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Abstract

Fine-grained image retrieval (FGIR) enables a user to search for a photo of an object
instance based on a mental picture. Depending on how the object is described by the user,
two general approaches exist: sketch-based FGIR or text-based FGIR, each of which has
its own pros and cons. However, no attempt has been made to systematically investigate
how informative each of these two input modalities is, and more importantly whether
they are complementary to each thus should be modelled jointly. In this work, for the
first time we introduce a multi-modal FGIR dataset with both sketches and sentences
description provided as query modalities. A multi-modal quadruplet deep network is
formulated to jointly model the sketch and text input modalities as well as the photo
output modality. We show that on its own the sketch modality is much more informative
than text and each modality can benefit the other when they are modelled jointly.

1 Introduction

Fine-grained image retrieval (FGIR) [19, 29, 33] aims to search for photos containing spe-
cific object instances. It presents a paradigm shift to conventional image retrieval tasks, by
offering instance-level retrieval that underpins the need for many commercial applications
such as searching an online shopping website product catalogue. Specifically, different to
traditional image retrieval paradigms where input queries and results are often coarse (e.g.,
keywords and general object categories), FGIR aims to retrieve specific object instances
based on a user’s precise description. Such a description can be provided in two very differ-
ent forms: text and sketch.

Text being a conventional input modality is arguably the most intuitive — people have
got used to typing in keywords in search engines to retrieve text documents. Keyword-based
text query can also do a decent job for category-level image retrieval. For example, using the
keyword ‘shoe’ in a Google/Bing image search engine generates very satisfactory results -
the first few return pages all contain shoe images. However, when it comes to instance-level
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Figure 1: Relationship between sketch, photo, and text modalities.

or FGIR, using text as an input modality is problematic: it is good at describing semantic
concepts or attributes of the objects but weak in detailing spatial layout and complex shape
related characteristics. After all, one picture is worth a thousand words. A user can write a
sentence in a pinch but will not be bothered with writing an essay for retrieving a photo.

This limitation of text as an input modality for FGIR has inspired a recent surge of interest
in sketch-based FGIR approaches [19, 33]. Human sketches have been advocated by many as
a natural input modality since it implicitly captures both fine-grained appearance and holistic
structure information [14, 19, 32, 33]. A sketch is perhaps worth one hundred words but takes
much less efforts to produce. With the popularity of touchscreens, drawing sketch has never
been easier. However, sketch-based retrieval paradigms still suffer the major drawback of
varying drawing skills amongst users, which ultimately render it unintuitively for many —
the ‘I can’t sketch’ response is common. On top of that, certain visual characteristics can be
cumbersome to sketch, yet straightforward to describe in text (e.g., material and fine texture).
It is thus natural to hypothesise that these two input modalities are complementary to each
other (see Figure 1 for an example) and thus should be modelled jointly. Nevertheless, as
far as we know, there is no systematic study on how these two modalities fare in FGIR and
importantly, how their complementarity can be exploited so that even when a single modality
is used during testing, it can still benefit from a joint modelling process during training.

In this paper, we set out to answer the question whether text or sketch as an input modality
is a clear favourite when it comes to fine-grained retrieval of photos, or if there is comple-
mentary information to be explored for them to benefit from each other — and if there is, how
it can be exploited in a joint model? The first contribution of this work is to provide the first
dataset for FGIR with both sketch and text as query modalities. Specifically, each object
instance has three modalities: photo, sketch and sentence description enabling research into
not only sketch-text based FGIR in this work, but also fine-grained retrieval tasks between
any of the three modalities.

As the second contribution, we propose a multi-modal quadruplet deep network to align
sketch, text and photo embeddings. The main novelty is a quadruplet loss after the final
FC layers of the network, which not only aligns the three modalities, but also provides
fine-grained ranking similar to triplet losses previously used in two-modality fine-grained
retrieval [19, 33]. As the final contribution, we carry out extensive experiments to investi-
gate the usefulness of each modality as an input query on its own and when combined with
other modalities. We demonstrate that on its own the sketch modality is far more informative
than text even when multiple sentences are used, but both sketch and text benefit from being
modelled jointly during training, even when used as the sole query modality during testing.
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2 Related work

Fine-grained Sketch-based Image Retrieval The traditional category-level SBIR prob-
lem has been well studied [2, 9, 15, 24, 27, 35]. It was not until very recently that unique
characteristics of sketches had been advocated for fine-grained retrieval. Deep neural net-
work (DNN) provides an end-to-end solution for fine-grained SBIR [17, 19, 21, 22, 33],
and are proven to be superior to shallow methods based on hand-crafted features [12, 13].
[33] formulates a triplet-ranking network to align sketch and photo modalities. It adopts
a Siamese architecture, and utilise a triplet loss to learn a joint embedding space. The
Sketchy network [19] uses a Heterogeneous architecture instead and employ GoogleNet on
each branch to learn modality dependent feature representations. It follows that a triplet loss
is used on the final FC layers to align the two modalities. A classification loss is also used
after both sketch and photo branches to ensure that the retrieval result belongs to the correct
category. In this paper, we adopt the former Siamese architecture, where weights between
sketch branch and photo branch are shared, and extend the triplet ranking loss to a quadruplet
one in order to embed three modalities (sketch, text and photo).

Towards Fine-grained Text-based Image Retrieval There exists plenty of work on
learning a text-photo embedding space for image search [7, 23, 30], captioning [4, 11, 23]
and visual question answering [5, 31]. However, to the best of our knowledge, no prior work
had specifically addressed the fine-grained retrieval problem using text as input. This is not
surprising since as previously discussed text can become tedious and imprecise when de-
scriptions become more detailed (i.e., from keywords to full textual descriptions), rendering
them not the most intuitive for fine-grained retrieval. One line of work investigates using im-
age captions to retrieve images. For example, a convolution neural network (CNN) learns a
visual embedding which is then fed into a recurrent neural network (RNN) caption generator,
to form a CNN-RNN architecture [23]. However, this line of work typically studies captions
to describe the layout of objects in a scene image, rather than text to describe the fine-grained
characteristics of one object. We directly compare with [23] in our experiments, and show
that our three-way embedding can significantly boost text-photo retrieval performance.

Multi-modal Learning [25] offers an excellent survey of the field, including shallow
methods and deep learning methods. For the shallow methods, an effective and representa-
tive approach is to learn a multi-view embedding with canonical correlation analysis (CCA)
to align the images, tags and keywords, and then conduct the multi-view retrieval [7]. For
the deep learning methods, a typical algorithm will at first learn the latent representation for
each modality by a certain deep network, like auto encoder. After that, ranking loss after
feature layer or correlation score from CCA layer is applied to supervise the deep multi-
modal framework [26, 33]. In the inference stage, cross-similarity metric is built on the two
or more cross-modality latent representations, and guide the cross-modal retrieval [1, 16].
However, the multi-modal learning on fine-grained instance-level under the same category
is still not well investigated. In our work, we use the proposed quadruplet loss to align the
learned representation for instance-level sketch, photo and text modalities, and more impor-
tantly, to exploit the fine-grained discriminative power across the embeddings from different
modalities.
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Figure 2: Architecture of the proposed multi-modal learning framework. For the Quadruplet
loss visualisation: the light blue square indicates the anchor sketch, dark blue triangle the an-
chor text, and the green and red circles are for the positive and negative photos, respectively.

3 Methodology

3.1 Network Architecture

The architecture of our model is shown in Figure 2. It consists of four branches and ex-
tends the common architecture of a triplet ranking network: the middle two branches en-
codes sketch (S) and text (T) respectively, whereas the top and bottom branches are standard
positive (PP) and negative (NP) photos branches as per the triplet fine-grained network of
[33]. Each of the three branch configurations of our multi-modal framework, S-PN-NN, and
T-PN-NN, relates to the task of fine-grained sketch-based image retrieval and fine-grained
text-based image retrieval respectively. A novel quadruplet loss unifies these two related
tasks and aligns these cross modality embeddings.

3.2 Fine-grained Sketch and Photo Feature Embedding

In the fine-grained sketch-based image retrieval task, it is important to learn a deep repre-
sentation which encodes the fine-grained visual features shared between sketch and photo
modalities. To achieve this, branches similar to the state-of-the-art sketch-photo ranking
model in [33] are constructed, where we use Siamese convolution and pooling layers with
weights tied among different domains. Then fully-connected (FC) layers are applied to re-
duce the high dimensional convolution layer feature to a lower dimensional feature space,
while the following FC layer project the embedding from each modality to shared latent
space.

We also apply the pairwise dropout strategy [6] for the activation in Siamese branches.
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This is to depress the negative influence of standard dropout strategy on learning the ranking
on pairwise/triplet feature map, as different masks will introduce mask difference error when
we compare features in the ranking loss. Our experiments show that this pairwise dropout
strategy is helpful on multi-view matching/ranking tasks.

3.3 Fine-grained Text Description Embedding

It is natural to utilize RNN based methods as our language model, to exploit the high-level
information embedded in text descriptions. We use bidirectional long short-term memory
(LSTM) network to capture the fine-grained text features since it gives the best performance
amongst alternatives. In detail, sentences are chunked to tokenized word lists, then words
are fed into into a word embedding (learned based on the gensim model [18]). The encoded
vectors with timestamps are then sent to the bidirectional LSTM network to train the cells.
The LSTM cells are then updated following [8]. Finally, different to sentence generation
or image caption models, where they use the output from all word units, under a per-word
softmax loss to predict each word, we only take the last hidden activation of the bidirectional
LSTM [28] as the overall representation of the input sentence, i.e., the text embedding.

3.4 Multi-modal Alignment

Given the learned sketch-photo and text-photo embeddings, the following task is to align
these cross-modal embeddings. A cross-modal quadruplet loss is proposed to align the dif-
ferent embeddings. Given an instance quadruplet sample {s,7,p™, p~}, where the s, t, pT,
p~, representing the anchor sketch, anchor text, positive photo and negative photo, respec-
tively, the multi-modal model is supervised by our multi-modal quadruplet loss as below,

L(s,t,p",p~) =max (0,A+D (P (f(s)), @1 (f(p"))) =D (®1(f(5)), 21 (f(p7))))
+max (0,A+D (g (1), P2(f(p"))) =D ((1), P2(f(p7))))

, where g(), f(s), f(p*) and f(p~) denotes the learned anchor text, anchor sketch, the
positive and negative photo embedding, respectively. D(-,-) is the distance metric, here we
take the squared euclidean distance of I, normalised features to measure the cross-domain
similarity. The margin in the quadruplet loss is A. Two linear transform layers are embedded
in our quadruplet loss as @ (-) and ®;(-) to further adapt domain gap. For example,

(1

@1(f(p)) =W, f(p)+bi )

, where WlT and b denote the weights and biases in the domain adaptation layer, respectively.
And the matching metric between sketch and photo branch share the same linear transform
due to the Siamese branch setting.

By training this unified model of both modalities, each of the FGIR tasks will benefit via
learning a shared latent representation between the two tasks. At the inference stage, we can
construct either sketch-photo, or text-photo ranking/retrieval according to the sketch-photo
and text-photo ranking score, denoted as R(s, p) and R(t, p), respectively:

Ri(s,p) = —D(@1(f(s5)),®1(f(p))) A3)
Ri(t,p) = —D(g(t),P2(f(p))) 4)
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Figure 3: Example of the shoe multi-modal dataset.

4 Fine-grained Multi-modal Retrieval Dataset

We contribute a new dataset for multi-modal learning, especially for fine-grained cross-
modal retrieval. Particularly, we collected a total of 1374 sketch-photo-text triplets for shoes.
We first download shoe photos (in side view) and their corresponding descriptions from an
online shopping website. To collect sketch-photo pairs, we follow [33] and ask volunteers to
draw from mental recollections of the shoes photos: the sketcher was first shown a photo for
15 seconds; the picture was then withdrawn and he/she must draw the object from mental
recollection. Some examples are given in Figure 3. !

We split shoe samples from each subcategory (boots, heels, sandals, slippers and so on)
with the ratio 4:1, to form the train and test set. In total, we have 1112 sketches, text and
photos to train our multi-modal deep neural network, and 262 instances for testing.

S Experiments
5.1 Implementation details

Data preprocessing and augmentation We first pre-process photos into edge maps using
EdgeBox [36]. We then do random crop and flip on both sketches and photos to augment the
training data. Similar to other preprocessing strategies in text modality, we remove all stop
words and symbols in the raw text description, as well as some rare words whose maximum
word count are less than 5.

Network implementation We implement our multi-modal network in Tensorflow. Before
fine-tuning on our dataset, we follow similar pre-training stages as detailed in [33]. More
specially, we first pre-train the sketch and photo branches on TU-Berlin dataset [3] and
extracted edges from ImageNet [33], respectively. For the text branch in our model, we first
use gensim word2vec model [18] (pretrained on Google News dataset) on our training text
description to pre-train the word embedding. We then fine-tune our model on our newly
collected dataset with batch size set to 128. We use stochastic gradient descent (SGD) as the
optimizer to train our multi-modal model, with a learning rate of 0.0001. Dropout is applied
to both the FC layers and LSTM cells, with a keep rate of 0.5. We further put a /; regularizer
with 0.0005 weight decay to reduce over-fitting.

Sampling strategy = Our quadruplet sampler is inspired by the sampling strategy proposed
in [10]. We first fix the ground-truth photo as the positive instance for both anchor sketch and
anchor text. We then select 100 nearest neighbour photos in the VGG feature space [20] as
hard negatives for each sketch and its corresponding text and ground-truth photo. As a result,
a total of 111,200 quadruplets are generated for training prior to data augmentation. Such a

IThe dataset will be made available at the SketchX website: http:/sketchx.eecs.qmul.ac.uk/downloads/
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sampling strategy largely mitigates the otherwise expensive human annotation employed by
prior art [33].

5.2 Results

We compare our multi-modal fine-grained model with several baselines. First, we show the
performance of our model is superior to baseline methods on the fine-grained top 1 and top
10 retrieval performance metrics. Then we present various ablation studies to cast insight on
modality alignment, and how sketch-photo and text-photo can benefit each other.

Comparative results against baselines Three baselines are selected for comparison. The
first is multi-view shallow CCA [7]. To obtain the multi-modal representations for this multi-
view CCA framework, Sketch-A-Net [34] features (pool5 layer) are extracted for photo
edges and sketches, respectively, while bag-of-words are applied to encode the text descrip-
tion. In the deep CCA baseline [26], one hidden fully-connected layer with 256 dimen-
sion transformed the same deep representation, and the CCA layer (32D) after that project
the multi-modal embedding to the shared correlated latent space. The deep CCA model is
learned via optimising the sketch-photo correlation and text-photo correlation, alternatively.
Another baseline is a three branch (sketch, photo, and text branch) deep model, with two [,
loss to match the embedding between sketch and photo, and between text and photo. Results
in Table 1 demonstrate that our proposed method are clearly superior to the other baselines.
It is also interesting to observe that both shallow CCA loss and deep CCA are not suitable
for fine-grained retrieval, when compared to the /; loss and our unified quadruplet loss. We
suspect this is because the feature space is already highly correlated, due to the many highly
similar images in our gallery dataset.

Table 1: Comparative results against baselines on fine-grained SBIR and TBIR performance.
sketch — photo text — photo
Model Topl | Top10 | Topl | Top 10
Multi-view CCA[7] 0.38% 4.20% 0.76% 4.58%
Deep CCA[26] 7.25% | 11.83% | 0.38% 4.96%
Deep model + L2 loss | 33.97% | 72.14% | 1.53% 5.73%
Our full model 50.38% | 84.73% | 12.60% | 37.40%

Benefit from each cross-modal learning  Our multi-modal learning model can also be
viewed as a multi-task learning model, which has proven useful in many computer vision
problems. In multi-task learning, each task can regularise the others, thus reducing over-
fitting and promoting generalisation. In the deep learning context, this means they both
provide more data to help to train ‘latent tasks’ in the form of a shared representation.

In our multi-modal framework, one task is fine-grained sketch-to-photo retrieval, while
the other is fine-grained text-to-photo retrieval. The shared latent task is mining both the
high semantic-level information (with the help of text modality) and also the low-level of
structure and texture information (with the help of sketch modality) from the photo modality.
In the ablation study, we first split our multi-modal model to two single-task cross-modality
learning models, i.e., the fine-grained SBIR and fine-grained TBIR models. We also train our
full model by jointly training the two retrieval tasks. The retrieval performance is evaluated
on our multi-modal dataset, as shown in Table 2.
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Table 2: Contribution and performance of component tasks.
sketch — photo text — photo
Model Top 1 Top 10 Top 1 Top 10
Sketch-photo model | 49.24% | 82.06% - -
Text-photo model - - 8.78% | 33.97%
Our full model 50.38% | 84.73% | 12.60% | 37.40%

Performance comparison on fine-grained SBIR  The multi-modal image retrieval task
can be separated to fine-grained SBIR and TBIR tasks, and the fine-grained SBIR perfor-
mance can also be evaluated with the sketch-photo subset of our multi-modal dataset. Here
we compared our sketch-photo model with two most recent state-of-the-arts: triplet Sketch-
A-Net [33] and triplet GoogleNet [19]. The results in Table 3 shows that both our sketch-
photo model and Triplet Sketch-A-Net model works well, while ours can achieve the best top
1 and top 10 accuracy. Triplet GoogleNet can achieve similar performance compared to the
triplet Sketch-A-Net model, but may suffer the over-fitting problem with more parameters.

Table 3: Performance comparison on fine-grained SBIR.
Model Top 1 Top 10
Triplet Sketch-A-Net[33] | 46.56%  82.82%
Triplet GoogleNet[19] 45.42%  79.77%
Our sketch-photo model | 49.24%  82.06%
Our full model 50.38% 84.73%

Photo-text embedding alignment performance We evaluate against captioning approach
to FG-TBIR by applying the CNN-RNN architecture as detailed in [23] to generate descrip-
tions for our gallery images, and then perform text-to-text search. Another baseline model
here is the deep CCA model, but with only two modalities as oppose to all three used in
earlier experiments. From the results shown in Table 4, our text-photo model and caption
model can achieve similar retrieval performance and are better than the deep CCA method.
However our full multi-modal framework achieves the best performance.

Table 4: Photo-text embedding alignment performance with different methods.

Model Top 1 Top 10
Multi-view CCA[7] 0.38% 5.34%
Deep CCA[26] 3.05%  18.70%

Photo caption model[23] | 7.60% 24.40%
Our text-photo model 878%  33.97%
Our full model 12.60% 37.40%

Qualitative Results  With our multi-modal retrieval model, we can apply the trained model
to both sketch-to-photo retrieval and text-to-photo retrieval. Our model shows good perfor-
mance on fine-grained SBIR, and the visual results of our proposed multi-modal framework
is given in Fig. 4, where the ground-truth photo is highlighted using a green bounding box.

For text-to-photo retrieval, we test the model by giving the text description in the testing
dataset, and then retrieve photos from the image gallery. For instance, if query text is given,
the most similar photos retrieved are shown as Fig. 5.
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Figure 4: Example of fine-grained sketch-based image retrieval.
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Figure 5: Example of fine-grained text-based image retrieval.
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Figure 6: Example of fine-grained image retrieval with both sketch and text query.

Further insights on multi-modal query retrieval An unique characteristic of our model,
compared with all previous fine-grained retrieval methods, is that it simultaneously embed all
three modalities. By simply averaging sketch-photo and text-photo ranking scores (R;(s, p)
and R(z, p), respectively), we are able to use multi-modal query to conduct retrieval, i.e.,
instead of using sketch alone, we could feed in sketch and text under one query to make
retrieval even more fine-grained and comprehensive. For example, as Fig. 6 shows, when
given a sketch query to the trained model, the network is able to retrieve structurally similar
shoes. Yet it was not until text is added that the model could return true matches. This is
because sketch can not convey features like material and fine texture, which are however
straightforward to describe in text. Note that because we convert photos into edge maps on
the photo branch following [33], our network is unable to encode colour information. We
plan to alleviate this problem in the future by directly feeding colour photos into the photo
branch as per [19]. An quantitative evaluation of sketch+text multi-modal retrieval, along
with more qualitative examples, can be found in Supplementary Material.
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6 Conclusion

In this paper, we proposed a multi-modal fine-grained retrieval framework, and also con-
tribute a multi-modal FGIR dataset, where each sample has a photo, corresponding sketch
and text. We investigate fine-grained SBIR and TBIR, showing that sketch is more powerful
in isolation, but with a shared representation, both can be improved. Experiment results show
that with the proposed multi-modal framework, our model can achieve a good retrieval result
both on fine-grained sketch-to-photo and text-to-photo retrieval. Moreover, we offer insights
on multi-modal query where sketch and text can be combined at testing time to obtain the
most accurate results.
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