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Abstract Automated person re-identification using only visual information from
public-space CCTV video is challenging for many reasons, such as poor resolution
or challenges involved in dealing with camera calibration. More critical still, the
majority of clothing worn in public spaces tends to be non-discriminative and there-
fore of limited disambiguation value. Most re-identification techniques developed
so far have relied on low-level visual-feature matching approaches that aim to re-
turn matching gallery detections earlier in the ranked list of results. However, for
many applications an initial probe image may not be available, or a low-level fea-
ture representation may not be sufficiently invariant to viewing condition changes as
well as being discriminative for re- identification. In this chapter, we show how mid-
level “semantic attributes” can be computed for person description. We further show
how this attribute-based description can be used in synergy with low-level feature
descriptions to improve re-identification accuracy when an attribute-centric distance
measure is employed. Moreover, we discuss a “zero-shot” scenario in which a visual
probe is unavailable but re-identification can still be performed with user-provided
semantic attribute description.
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1 Introduction

Person re-identification, or inter-camera entity association, is the task of recognis-
ing an individual in diverse scenes obtained from non-overlapping cameras. In par-
ticular, for surveillance applications performed over space and time, an individual
disappearing from one view would need to be differentiated from numerous possible
targets and matched in one or more other views at different locations and times. Po-
tentially each view may be taken from a different angle, featuring different static and
dynamic lighting conditions, degrees of occlusion and other view-specific variables.

Relying on manual re-identification in large camera networks is prohibitively
costly and inaccurate. Operators are often assigned more cameras to monitor than is
optimal and manual matching can be prone to attentive gaps [19]. Moreover, base-
line human performance is determined by individual operator’s experience amongst
other factors. It is difficult to transfer this expertise directly between operators with-
out knowledge being affected by operator-bias [45].

As public space camera networks have grown quickly in recent years, there has
also been an increasing interest in the computer vision community for develop-
ing automated re-identification solutions. These efforts have primarily focused on
two strategies: (i) developing feature representations which are discriminative for
identity, yet invariant to view angle and lighting [12, 37, 9]; and (ii) learning meth-
ods to discriminatively optimise parameters of a re-identification model [50]. Until
now, automated re-identification remains largely an unsolved problem due to the un-
derlying challenge that most visual features are either insufficiently discriminative
for cross-view entity association, especially with low resolution images, or insuffi-
ciently robust to viewing condition changes.

In this chapter, we take inspiration from the operating procedures of human ex-
perts [33, 43, 7] and recent research in attribute learning for classification [21] in
order to introduce a new mid-level semantic attribute representation.

When performing person re-identification, human experts rely upon matching ap-
pearance or functional attributes that are discrete and unambiguous in interpretation,
such as hair-style, shoe-type or clothing-style [33]. This is in contrast to the contin-
uous and more ambiguous quantities measured by contemporary computer vision
based re-identification approaches using visual features such as colour and texture
[12, 37, 9]. This attribute-centric representation is similar to a description provided
verbally to a human operator, e.g. by an eye-witness. We call this task attribute-
profile identification, or zero-shot re-identification. Furthermore, we will show in
our study that humans and computers have important differences in attribute-centric
re-identification. In particular descriptive attributes that are favoured by humans
may not be the most useful or computable for fully automated re-identification be-
cause of variance in the ability of computer vision techniques to detect each attribute
and variability in how discriminative each attribute is across the entire population.

This approach of measuring similarity between attributes rather than within the
feature-space has two advantages: (i) it allows re-identification (from a probe im-
age) and identification (from a verbal description) to be performed in the same rep-
resentational space; and (ii) as attributes provide a very different type of informa-
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tion to low-level features, which can be considered a separate modality, they can
be fused together with low-level features to provide more accurate and robust re-
identification.

2 Problem Definitions

2.1 The Re-Identification Problem

Contemporary approaches to re-identification typically exploit low-level features
(LLFs) such as colour [29], texture, spatial structure [9], or combinations there of
[13, 37, 3], because they can be relatively easily and reliably measured, and provide
a reasonable level of inter-person discrimination together with inter-camera invari-
ance.

Once a suitable representation has been obtained, nearest-neighbour [9] or model-
based matching algorithms such as support-vector ranking [37] may be used for
re-identification. In each case, a distance metric (e.g. Euclidean or Bhattacharyya)
must be chosen to measure the similarity between two samples. There is now a body
of work on discriminatively optimising re-identification models or distance metrics
[15, 47, 2, 50] as well as discriminatively learning the low-level features themselves
[24]. Other complementary aspects of the re-identification problem have also been
pursued to improve performance, such as improving robustness by combining mul-
tiple frames worth of features along a trajectory tracklet [3], between sets [49], in
a group [46], and learning the topology of camera networks by inter-camera ac-
tivity correlations [27] in order to reduce matching search space and hence reduce
false-positives.

2.2 Attributes as Representation

Attribute based modelling has recently been exploited to good effect in object [21]
and action [26, 11] recognition. To put this in context: in contrast to low-level fea-
tures or high-level classes or identities, attributes provide the mid-level description
of both classes and instances. There are various unsupervised (e.g. PCA or topic-
models) or supervised (e.g. neural networks) modelling approaches which produce
data-driven mid-level representations. These techniques aim to project the data onto
a basis set defined by the assumptions of the particular model (e.g. maximisation
of variance, likelihood, or sparsity). In contrast, attribute learning focuses on rep-
resenting data instances by projecting them onto a basis set defined by domain-
specific axes which are semantically meaningful to humans. Recent work in this
area has also examined the exploitation of the constantly growing semantic web in
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order to automatically retrieve visual data correlating to relevant metatext [10] and
vice-versa for visual retrieval using metatext queries [38].

Semantic attribute representations have various benefits: (i) In re-identification,
a single pair of images may be available for each target – which can be seen as a
challenging case of “one-shot” learning. In this case attributes can be more pow-
erful than low-level features [21, 41, 26] because they provide a form of transfer
learning as attributes are learned from a larger dataset a priori; (ii) they can be used
synergistically in conjunction with raw data for greater effectiveness [26]; and (iii)
they are a suitable representation for direct human interaction, therefore allowing
searches to be specified, initialised or constrained using human-labelled attribute-
profiles [21, 41, 20].

2.3 Attributes for Identification

One view of attributes is as a type of transferable context [48] in that they pro-
vide auxiliary information about an instance to aid in (re)-identification. Here they
are related to the study of soft-biometrics, which aims to enhance biometric iden-
tification performance with ancillary information [18, 8]. High-level features such
as ethnicity, gender, age or indeed identity itself would be the most useful to us
for re-identification. However, soft biometrics are exceptionally difficult to reliably
compute in typical surveillance video as visual information is often impoverished
and individuals are often at “stand-off distances” as well as in unconstrained or un-
known viewing angles.

Alternatively attributes can be used for semantic attribute-profile identification
(c.f. zero-shot learning [21]), in which early research has aimed to retrieve people
matching a verbal attribute description from a camera network [43]. However, this
has only been illustrated on relatively simple data with a small set of similarly-
reliable facial attributes. We will illustrate in this study that one of the central is-
sues for exploiting attributes for general automated (re)-identification is dealing with
their unequal and variable informativeness and reliability of measurement from raw
imagery data.

In this chapter, we move towards leveraging semantic mid-level attributes for
automated person identification and re-identification. Specifically, we make four
main contributions as follows. In Section 3.1 we introduce an ontology of attributes
based on a subset from a human expert defined larger set [33]. These were selected
for being relatively more reliable to compute whilst also discriminative for identi-
fication in typical populations. We evaluate our ontology from the perspective of
both human-centric and automation-centric purposes and discuss considerations for
successful ontology selection. In Section 3.6 we show how to learn an attribute-
space distance metric to optimally weight attributes for re-identification, and do
so in a synergistic way with low-level features. We evaluate our model in Section 4
and show significantly improved re-identification performance compared to conven-
tional feature-based techniques on the two largest benchmark datasets. In the subse-
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quent sections, we provide additional analysis and insight into the results, including
contrast against zero-shot re-identification from attribute-profile descriptions.

3 Computing Attributes for Re-Identification

3.1 Ontology Selection

The majority of recent work on attributes looks to human expertise in answer to the
question as to which attributes to learn. Typically, ontology selection is performed
manually prior to research or via learning from existing metadata [4]. Hand-picked
ontologies can be broadly categorised as top-down and bottom-up. In the top-down
case, ontology selection may be predicated on the knowledge of experienced human
domain-experts. In the latter it may be based on the intuition of vision researchers,
based on factors such as how detectable an attribute might be with available methods
or data availability.

For the purposes of automated re-identification, we are concerned with descrip-
tions that permit us reliably discriminate; that is to say we wish to eliminate iden-
tity ambiguity between individuals. Ontology selection therefore is guided by two
factors: computability and usefulness. That is, detectable attributes, which can be
detected reliably using current machine learning methods and available data [11],
and discriminative (informative) attributes which, if known, would allow people to
be effectively disambiguated [28].

The notion of discriminative attributes encompasses a nuance. Humans share a
vast prior pool of potential attributes and experience. If required to describe a person
in a way which uniquely identifies them against a gallery of alternatives, they typ-
ically choose a short description in terms of the rare attributes which uniquely dis-
criminate the target individual (e.g. imperial moustache). In contrast, in the ideal dis-
criminative ontology of attributes for automated processing, each attribute should be
uncorrelated with all others, and should occur in exactly half of the population (e.g.
male versus female). In this way no one attribute can distinguish a person uniquely,
but together they effectively disambiguate the population: a “binary search” strat-
egy. There are two reasons for this: constraining the ontology size, and training data
requirement.
Ontology size: Given a “binary search” ontology , any individual can be uniquely
identified among a population of n candidates with only an O(log(n)) sized attribute
ontology or description. In contrast, the single rare-attribute strategy favoured by
people means that while a person may be identified with a short length 1 attribute
description, an ontology size and computation size O(n) may be required to de-
scribe, interpret and identify this person.
Training data: Given a ”binary search” ontology, each training image may be re-
used and be (equally) informative for all n attributes (attributes are typically positive
for half the images). In contrast, the single rare-attribute strategy would require an
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Fig. 1 Positive instances of our ontology from (top) the VIPeR and (bottom) the PRID datasets.

redshirt blueshirt lightshirt
darkshirt greenshirt nocoats
notlightdarkjeanscolour darkbottoms lightbottoms
hassatchel barelegs shorts
jeans male skirt
patterned midhair darkhair
bald hashandbagcarrierbag hasbackpack

Table 1 Our attribute ontology for re-identification.

infeasible n times as much training data, because different data would be needed for
each attribute (e.g. finding a significant number of wearers of imperial moustaches)
to train the detectors). In practice, rare attributes do not have enough training data
to learn good classifiers, and are thus not reliably detectable. A final consideration
is the visual subtlety of the attributes, which humans may be able to easily pick out
based on their lifetime of experience but which would require prohibitive amounts
of training data as well as feature/classifier engineering for machines to detect.

Whether or not a particular ontology is detectable and discriminative cannot
therefore be evaluated prior to examination of representative data. However, given
a putative ontology and a representative and annotated training set, the detectability
of the ontology can be measured by the test performance of the trained detectors
whilst the discriminativeness of the ontology can be measured by the mutual infor-
mation (MI) between the attributes and person identity. The question of how to trade
off discriminativeness and detectability when selecting an ontology on the basis of
maximum predicted performance is not completely clear [22, 23]. However, we will
take some steps to address this issue in Section 3.6.

3.2 Ontology Creation and Data Annotation

Given the considerations discussed in the previous section, we select our ontology
jointly based on four criteria. (i) We are informed by the operational procedures of
human experts [33] as well as (ii) prioritising suitable findings from [44, 22, 23, 38],
(iii) whether the ontology is favourably distributed in the data (binary search) and
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Fig. 2 Annotation disagreement error frequencies for two annotators on PRID.

(iv) those which are likely to be detectable (sufficient training data and avoiding
subtlety).

Specifically, we define the following space of Na = 21 binary attributes (Table
1). Ten of these attributes are related to colour, one to texture and the remaining ten
are related to soft biometrics. Fig. 1 shows a visual example of each attribute1.

Human annotation of attribute labels is costly in terms of both time and human
effort. Due to the semantic nature of the attributes, accurate labelling can be espe-
cially challenging for cases where data is visually impoverished. Typically problems
can arise where (i) ontology definition allows for ambiguity between members of the
ontology, and (ii) boundary cases are difficult for an annotator to binarily classify
with confidence. These circumstances can be natural places for subjective labelling
errors [42].

To investigate the significance of this issue, we independently double-annotated
the PRID dataset [15] for our attribute ontology. Fig. 2 illustrates frequency of label
disagreements for each attribute in the PRID dataset measured as the Hamming
distance between all annotations for that attribute across the dataset:

For attributes such as shorts or gender, uncertainty and therefore error is low.
However, attributes whose boundary cases may be less well globally agreed upon
can be considered to have the highest relative error between annotators. For ex-
ample, in Fig. 2 attributes hassatchel and darkhair are most disagreed upon since
lighting variations make determining darkness of hair difficult in some instances and
satchel refers to a wide variety of rigid or non-rigid containers held in multiple ways.
This means that attributes such as darkhair and hassatchel may effectively be sub-
ject to a significant rate of label noise [51] in the training data and hence perform
poorly. This adds another source of variability in reliability of attribute detection

1 We provide our annotations here: http://www.eecs.qmul.ac.uk/∼rlayne/
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Fig. 3 Top 5 pairs of pedestrian detections in PRID where annotators disagreed most (top row).
Annotator #1’s labels (middle), Annotator #2’s labels (bottom). Each row is an attribute-profile for
a pair of detections, columns are attributes and are arranged in the same order as Fig 2.

which will have to be accounted for later. Fig. 3 illustrates pairs of individuals in the
PRID dataset whose shared attribute-profiles were the most disagreed upon. The fig-
ure highlights the extent of noise that can be introduced through semantic labelling
errors, a topic we will revisit later in Section 3.6.

3.3 Feature Extraction

To detect attributes, we first select well-defined and informative low-level features
with which to train robust classifiers. We wish to choose a feature which is also typ-
ically used for re-identification in order to enable later direct comparison between
conventional and attribute-space re-identification in a way which controls for the in-
put feature used. Typical descriptors used for re-identification include the Symmetry
Driven Accumulation of Local Features (SDALF) [9] and Ensemble of Localised
Features (ELF) [13].

The content of our ontology includes semantic attributes such as jeans, shirt
colours, gender. We can infer that the information necessary for humans to dis-
tinguish these items is present visually, and wish to select a feature that incorporates
information pertaining to colour, texture and spatial information. For our purposes,
SDALF fulfils the requirements for our ontology but does not produce positive semi-
definite distances, therefore ruling it out for classification using kernel methods.
Alternatively, we therefore exploit ELF.
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To that end, we first extract an 2784-dimensional low-level colour and texture
feature vector denoted x from each person image I following the method in [37].
This consists of 464-dimensional feature vectors extracted from six equal sized hor-
izontal strips from the image. Each strip uses 8 colour channels (RGB, HSV and
YCbCr) and 21 texture filters (Gabor, Schmid) derived from the luminance channel.
We use the same parameter choices for γ , λ , θ and σ2 as proposed in [37] for Gabor
filter extraction, and for τ and σ for Schmid extraction. Finally, we use a bin size of
16 to quantise each channel.

3.4 Attribute Detection

3.4.1 Classifier training and attribute feature construction

We train Support Vector Machines (SVM) [40] to detect attributes. We use Chang
et al.’s LIBSVM [5] and investigate Linear, RBF, χ2 and Intersection kernels. We
select the intersection kernel as it compares closely with χ2 but is faster to compute2.

For each attribute, we perform cross validation to select values for SVM slack pa-
rameter C from the set C∈{−10, . . . ,10}with increments of ε = 1. The SVM scores
are probability mapped, so each attribute detector i outputs a posterior p(ai|x). We
follow the standard approach for mapping SVM scores to posterior probabilities
[36] as implemented by libSVM [5].

3.4.2 Spatial Feature Selection

Since some attributes (e.g. shorts) are highly unlikely to appear outside of their ex-
pected spatial location, one might ask whether it is possible to improve performance
by discriminatively selecting or weighting the individual strips within the feature
vector (Section 3.3). We experimented with defining a kernel for each strip as well
as for the entire image, and training multi-kernel learning SVM using the DOGMA
library with Obscure as in classifiers [34, 35]. This approach discriminatively opti-
mises the weights for each kernel in order to improve classifier performance and has
been shown to improve performance when combining multiple features. However
in this case it did not reliably improve on the conventional SVM approach, presum-
ably due to the relatively sparse and imbalanced training data being insufficient to
correctly tune the inter-kernel weights.

2 Our experiments on LIBSVM performance vs. attribute training time show the intersection kernel
as being a good combination of calculation time and accuracy. For example, training the attribute
ontology results in 65.4% mean accuracy with 0.8 hours training for the intersection kernel, as
compared to the χ2 kernel (63.8% with 4.1 hours), the RBF kernel (65.9% with 0.76 hours and
the linear kernel (61.8% with 1.2 hours) respectively with LIBSVM. Although RBF is computed
slightly faster and has similar accuracy, we select the intersection kernel overall, since the RBF
kernel would require cross-validating over a second parameter. Providing LibSVM with pre-built
kernels reduces training time considerably in all cases.
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3.4.3 Imbalanced Attribute Training

The prevalence of each attribute in a given dataset tends to vary dramatically and
some attributes have a limited number of positive examples in an absolute sense as a
result. This imbalance can cause discriminative classifiers such as SVMs to produce
biased or degenerate results. There are various popular approaches to dealing with
imbalanced data [14], such as synthesising further examples from the minority class
to improve the definition of the decision boundary, for example using SMOTE [6] or
weighting SVM instances or mis-classification penalties [14, 1]. However, neither
of these methods outperformed simple subsampling in our case.

To avoid bias due to imbalanced data, we therefore simply train each attribute
detector with all the positive training examples of that attribute, and obtain the same
number of negative examples by sub-sampling the rest of the data at regular inter-
vals.

3.4.4 Mid-level Attribute Representation

Given the learned bank of attribute detectors, at test time we generate mid-level fea-
tures as 1×Na sized vectors of classification posteriors which we use to represent
the probability that each attribute is present in the detection. Effectively we have pro-
jected the high dimensional, low-level features onto a mid-level, low-dimensional
semantic attribute space. In particular, each person image is now represented in se-
mantic attribute space by stacking the posteriors from each attribute detector into
the Na dimensional vector: A(x) = [p(a1|xi), . . . , p(aNa |xNa)]

T .

3.5 Attribute Fusion with Low-level Features

To use our attributes for re-identification, we can define a distance solely on the at-
tribute space, or use the attribute distance in conjunction with conventional distance
between low-level features such as SDALF [9] and ELF [12]. SDALF provides state
of the art performance for a non-learning nearest-neighbour (NN) approach while
ELF has been widely used by model-based learning approaches [37, 46]. We also
use it as the feature for our attribute detectors in Section 3.3.

We therefore introduce a rather general formulation of a distance metric between
two images Ip and Ig which combines both multiple attributes and multiple low-level
features as follows:

dwL,wA (Ip, Ig) = ∑l∈LL wL
l dL

l (Ll (Ip) ,Ll (Ig))+dA
wA (A(Ip),A(Ig))) . (1)

Here Eq. (1) (first term) corresponds to the contribution from a set LL of low-level
distance measures, where Ll(Ip) denotes extraction of type l low-level features from
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image Ip, dL
l denotes the distance metric defined for low-level feature type l, and wL

l
is a weighting factor for each feature type l. Eq. (1) (second term) corresponds to
the contribution from our attribute-based distance metrics. Where A(Ip) denotes the
attribute encoding of image Ip. For the attribute-space distance we experiment with
two metrics: weighted L1 (Eq. 2) and weighted euclidean (Eq. 3).

dA
wA(Ip, Ig) = (wA)T ∣∣(A(xp)−A(xg))

∣∣ , (2)

dA
wA(Ip, Ig) =

√
∑

i
wA

i (p(ai|xp,i)− p(ai|xg,i))
2. (3)

3.6 Attribute Selection and Weighting

As discussed earlier, all attributes are not equal due to variability in how reliably
they are measured due to imbalance, subtlety (detectability) and how informative
they are about identity (discriminability). How to account for variable detectability
and discriminability of each attribute (wA), and how to weight attributes relative to
low-level features (wLL) are important challenges which we discuss now.

Exhaustively searching the Na dimensional space of weights directly to determine
attribute selection and weighting is computationally intractable. However, we can
re-formulate the re-identification task as an optimisation problem and apply standard
optimisation methods [32] to search for a good configuration of weights.

Importantly, we only search |wA|= Na = 21 parameters for the within-attribute-
space metric dA

wA(·, ·). and one or two parameters for weighting attributes relative
to low-level features. In contrast to previous learners for low-level features [37,
47, 50] which must optimise hundreds or thousands of parameters, this gives us
considerable flexibility in terms of computation requirement of the objective.

An interesting question is therefore what is the ideal criterion for optimisation.
Previous studies have considered optimising, e.g. relative rank [37] and relative dis-
tance [50, 15]. While effective, these metrics are indirect proxies for what the re-
identification application ultimately cares about, which is the average rank of the
true match to a probe within the gallery set, which we call Expected Rank (ER).
That is, how far does the operator have to look down the list before finding the
target. See Section 4 for more discussion.

We introduce the following objective for expected rank:

ER =
1
|P| ∑p∈P

∑
g∈G

Lw (Dpp,Dpg)+λ ‖ w−w0 ‖, (4)

where Dpg is the matrix of distances (Eqs. (1)) from probe image p to gallery im-
age g; L is a loss function which can penalise the objective according to the relative
distance of the true match Dpp versus false matches Dpg; and w0 is a regulariser
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Algorithm 1 Attributes-based Re-identification
Training
for each Attribute do

Subsample majority class to length of minority class
Cross-validate to obtain parameter C that gives best average accuracy.
Retrain SVM on all training data with selected C

end for
Determine inter and intra-attribute weighting w by minimising Eq. (4).

Testing (Re-identification)
for each Person xg ∈ gallery set do

Classify each attribute a
Stack attribute posteriors into person signature A(xg).

end for
for each Person xp ∈ probe set do

Classify each attribute a
Stack attribute posteriors into person signature A(xp).
Compute distance to gallery set fusing attribute and LLF cues with weight w. (Eq. (1))
Nearest-neighbour re-identification in gallery according to their similarity to person xp.

end for

bias with strength λ . To complete the definition of the objective, we define the loss
function L as in Eq. 5. That is, imposing a penalty every time a false match is ranked
ahead of the true match. (I is an indicator function which returns 1 when the param-
eter is true.) The overall objective (Eq. (4)) thus returns the expected rank of the
true match. This is now a good objective, because it directly reflects the relevant
end-user metric for effectiveness of the system. However it is hard to efficiently op-
timise because it is non-smooth: a small change to the weights w may have exactly
zero change to the expected rank (the optimisation surface is piece-wise linear). We
therefore soften this loss-function using a sigmoid, as in Eq. (6), which is now
smooth and differentiable. This finally allows efficient gradient-based optimisation
with Newton [25] or conjugate-gradient methods [32].

LHardRank,ER
w = I(dpp−dpg > 0) . (5)

LSigmoid,ER
w = σ (dpp−dpg) . (6)

We initialise winitial = 1. To prevent over fitting, we use regularisation parameters
w0=1, and λ = 0.2 (i.e., everything is assumed to be equal a priori) and set the
sigmoid scale to k = 32. Finally for fusion with low-level features (Eq. 1), we use
both SDALF and ELF.

In summary, this process uses gradient-descent to search for a setting of weights
w for each LLF and for each attribute (Eq. (1)) that will (locally) minimise the
expected rank within the gallery of the true match to each probe image (Eq. (4)).
See Algorithm 1 for an overview of our complete system.
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4 Experiments

4.1 Datasets

We select two challenging datasets with which to validate our model, VIPeR [12]
and PRID [15]. VIPeR contains 632 pedestrian image pairs from two cameras with
different viewpoint, pose and lighting. Images are scaled to 128x48 pixels. We fol-
low [12, 9] in considering Cam B as the gallery set and Cam A as the probe set.
Performance is evaluated by matching each test image in Cam A against the Cam B
gallery.

PRID is provided as both multi-shot and single-shot data. It consists of two cam-
era views overlooking an urban environment from a distance and from fixed view-
points. As a result PRID features low pose variability with the majority of people
captured in profile. The first 200 shots in each view correspond to the same person,
however the remaining shots only appear once in the dataset. To maximise compa-
rability with VIPeR, we use the single-shot version and use the first 200 shots from
each view. Images are scaled to 128x64 pixels.

For each dataset, we divide the available data into training, validation and test
partitions. We initially train classifiers and produce attribute representations from
the training portion, and then optimise the attribute weighting as described in Sec-
tion 3.6 using the validation set. We then retrain the classifiers on both the training
and validation portions, while re-identification performance is reported on the held
out test portion.

We quantify re-identification performance using three standard metrics and one
less common one metric. The standard re-identification metrics are performance
at rank n, cumulative matching characteristic (CMC) curves, and normalised area
under the CMC curve [12, 9]. Performance at rank n reports the probability that
the correct match occurs within the first n ranked results from the gallery. The CMC
curve plots this value for all n, and the nAUC summarises the area under the CMC
curve (so perfect nAUC is 1.0 and chance nAUC is 0.5).

We additionally report Expected Rank (ER), as advocated by Avraham et al. [2]
as CMC Expectation. The ER reflects the mean rank of the true matches and is a
useful statistic for our purposes; in contrast to the standard metrics, lower ER scores
are more desirable and indicate that on average the correct matches are distributed
more toward the lower ranks. (So perfect ER is 1 and random ER would be half
the gallery size). In particular ER has the advantage of a highly relevant practical
interpretation: it is the average number of returned images the operator will have to
scan before reaching the true match.

We compare the following re-identification methods: (1) SDALF [9] using code
provided by the authors (note that SDALF is already shown to decisively outperform
[13]); (2) ELF: Prosser et al.’s [37] spatial variant of Ensemble of Localised Features
(ELF) [12] using Strips of ELF; (3) Attributes: Raw attribute based re-identification
(Euclidean distance); (4) OAR: our Optimised Attribute based Re-identification
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method with weighting between low-level features and within attributes learned by
directly minimising the Expected Rank (Section 3.6).

4.2 Attribute Analysis

We first analyse the intrinsic discriminative potential of our attribute ontology inde-
pendently of how reliably detectable the attributes are (assuming perfect detectabil-
ity). This analysis plays provides an upper bound of performance that would be
obtainable with sufficiently advanced attribute detectors. Fig. 6 reports the preva-
lence of each attribute in the datasets. Many attributes have prevalence near to 50%,
which is reflected in their higher mutual information with person identity. As we
discussed earlier this is a desirable property because it means each additional at-
tribute known can potentially halve the number of possible matches. Whether this
is realised or not depends on if attributes are correlated/redundant, in which case
each additional redundant attribute provides less marginal benefit. To check this we
compute the correlation coefficient between all attributes, and found that the average
inter-attribute correlation was only 0.07. We therefore expect the attribute ontology
to be effective.

Fig. 4 shows a histogram summarising how many people are uniquely identifiable
solely by attributes and how many would be confused to a greater or lesser extent.
The peak around unique/unambiguous shows that a clear majority of people can be
uniquely or otherwise near-uniquely identified by their attribute-profile alone, while
the tail shows that there are a small number of people with very generic profiles.
This observation is important; near-uniqueness means that approaches which rank
distances between attribute-profiles are still likely to feature the correct match high
enough in the ranked list to be of use to human operators.

The CMC curve (for gallery size p=632) that would be obtained assuming per-
fect attribute classifiers is shown in Fig. 5. This impressive result (nAUC near a
perfect score of 1.0) highlights the potential for attribute-based re-identification.
Also shown are the results with only the top 5 or 10 attributes (sorted by mutual
information with identity), and a random 10 attributes. This shows that: (i) as few as
10 attributes are sufficient if they are good (i.e. high MI) and perfectly detectable,
while 5 is too few; and (ii) attributes with high MI are significantly more useful than
low MI (always present or absent) attributes.
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Fig. 4 Uniqueness of attribute descriptions in a population, (i) VIPeR and (ii) PRID. The peak
around unique shows that most people are uniquely identifiable by attributes.
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Fig. 6 Attribute occurrence frequencies and Attribute Mutual Information (MI) scores in VIPeR
(left) and PRID (right).
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Fig. 5 Best-case (assuming perfect attribute detection) re-identification using attributes with high-
est n ground-truth Mutual Information scores, (i) VIPeR and (ii) PRID.
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VIPeR (u) VIPeR (b) PRID (u) PRID (b)
redshirt 79.6 80.9 – 41.3
blueshirt 62.7 68.3 – 59.6
lightshirt 80.6 82.2 81.6 80.6
darkshirt 82.2 84.0 79.0 79.5
greenshirt 57.3 72.1 – –
nocoats 68.5 69.7 – 31.3
notlightdarkjeanscolour 57.6 69.1 – –
darkbottoms 74.4 75.0 72.2 67.3
lightbottoms 75.3 74.7 76.0 74.0
hassatchel – 56.0 51.9 55.0
barelegs 60.4 74.4 – 50.2
shorts 53.1 76.1 – –
jeans 73.6 78.0 57.1 69.4
male 66.7 68.0 52.1 54.0
skirt – 68.8 – 44.6
patterned – 60.8 – –
midhair 55.2 64.6 69.4 70.4
darkhair 60.0 60.0 75.4 75.4
bald – – – 40.2
hashandbagcarrierbag – 54.5 – 59.4
hasbackpack 63.4 68.6 – 48.3
Mean 66.9 70.3 68.3 66.2

Table 2 Attribute Classifier training and test accuracies (%) for VIPeR and PRID, for both the
balanced (b) and unbalanced (ub) datasets.

4.3 Attribute Detection

Given the analysis of the intrinsic effectiveness of the ontology in the previous sec-
tion, the next question is whether the selected attributes can indeed be detected or
not. Attribute detection on both VIPeR and PRID achieves reasonable levels on both
balanced and unbalanced datasets as seen in Table 2. (dash indicates failure to train
due to insufficient data). For all datasets, a minimum of 9 classifiers can be trained
on unbalanced PRID, and 16 on unbalanced VIPeR, in both cases some attribute
classifiers are unable to train due to extreme class imbalances or data sparsity. Aver-
age accuracies for these datasets are also reasonable; 66.9% and 68.3% respectively.
The benefit of sub-sampling negative data for attribute learning is highlighted in the
improvement in the balanced datasets. Balancing in this case increases the num-
ber of successfully trained classifiers to 20 for balanced VIPeR and 16 on balanced
PRID with mean accuracies rising to 70.3% for VIPeR. Balancing slightly reduces
classification performance on PRID to an average of 66.2%.
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VIPeR L1 L2
ELF [37] 84.3 72.1
ELF PCA 85.3 74.5
Raw Attributes 34.4 37.8
SDALF [9] 44.0
Random Chance 158

PRID L1 L2
ELF 28.2 37.0
ELF PCA 32.7 38.1
Raw Attributes 24.1 24.4
SDALF [9] 31.8
Random Chance 50

Table 3 Re-identification performance, we report Expected Rank scores for VIPeR (left, gallery
size p = 316) and PRID (right, gallery size p = 100) and compare different features and distance
measures against our balanced attribute-features prior to fusion and weight selection. Smaller val-
ues indicate better re-identification performance.

4.4 Using Attributes to Re-identify

Given the previous analysis of discriminability and detectability of the attributes,
we now address the central question of attributes for re-identification. We first con-
sider vanilla attribute re-identification (no weighting or fusion; wL = 0,wa = 1 in
Eq. (1)). The re-identification performance of attributes alone is summarised in Ta-
ble 3 in terms of expected rank. There are a few interesting points to note: (i) In
most cases using L2 NN matching provides lower ER scores than L1 NN match-
ing. (ii) On VIPeR and PRID, SDALF outperforms the other low-level features,
and outperforms our basic attributes in VIPeR. (iii) Although the attribute-centric
re-identification uses the same low-level input features (ELF), and the same L1/L2
NN matching strategy, attributes decisively outperform raw ELF. We can verify that
this large difference is due to the semantic attribute space rather than the implicit
dimensionality reduction effect of attributes by performing Principle Components
Analysis (PCA) on ELF to reduce its dimensionality to the same as our attribute
space (Na = 21). In this case the re-identification performance is still significantly
worse than the attribute-centric approach (See Table 3). The improvement over raw
ELF is thus due to the attribute-centric approach.
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Fig. 7 Final attribute re-identification CMC plots for (i) VIPeR and (ii) PRID, Gallery sizes p =
316, p = 100. Expected Rank is given in parentheses.

VIPeR ER Rank 1 Rank 5 Rank10 Rank25 nAUC
Farenzena et al. [9] 44.7 15.3 34.5 44.3 61.6 0.86
Prosser et al. [37] 83.2 6.5 16.5 21.0 30.9 0.74
Raw Attributes (b) 35.3 10.0 26.3 39.6 58.4 0.89
OAR (b) 27.5 21.4 41.5 55.2 71.5 0.94
Raw Attributes (u) 40.4 6.5 23.9 34.8 55.9 0.88
OAR (u) 29.0 19.6 39.7 54.1 71.2 0.91
PRID ER Rank 1 Rank 5 Rank10 Rank25 nAUC
Farenzena et al. 11.6 30.0 53.5 70.5 86.0 0.89
Prosser et al. 30.9 5.5 21.0 35.5 52.0 0.70
Raw Attributes (b) 22.9 9.5 27.0 40.5 60.0 0.78
OAR (b) 7.1 39.0 66.0 78.5 93.5 0.93
Raw Attributes (u) 20.8 8.5 28.5 44.0 69.0 0.80
OAR (u) 6.2 41.5 69.0 82.5 95.0 0.95

Table 4 Final attribute re-identification performance. We report Expected Rank scores [2] (lower
scores indicate that overall, an operator will find the correct match appears lower down the
ranks), Cumulative Match Characteristic (CMC) and normalised Area-Under-Curve (nAUC)
scores (higher is better, the maximum nAUC score is 1). We further report accuracies for our
approach using unbalanced data for comparison.

VIPeR Rank 1 Rank 10 Rank 20 Rank 50 nAUC
OAR 21.4 55.2 71.5 82.9 0.92
Hirzer et al.[16] 22.0 63.0 78.0 93.0
Farenzena et al.[9] 9.7 31.7 46.5 66.6 0.82
Hirzer et al.[17] 27.0 69.0 83.0 95.0 -
Avraham et al.[2] 15.9 59.7 78.3 - -
Zheng et al.[47, 50] 15.7 53.9 70.1 - -
Prosser et al.[37] 14.6 50.9 66.8 - -

Table 5 Comparison of results between our OAR method (Optimised Attribute Re-identification)
and other state-of-art results for the VIPeR dataset.
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4.5 Re-identification With Optimised Attributes

Given the promising results for vanilla attribute re-identification in the previous
section, we finally investigate whether our complete model (including discrimina-
tive optimisation of weights to improve expected rank) can further improve perfor-
mance. Fig. 7 and Table 4 summarise final re-identification performance. In each
case, optimising the attributes with the distance metric and fusing with low-level
SDALF and ELF improves re-identification uniformly compared to using attributes
or low-level features alone. Our approach improves ER by 38.3% and 35% on
VIPeR, and 38.8% and 46.5% on PRID for the balanced and unbalanced cases vs
SDALF and 66.9%, 65.1%, 77.1% and 80% vs ELF features.

Critically for re-identification scenarios, the most important rank 1 accuracies are
improved convincingly. For VIPeR, OAR improves 40% over SDALF in the bal-
anced case, and 33.3% for unbalanced data. For PRID, OAR improves by 30% and
36.6%. As in the case of ER, rank is uniformly improved, indicating the increased
likelihood that correct matches appear more frequently at earlier ranks using our
approach.
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Fig. 8 Final attribute feature weights for VIPeR (left) and PRID (right).

The learned weights for fusion between our attributes and low-level features in-
dicate that SDALF is informative and useful for re-identification on both datasets.
In contrast, ELF is substantially down-weighted to 18% compared to SDALF on
PRID and on VIPeR, disabled entirely. This makes sense because SDALF is at least
twice as effective as ELF for VIPeR (Table 3).

The intra-attribute weights (Fig. 8) are relatively even on PRID but more var-
ied on VIPeR where the highest weighted attributes (jeans, hasbackpack, nocoats,
midhair, shorts) are weighted at 1.43, 1.20, 1.17, 1.10 and 1.1; while the least infor-
mative attributes are barelegs, lightshirt, greenshirt, patterned and hassatchel which
are weighted to 0.7, 0.7, 0.66, 0.65 and 0.75. Jeans is one of the attributes that is de-
tected most accurately and is most common in the datasets, so its weight is expected
to be high. However the others are more surprising, with some of the most accurate
attributes such as darkshirt and lightshirt weighted relatively low (0.85 and 0.7).
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For PRID, darkshirt, skirt, lightbottoms, lightshirt and darkbottoms are most infor-
mative (1.19, 1.04, 1.02 and 1.03); darkhair, midhair, bald, jeans are the least (0.78,
0.8, 0.92, 0.86).

Interestingly, the most familiar indicators which might be expected to differenti-
ate good versus bad attributes are not reflected in the final weighting. Classification
accuracy, annotation error (label noise) and mutual information are not significantly
correlated with the final weighting, meaning that some unreliably detectable and
rare/low MI attributes actually turn out to be useful for re-identification with low
expected rank; and vice-versa. Moreover, some of the weightings vary dramatically
between dataset, for example, the attribute jeans is the strongest weighted attribute
on VIPeR, however it is one of the lowest on PRID despite being reasonably ac-
curate and prevalent on both datasets. These two observations both show (i) the
necessity of jointly learning a combined weighting for all the attributes, (ii) doing
so with a relevant objective function (such as ER), and (iii) learning a model which
is adapted for the statistics of each given dataset/scenario.

In Table 5, we compare our approach with the performance other methods as
reported in their evaluations. In this case the cross-validation folds are not the same,
so the results are not exactly comparable, however they should be indicative. Our
approach performs comparably to [16] and convincingly compared to [9, 47, 50] and
[37]. Both [17] and [2] exploit pairwise learning; in [2] a binary classifier is trained
on correct and incorrect pairs of detections in order to learn the projection from one
camera to another, in [17] incorrect (i.e., matches that are nearer to the probe than the
true match) detections are directly mapped further away whilst similar but correct
matches are mapped closer together. Our approach is eventually outperformed by
[17], however [17] learns a full covariance distance matrix in contrast to our simple
diagonal matrix, and despite this we remain reasonably competitive.

4.6 Zero-shot Identification

In Section 4.2 we showed that with perfect attribute detections, highly accurate re-
identification is possible. Even with a mere 10 attributes, near-perfect re-identification
can be performed. Zero-shot identification is the task of generating an attribute-
profile either manually or from a different modality of data, then matching individu-
als in the gallery set via their attributes. This is highly topical for surveillance: con-
sider the case where a suspect is escaping through a public area surveilled by CCTV.
The authorities in this situation may have enough information build a semantic-
attribute-profile of the suspect using attributes taken from eyewitness descriptions.

In zero-shot identification (a special case of re-identification) we replace the
probe image with a manually specified attribute description. To test this problem
setting, we match the ground truth attribute-profiles of probe persons against their
inferred attribute-profiles in the gallery as in [43].
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An interesting question one might ask is whether this is expected to be better
or worse than conventional attribute-space re-identification based on attributes de-
tected from a probe image. One might expect zero-shot performance to be better
because we know that in the absence of noise, attribute re-identification performs
admirably (Section 4.2 and Fig. 5) – and there are two sources of noise (attribute
detection inaccuracies in the probe and target images) of which the former noise
source has been removed in the zero-shot case. In this case, a man-in-the-loop ap-
proach to querying might be desirable, even if a probe image is available. That is,
the operator could quickly indicate the ground-truth attributes for the probe image
and search based on this (noise-free) ground-truth.

Table 6 shows re-identification performance for both datasets. Surprisingly, while
the performance is encouraging, it is not as compelling as when the profile is con-
structed by our classifiers, despite the elimination of the noise on the probe images.

This significant difference between the zero-shot case we outline here and the
conventional case we discuss in the previous section turns out to be because of noise
correlation. Intuitively, consider that if someone with a hard-to-classify hairstyle is
classified in one camera with some error (p(ahair|x)−atrue

hair), then this person might
also be classified in another camera with an error in the same direction. In this case,
using the ground-truth attribute in one camera will actually be detrimental to re-
identification performance.

To verify this explanation, we perform Pearson’s product-moment correlation
analysis on the error (difference between ground-truth labels and the predicted at-
tributes) between the probe and gallery sets. The average cross-camera error cor-
relation coefficient is 0.93 in VIPeR and 0.97 in PRID, and all of the correlation
coefficients were statistically significant (p < 0.05).

Although these results show that man-in-the-loop zero-shot identification - if in-
tended to replace a probe image - may not always be beneficial, it is still evident
that zero-shot performs reasonably in general and is a valuable capability for the
case where descriptions are verbal rather than extracted from a visual example.

ExpRank Rank 1 Rank 5 Rank10 Rank25
VIPER (u) 50.1 6.0 17.1 26.0 48.1
VIPER (b) 54.8 5.4 14.9 25.3 44.9
PRID (u) 19.2 8.0 29.0 47.0 73.0
PRID (b) 26.1 3.0 16.0 32.0 62.0

Table 6 Zero-shot re-identification results for VIPeR and PRID.
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Fig. 9 Success cases for Zero-shot re-identification on VIPeR. The left column shows two probe
images; i) is the image annotated by a human operator and ii) is the correct rank #1 match as se-
lected by our zero-shot re-identification system. The human-annotated probe descriptions (middle)
and the matched attribute-feature gallery descriptions (right) are notably similar for each person;
the attribute detections from the gallery closely resemble the human-annotated attributes (particu-
larly those above red line).

4.7 Conclusions

We have shown how mid-level attributes trained using semantic cues from human
experts [33] can be an effective representation for re-identification and (zero-shot)
identification. Moreover, this provides a different modality to standard low-level
features and thus synergistic opportunities for fusion.

Existing approaches to re-identification [9, 37, 12] focus on high-dimensional
low-level features which aim to be discriminative for identity yet invariant to view
and lighting. However, these variance and invariance properties are hard to obtain si-
multaneously, thus limiting such features effectiveness for re-identification. In con-
trast, attributes provide a low-dimensional mid-level representation which are dis-
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criminative by construction (see Section 3.1) and make no strong view invariance
assumptions (variability in appearance of each attribute is learned by the classifier
with sufficient training data).

Importantly, although individual attributes vary in robustness and informative-
ness, attributes provide a strong cue for identity. Their low-dimensional nature
means they are also amenable to discriminatively learning a good distance met-
ric, in contrast to the challenging optimisation required for high-dimensional LLFs
[47, 50]. In developing a separate cue-modality, our approach is potentially com-
plementary to the majority of existing approaches, whether focused on low-level
features [9], or learning methods [47, 50].

The most promising direction for future research is improving the attribute-
detector performance, as evidenced by the excellent results in Fig. 5 using ground-
truth attributes. The more limited empirical performance is due to lack of training
data, which could be addressed by transfer learning to deploy attribute detectors
trained on large databases (e.g. web-crawls) on to the re-identification system.

4.8 Further Reading

Interested readers may wish to refer to the following material:

• [32] for a comprehensive overview of continuous optimisation methods.
• [31] for detailed exposition and review of contemporary features and descriptors.
• [30] discusses classifier training and machine learning methods.
• [39] for trends on surveillance hardware development.
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