on
the validation set and find that the best learning rate is 50 for WN18RR and 10 for FB15k-237 for
both models. We initialize all embeddings near the origin where distances are small in hyperbolic
space, similar to [25]. We set the batch size to 128 and the number of negative samples to 50. In all
experiments, we set the curvature of MuRP to c=1, since preliminary experiments showed that any
material change reduced performance.

5.2 Link prediction results

Table 1 shows the results obtained for both datasets. As expected, MuRE performs slightly better on
the non-hierarchical FB15k-237 dataset, whereas MuRP outperforms on WN18RR which contains

2https://github.com/ibalazevic/multirelational-poincare
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Table 1: Link prediction results on WN18RR and FB15k-237. Best results in bold and underlined,
second best in bold. The RotatE [30] results are reported without their self-adversarial negative
sampling (see Appendix H in the original paper) for fair comparison.

WN18RR FB15k-237

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

TransE [6] .226 .501 − − .294 .465 − −
DistMult [37] .430 .490 .440 .390 .241 .419 .263 .155
ComplEx [34] .440 .510 .460 .410 .247 .428 .275 .158
Neural LP [38] − − − − .250 .408 − −
MINERVA [9] − − − − − .456 − −
ConvE [11] .430 .520 .440 .400 .325 .501 .356 .237
M-Walk [29] .437 − .445 .414 − − − −
TuckER [2] .470 .526 .482 .443 .358 .544 .394 .266
RotatE [30] − − − − .297 .480 .328 .205

MuRE d = 40 .459 .528 .474 .429 .315 .493 .346 .227
MuRE d = 200 .475 .554 .487 .436 .336 .521 .370 .245
MuRP d = 40 .477 .555 .489 .438 .324 .506 .356 .235
MuRP d = 200 .481 .566 .495 .440 .335 .518 .367 .243

hierarchical relations (as shown in Section 5.3). Both MuRE and MuRP outperform previous state-
of-the-art models on WN18RR on all metrics apart from hits@1, where MuRP obtains second best
overall result. In fact, even at relatively low embedding dimensionality (d=40), this is maintained,
demonstrating the ability of hyperbolic models to succinctly represent multiple hierarchies. On
FB15k-237, MuRE is outperformed only by TuckER [2] (and similarly ComplEx-N3 [18], since
Balažević et al. [2] note that the two models perform comparably), primarily due to multi-task
learning across relations. This is highly advantageous on FB15k-237 due to a large number of
relations compared to WN18RR and thus relatively little data per relation in some cases. As the first
model to successfully represent multiple relations in hyperbolic space, MuRP does not also set out
to include multi-task learning, but we hope to address this in future work. Further experiments on
NELL-995, which substantiate our claim on the advantage of embedding hierarchical multi-relational
data in hyperbolic over Euclidean space, are presented in Appendix C.

5.3 MuRE vs MuRP

Effect of dimensionality We compare the MRR achieved by MuRE and MuRP on WN18RR
for embeddings of different dimensionalities d ∈ {5, 10, 15, 20, 40, 100, 200}. As expected, the
difference is greatest at lower embedding dimensionality (see Figure 2a).

Convergence rate Figure 2b shows the MRR per epoch for MuRE and MuRP on the WN18RR
training and validation sets, showing that MuRP also converges faster.

101 102

Embedding Dimensionality (log)

10-1

100

M
R

R
 (

lo
g
)

MuRE

MuRP

(a) MRR per embedding dimensionality.

0 100 200 300 400
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

M
R

R

MuRE

MuRP

(b) MRR covergence rate per epoch.

Figure 2: (a) MRR log-log graph for MuRE and MuRP for different embeddings sizes on WN18RR.
(b) Comparison of the MRR convergence rate for MuRE and MuRP on the WN18RR training (dashed
line) and validation (solid line) sets with embeddings of size d = 40 and learning rate 50.

Model architecture ablation study Table 2 shows an ablation study of relation-specific transforma-
tions and bias choices. We note that any change to the current model architecture has a negative effect
on performance of both MuRE and MuRP. Replacing biases by the (transformed) entity embedding
norms leads to a significant reduction in performance of MuRP, in part because norms are constrained
to [0, 1), whereas the biases they replace are unbounded.
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Table 2: Ablation study of different model architecture choices on WN18RR: relational transforma-
tions (left) and biases (right). Current model (top row) outperforms all others.

(a) Relational transformations.

MuRE MuRP
Distance function MRR H@1 MRR H@1

d(Res, eo + r) .459 .429 .477 .438

d(es, eo + r) .340 .235 .307 .192
d(Res, eo) .413 .381 .401 .363
d(Rses,Roeo + r) .341 .299 .367 .335
d(es + r,Reo) .442 .410 .454 .413

(b) Biases.

MuRE MuRP
Bias choice MRR H@1 MRR H@1

bs & bo .459 .429 .477 .438

bs only .455 .414 .463 .415
bo only .453 .412 .460 .409
bx = ‖ex‖2 .414 .393 .414 .352
bx = ‖e(r)x ‖2 .443 .404 .434 .372

Performance per relation Since not every relation in WN18RR induces a hierarchical structure
over the entities, we report the Krackhardt hierarchy score (Khs) [17] of the entity graph formed by
each relation to obtain a measure of the hierarchy induced. The score is defined only for directed
networks and measures the proportion of node pairs (x, y) where there exists a directed path x→y,
but not y→x (see Appendix D for further details). The score takes a value of one for all directed
acyclic graphs, and zero for cycles and cliques. We also report the maximum and average shortest
path between any two nodes in the graph for hierarchical relations. To gain insight as to which
relations benefit most from embedding entities in hyperbolic space, we compare hits@10 per relation
of MuRE and MuRP for entity embeddings of low dimensionality (d= 20). From Table 3 we see
that both models achieve comparable performance on non-hierarchical, symmetric relations with the
Krackhardt hierarchy score 0, such as verb_group, whereas MuRP generally outperforms MuRE on
hierarchical relations. We also see that the difference between the performances of MuRE and MuRP
is generally larger for relations that form deeper trees, fitting the hypothesis that hyperbolic space is
of most benefit for modelling hierarchical relations.

Computing the Krackhardt hierarchy score for FB15k-237, we find that 80% of the relations have
Khs = 1, however, the average of maximum path lengths over those relations is 1.14 with only 2.7%
relations having paths longer than 2, meaning that the vast majority of relational sub-graphs consist
of directed edges between pairs of nodes, rather than trees.

Table 3: Comparison of hits@10 per relation for MuRE and MuRP on WN18RR for d=20.

Relation Name MuRE MuRP ∆ Khs Max Path Avg Path

also_see .634 .705 .071 0.24 44 15.2
hypernym .161 .228 .067 0.99 18 4.5
has_part .215 .282 .067 1 13 2.2
member_meronym .272 .346 .074 1 10 3.9
synset_domain_topic_of .316 .430 .114 0.99 3 1.1
instance_hypernym .488 .471 −.017 1 3 1.0
member_of_domain_region .308 .347 .039 1 2 1.0
member_of_domain_usage .396 .417 .021 1 2 1.0

derivationally_related_form .954 .967 .013 0.04 − −
similar_to 1 1 0 0 − −
verb_group .974 .974 0 0 − −

Biases vs embedding vector norms We plot the norms versus the biases bs for MuRP and MuRE
in Figure 3. This shows an overall correlation between embedding vector norm and bias (or radius of
the sphere of influence) for both MuRE and MuRP. This makes sense intuitively, as the sphere of
influence increases to “fill out the space” in regions that are less cluttered, i.e. further from the origin.

Spatial layout Figure 4 shows a 40-dimensional subject embedding for the word asia and a random
subset of 1500 object embeddings for the hierarchical WN18RR relation has_part, projected to 2
dimensions so that distances and angles of object entity embeddings relative to the subject entity
embedding are preserved (see Appendix E for details on the projection method). We show subject
and object entity embeddings before and after relation-specific transformation. For both MuRE
and MuRP, we see that applying the relation-specific transformation separates true object entities
from false ones. However, in the Poincaré model, where distances increase further from the origin,
embeddings are moved further towards the boundary of the disk, where, loosely speaking, there is
more space to separate and therefore distinguish them.
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Figure 3: Scatter plot of norms vs biases for MuRP (left) and MuRE (right). Entities with larger
embedding vector norms generally have larger biases for both MuRE and MuRP.
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Figure 4: Learned 40-dimensional MuRP and MuRE embeddings for WN18RR relation has_part,
projected to 2 dimensions. indicates the subject entity embedding, indicates true positive object
entities predicted by the model, true negatives, false positives and false negatives. Lightly
shaded blue and red points indicate object entity embeddings before applying the relation-specific
transformation. The line in the left figure indicates the boundary of the Poincaré disk. The supposed
false positives predicted by MuRP are actually true facts missing from the dataset (e.g. malaysia).

Analysis of wrong predictions Here we analyze the false positives and false negatives predicted
by both models. MuRP predicts 15 false positives and 0 false negatives, whereas MuRE predicts
only 2 false positives and 1 false negative, so seemingly performs better. However, inspecting the
alleged false positives predicted by MuRP, we find they are all countries on the Asian continent
(e.g. sri_lanka, palestine, malaysia, sakartvelo, thailand), so are actually correct, but missing from
the dataset. MuRE’s predicted false positives (philippines and singapore) are both also correct but
missing, whereas the false negative (bahrain) is indeed falsely predicted. We note that this suggests
current evaluation methods may be unreliable.

6 Conclusion and future work

We introduce a novel, theoretically inspired, translational method for embedding multi-relational
graph data in the Poincaré ball model of hyperbolic geometry. Our multi-relational Poincaré model
MuRP learns relation-specific parameters to transform entity embeddings by Möbius matrix-vector
multiplication and Möbius addition. We show that MuRP outperforms its Euclidean counterpart
MuRE and existing models on the link prediction task on the hierarchical WN18RR knowledge graph
dataset, and requires far lower dimensionality to achieve comparable performance to its Euclidean
analogue. We analyze various properties of the Poincaré model compared to its Euclidean analogue
and provide insight through a visualization of the learned embeddings.

Future work may include investigating the impact of recently introduced Riemannian adaptive
optimization methods compared to Riemannian SGD. Also, given not all relations in a knowledge
graph are hierarchical, we may look into combining the Euclidean and hyperbolic models to produce
mixed-curvature embeddings that best fit the curvature of the data.
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