Modelling protein trafficking: progress and challenges

Vashti Galpin

Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh

21 May 2012
Outline

Protein Trafficking

Modelling Biology

Process Algebras

Bio-PEPA

HYPE

Conclusions
Src protein

- non-receptor protein tyrosine kinase, member of Src family
Src protein

- non-receptor protein tyrosine kinase, member of Src family
- in either inactive or active configuration
Src protein: inactive and active

Src protein

- non-receptor protein tyrosine kinase, member of Src family
- in either inactive or active configuration
Src protein

- non-receptor protein tyrosine kinase, member of Src family
- in either inactive or active configuration
- active Src at membrane linked to cell motility and adhesion hence important for understanding and treatment of cancer
Src protein

- non-receptor protein tyrosine kinase, member of Src family
- in either inactive or active configuration
- active Src at membrane linked to cell motility and adhesion hence important for understanding and treatment of cancer
- location in normal cell without growth factor (FGF) addition
 - lots of inactive Src in perinuclear region
 - much less active Src on membrane
- added FGF binds with FGF receptor (FGFR) which becomes active and binds with active Src
- location in normal cell after FGF addition
 - lots of inactive Src in perinuclear region
 - increase in amount of active Src on membrane
Src protein

- non-receptor protein tyrosine kinase, member of Src family
- in either inactive or active configuration
- active Src at membrane linked to cell motility and adhesion hence important for understanding and treatment of cancer
- location in normal cell without growth factor (FGF) addition
 - lots of inactive Src in perinuclear region
 - much less active Src on membrane
- added FGF binds with FGF receptor (FGFR) which becomes active and binds with active Src
Src protein

- non-receptor protein tyrosine kinase, member of Src family
- in either inactive or active configuration
- active Src at membrane linked to cell motility and adhesion hence important for understanding and treatment of cancer
- location in normal cell without growth factor (FGF) addition
 - lots of inactive Src in perinuclear region
 - much less active Src on membrane
- added FGF binds with FGF receptor (FGFR) which becomes active and binds with active Src
- location in normal cell after FGF addition
 - lots of inactive Src in perinuclear region
 - increase in amount of active Src on membrane
Src protein

- non-receptor protein tyrosine kinase, member of Src family
- in either inactive or active configuration
- active Src at membrane linked to cell motility and adhesion hence important for understanding and treatment of cancer
- location in normal cell without growth factor (FGF) addition
 - lots of inactive Src in perinuclear region
 - much less active Src on membrane
- added FGF binds with FGF receptor (FGFR) which becomes active and binds with active Src
- location in normal cell after FGF addition
 - lots of inactive Src in perinuclear region
 - increase in amount of active Src on membrane
- how does this happen?
Endosomes

- endosomes: membrane-bound compartments within cells
- endocytosis: engulfing of molecules by vesicles on the inner side of the membrane, which then merge with endosomes
Endosomes

- endosomes: membrane-bound compartments within cells
- endocytosis: engulfing of molecules by vesicles on the inner side of the membrane, which then merge with endosomes
- different types: early, late, recycling, lysosomes
- role is to sort molecules either for recycling or degradation
- identify type by Rab family protein and Rho family protein
Endosomes

- endosomes: membrane-bound compartments within cells
- endocytosis: engulfing of molecules by vesicles on the inner side of the membrane, which then merge with endosomes
- different types: early, late, recycling, lysosomes
- role is to sort molecules either for recycling or degradation
- identify type by Rab family protein and Rho family protein
- move along microfilaments or microtubules
- movement is in one direction mostly
Endosomes

- endosomes: membrane-bound compartments within cells
- endocytosis: engulfing of molecules by vesicles on the inner side of the membrane, which then merge with endosomes
- different types: early, late, recycling, lysosomes
- role is to sort molecules either for recycling or degradation
- identify type by Rab family protein and Rho family protein
- move along microfilaments or microtubules
- movement is in one direction mostly
- vary in contents rather than number or speed
Mechanisms

- experimental research from the Frame laboratory has shown...
Mechanisms

- experimental research from the Frame laboratory has shown

After stimulation with FGF, Src is found in endosomes throughout the cytoplasm. There is a gradient of inactive Src to active Src from perinuclear region to membrane. Src activation takes place in endosomes. (Sandilands et al, 2004)
Mechanisms: gradient from inactive to active

(Sandilands et al, Dev. Cell 7, 2004)
Mechanisms

▶ experimental research from the Frame laboratory has shown

After stimulation with FGF, Src is found in endosomes throughout the cytoplasm. There is a gradient of inactive Src to active Src from perinuclear region to membrane. Src activation takes place in endosomes. (Sandilands et al, 2004)
Mechanisms

- experimental research from the Frame laboratory has shown

After stimulation with FGF, Src is found in endosomes throughout the cytoplasm. There is a gradient of inactive Src to active Src from perinuclear region to membrane. Src activation takes place in endosomes. (Sandilands et al, 2004)

The persistence of active Src at the membrane is inversely related to the quantity of FGF added. (Sandilands et al, 2007)
Mechanisms: persistence of response to FGF

(Sandilands et al, EMBO Reports 8, 2007)
Mechanisms

- experimental research from the Frame laboratory has shown

After stimulation with FGF, Src is found in endosomes throughout the cytoplasm. There is a gradient of inactive Src to active Src from perinuclear region to membrane. Src activation takes place in endosomes. (Sandilands et al, 2004)

The persistence of active Src at the membrane is inversely related to the quantity of FGF added. (Sandilands et al, 2007)
Mechanisms

- experimental research from the Frame laboratory has shown

After stimulation with FGF, Src is found in endosomes throughout the cytoplasm. There is a gradient of inactive Src to active Src from perinuclear region to membrane. Src activation takes place in endosomes. (Sandilands et al, 2004)

The persistence of active Src at the membrane is inversely related to the quantity of FGF added. (Sandilands et al, 2007)

In cancerous cells, Src is sequestered in autophagosomes when FAK is absent, to avoid cell death as a result of excess Src not bound to FAK. (Sandilands et al, 2012)
Mechanisms: sequestration in autophagosomes

(Sandilands et al, Nature Cell Biology 14, 2012)
Modelling protein trafficking

- **modelling aspects**
 - **dynamic:** behaviour, change over time
 - change on addition of FGF
 - **spatial:** reactions happen in different parts of the cell
 - molecules move within the cell
 - **populations:** molecular species exist in reasonable numbers
 - each species has a small number of possibilities
Modelling protein trafficking

- modelling aspects
 - **dynamic:** behaviour, change over time
 - change on addition of FGF
 - **spatial:** reactions happen in different parts of the cell
 - molecules move within the cell
 - **populations:** molecular species exist in reasonable numbers
 - each species has a small number of possibilities

- choice of formalism: process algebras
Modelling protein trafficking

- **modelling aspects**
 - **dynamic**: behaviour, change over time
 - change on addition of FGF
 - **spatial**: reactions happen in different parts of the cell
 - molecules move within the cell
 - **populations**: molecular species exist in reasonable numbers
 - each species has a small number of possibilities

- **choice of formalism**: process algebras

- **modelling challenges**
 - **concrete**: generate hypotheses for further experiment
 - **abstract**: modelling must be computationally feasible
 - **data**: very limited
Experimental data
Experimental data

- very limited at this stage
Experimental data

- very limited at this stage
- qualitative: gradient of activity
- quantitative: persistence of response
Experimental data

- very limited at this stage
- qualitative: gradient of activity
- quantitative: persistence of response
- data from general literature
 - endosomes move along microfilaments and microtubules
 - they move in one direction (mostly)
 - they can move at $1 \mu m/s$
 - cells have diameters of between $10 \mu m$ and $100 \mu m$
Experimental data

- very limited at this stage
- qualitative: gradient of activity
- quantitative: persistence of response
- data from general literature
 - endosomes move along microfilaments and microtubules
 - they move in one direction (mostly)
 - they can move at $1\mu m/s$
 - cells have diameters of between $10\mu m$ and $100\mu m$
- both long and short recycling loops
 - time taken for half of short loop: assuming a distance of $10\mu m$
 then 10 seconds
 - time take for half of long loop: assuming a distance of $20\mu m$
 then 20 seconds
Process algebras

- history
 - developed to model concurrent computing (mid 1980’s)
 - originally no notion of time or space, some extensions
 - Hillston developed PEPA, stochastic process algebra (1996)
 - Hillston developed ODE interpretation of PEPA (2005)
Process algebras

- history
 - developed to model concurrent computing (mid 1980’s)
 - originally no notion of time or space, some extensions
 - Hillston developed PEPA, stochastic process algebra (1996)
 - Hillston developed ODE interpretation of PEPA (2005)

- Bio-PEPA, a biological process algebra
 - developed by Ciocchetta and Hillston
 - close match between modelling artificial and natural systems
 - extension of PEPA, functional rates and stoichiometry
Process algebras

- history
 - developed to model concurrent computing (mid 1980’s)
 - originally no notion of time or space, some extensions
 - Hillston developed PEPA, stochastic process algebra (1996)
 - Hillston developed ODE interpretation of PEPA (2005)

- Bio-PEPA, a biological process algebra
 - developed by Ciocchetta and Hillston
 - close match between modelling artificial and natural systems
 - extension of PEPA, functional rates and stoichiometry

- Stochastic HYPE, a stochastic hybrid process algebra
 - developed by Bortolussi, Galpin and Hillston from HYPE
 - existing hybrid process algebras treated ODEs monolithically
Process algebras (continued)

- what is a process algebra?
 - compact and elegant formal language
 - behaviour given by semantics defined mathematically
 - classical process algebra: labelled transition systems
 - stochastic process algebra: continuous time Markov chains
 - stochastic hybrid process algebra: piecewise determinsitic Markov processes
Process algebras (continued)

- what is a process algebra?
 - compact and elegant formal language
 - behaviour given by semantics defined mathematically
 - classical process algebra: labelled transition systems
 - stochastic process algebra: continuous time Markov chains
 - stochastic hybrid process algebra: piecewise deterministic Markov processes

- why use a process algebra?
 - formalism to describe concurrent behaviour
 - provide an unambiguous and precise description
 - different analyses available from a single description
 simulation, model checking, CTMC analysis
 - they are mathematically beautiful
Bio-PEPA syntax

- species: reactions, stoichiometry, locations

\[S @ L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \text{op}_1 S @ L + \ldots + (\alpha_n, \kappa_n) \text{op}_n S @ L \]

where \(\text{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \} \)
Bio-PEPA syntax

- species: reactions, stoichiometry, locations

\[S@L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \text{ op}_1 S@L + \ldots + (\alpha_n, \kappa_n) \text{ op}_n S@L \]

where \(\text{op}_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \} \)
Bio-PEPA syntax

- species: reactions, stoichiometry, locations

\[S @ L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ_1 S @ L + \ldots + (\alpha_n, \kappa_n) \circ_n S @ L \]

where \(\circ_i \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \} \)
Bio-PEPA syntax

- species: reactions, stoichiometry, locations

\[
S@L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circp_1 S@L + \ldots + (\alpha_n, \kappa_n) \circp_n S@L
\]

where \(\circp_i \in \{\downarrow, \uparrow, \oplus, \ominus, \odot\} \)
Bio-PEPA syntax

- species: reactions, stoichiometry, locations

\[
S@L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ_1 S@L + \ldots + (\alpha_n, \kappa_n) \circ_n S@L
\]

where \(\circ_i \in \{\downarrow, \uparrow, \oplus, \ominus, \odot\} \)

- model: quantities of species, interaction between species

\[
P \overset{\text{def}}{=} S_1@L_1(x_1) \boxtimes \ldots \boxtimes S_p@L_p(x_p)
\]
Bio-PEPA syntax

- species: reactions, stoichiometry, locations

\[
S@L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ \mathbf{p}_1 S@L + \ldots + (\alpha_n, \kappa_n) \circ \mathbf{p}_n S@L
\]

where \(\mathbf{p}_i \in \{ \downarrow, \uparrow, \Box, \bigodot, \bigodot \} \)

- model: quantities of species, interaction between species

\[
P \overset{\text{def}}{=} S_1@L_1(x_1) \bigotimes \ldots \bigotimes S_p@L_p(x_p)
\]
Bio-PEPA syntax

- species: reactions, stoichiometry, locations

\[S@L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ_{1} S@L + \ldots + (\alpha_n, \kappa_n) \circ_{n} S@L \]

where \(\circ_{i} \in \{ \downarrow, \uparrow, \oplus, \ominus, \odot \} \)

- model: quantities of species, interaction between species

\[P \overset{\text{def}}{=} S_1@L_1(x_1) \otimes \ldots \otimes S_p@L_p(x_p) \]

- system: includes other information required for modelling
 - \(\mathcal{L} \) compartments and locations, dimensionality, sizes
 - \(\mathcal{N} \) species quantities, minimums, maximums, step size
 - \(\mathcal{K} \) parameter definitions
 - \(\mathcal{F} \) functional rates for reactions, definition of \(f_\alpha \)
Bio-PEPA syntax

- **species**: reactions, stoichiometry, locations

\[S@L \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ_{\text{op}_1} S@L + \ldots + (\alpha_n, \kappa_n) \circ_{\text{op}_n} S@L \]

where \(\circ_{\text{op}_i} \in \{ \downarrow, \uparrow, \oplus, \ominus, \otimes \} \)

- **model**: quantities of species, interaction between species

\[P \overset{\text{def}}{=} S_1@L_1(x_1) \otimes \ldots \otimes S_p@L_p(x_p) \]

- **system**: includes other information required for modelling

 - \(\mathcal{L} \) compartments and locations, dimensionality, sizes
 - \(\mathcal{N} \) species quantities, minimums, maximums, step size
 - \(\mathcal{K} \) parameter definitions
 - \(\mathcal{F} \) functional rates for reactions, definition of \(f_{\alpha} \)

- **process-as-species** rather than process-as-molecules
Bio-PEPA semantics

- operational semantics for capability relation \rightarrow_c
Bio-PEPA semantics

- operational semantics for capability relation \rightarrow_c

- Prefix rules

$$(((\alpha, \kappa) \downarrow S@L)(\ell) \xrightarrow{(\alpha, [S@L: \downarrow(\ell, \kappa)])} c S@L(\ell - \kappa) \quad \kappa \leq \ell \leq N_{S@L}$$

$$(((\alpha, \kappa) \uparrow S@L)(\ell) \xrightarrow{(\alpha, [S@L: \uparrow(\ell, \kappa)])} c S@L(\ell + \kappa) \quad 0 \leq \ell \leq N_{S@L} - \kappa$$

$$(((\alpha, \kappa) \oplus S@L)(\ell) \xrightarrow{(\alpha, [S@L: \oplus(\ell, \kappa)])} c S@L(\ell) \quad \kappa \leq \ell \leq N_{S@L}$$

$$(((\alpha, \kappa) \ominus S@L)(\ell) \xrightarrow{(\alpha, [S@L: \ominus(\ell, \kappa)])} c S@L(\ell) \quad 0 \leq \ell \leq N_{S@L}$$

$$(((\alpha, \kappa) \oslash S@L)(\ell) \xrightarrow{(\alpha, [S@L: \oslash(\ell, \kappa)])} c S@L(\ell) \quad 0 \leq \ell \leq N_{S@L}$$
Bio-PEPA semantics

- operational semantics for capability relation \rightarrow_c

- Prefix rules

\[
((\alpha, \kappa) \downarrow S@L)(\ell) \xrightarrow{\alpha,[S@L:\downarrow(\ell,\kappa)]} S@L(\ell - \kappa) \quad \kappa \leq \ell \leq N_{S@L}
\]

\[
((\alpha, \kappa) \uparrow S@L)(\ell) \xrightarrow{\alpha,[S@L:\uparrow(\ell,\kappa)]} S@L(\ell + \kappa) \quad 0 \leq \ell \leq N_{S@L} - \kappa
\]

\[
((\alpha, \kappa) \oplus S@L)(\ell) \xrightarrow{\alpha,[S@L:\oplus(\ell,\kappa)]} S@L(\ell) \quad \kappa \leq \ell \leq N_{S@L}
\]

\[
((\alpha, \kappa) \ominus S@L)(\ell) \xrightarrow{\alpha,[S@L:\ominus(\ell,\kappa)]} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L}
\]

\[
((\alpha, \kappa) \odot S@L)(\ell) \xrightarrow{\alpha,[S@L:\odot(\ell,\kappa)]} S@L(\ell) \quad 0 \leq \ell \leq N_{S@L}
\]
Bio-PEPA semantics

- operational semantics for capability relation \rightarrow_c

- Prefix rules

$(((\alpha, \kappa) \downarrow S@L)(\ell), (\alpha, \kappa)[S@L:\downarrow(\ell, \kappa)]) \rightarrow_c S@L(\ell - \kappa)$ $\kappa \leq \ell \leq N_{S@L}$

$(((\alpha, \kappa) \uparrow S@L)(\ell), (\alpha, \kappa)[S@L:\uparrow(\ell, \kappa)]) \rightarrow_c S@L(\ell + \kappa)$ $0 \leq \ell \leq N_{S@L} - \kappa$

$(((\alpha, \kappa) \oplus S@L)(\ell), (\alpha, \kappa)[S@L:\oplus(\ell, \kappa)]) \rightarrow_c S@L(\ell)$ $\kappa \leq \ell \leq N_{S@L}$

$(((\alpha, \kappa) \ominus S@L)(\ell), (\alpha, \kappa)[S@L:\ominus(\ell, \kappa)]) \rightarrow_c S@L(\ell)$ $0 \leq \ell \leq N_{S@L}$

$(((\alpha, \kappa) \otimes S@L)(\ell), (\alpha, \kappa)[S@L:\otimes(\ell, \kappa)]) \rightarrow_c S@L(\ell)$ $0 \leq \ell \leq N_{S@L}$
Bio-PEPA semantics (continued)

 Cooperative for $\alpha \in M$

\[
P \xrightarrow{(\alpha,v)}_c P' \quad Q \xrightarrow{(\alpha,u)}_c Q'\]

\[
P \otimes_M Q \xrightarrow{(\alpha,v::u)}_c P' \otimes_M Q'
\] $\alpha \in M$
Bio-PEPA semantics (continued)

- Cooperation for $\alpha \in M$

\[
\begin{align*}
 P \xrightarrow{c} (\alpha, v) P' & \quad Q \xrightarrow{c} (\alpha, u) Q' \\
 P \bowtie M Q \xrightarrow{c} (\alpha, v::u) \bowtie M P' & \quad Q' \\
 \alpha \in M
\end{align*}
\]

- Operational semantics for stochastic relation \rightarrow_s

\[
\begin{align*}
 P \xrightarrow{c} (\alpha, v) P' \\
 \langle V, \mathcal{N}, \mathcal{K}, \mathcal{F}, \text{Comp}, P \rangle \xrightarrow{(\alpha, f_\alpha(v, V, N, K)/h)} \rightarrow_s \langle V, \mathcal{N}, \mathcal{K}, \mathcal{F}, \text{Comp}, P' \rangle
\end{align*}
\]
Bio-PEPA semantics (continued)

- Cooperation for $\alpha \in M$

$$
\begin{align*}
P \xrightarrow{(\alpha,v)}_c P' & \quad Q \xrightarrow{(\alpha,u)}_c Q' \\
\hat{P} \boxdot_M Q \xrightarrow{(\alpha,v::u)}_c \hat{P'} \boxdot_M Q'
\end{align*}
$$

- operational semantics for stochastic relation \rightarrow_s

$$
P \xrightarrow{(\alpha,v)}_c P' \\
\langle V, N, K, F, Comp, P \rangle \xrightarrow{(\alpha,f_\alpha(v, V, N, K)/h)}_s \langle V, N, K, F, Comp, P' \rangle
$$

- rate function f_α uses information about the species and locations in the string v, together with the species and location information and rate parameters in calculating the actual rate of the reaction
Modelling with Bio-PEPA

- modelled gradient successfully without cycle
Modelling with Bio-PEPA

- modelled gradient successfully without cycle
- added gradient into model of trafficking with a combined loop
 - gradient component seemed to make model insensitive to changes
 - very difficult to work with, too many parameters
Modelling with Bio-PEPA

- modelled gradient successfully without cycle
- added gradient into model of trafficking with a combined loop
 - gradient component seemed to make model insensitive to changes
 - very difficult to work with, too many parameters
- next: combined loop model with abstract gradient
Src trafficking: combined loop model

FGF

membrane

\(aSrc\)

FGFR

\(aFGFR\)

Perinuclear region

\(Src\)

\(20\) seconds

Vashti Galpin

Modelling protein trafficking: progress and challenges

Biology + Computing = ??
Modelling progress with Bio-PEPA

- modelled gradient successfully without cycle
- added gradient into model of trafficking with a combined loop
 - gradient component made model insensitive to changes
 - very difficult to work with, too many parameters
- next: combined loop model with abstract gradient
 - no match with experimental results but useful for discussions
Combined loop trafficking model – results
Modelling progress with Bio-PEPA

- modelled gradient successfully without cycle
- added gradient into model of trafficking with a combined loop
 - gradient component made model insensitive to changes
 - very difficult to work with, too many parameters
- next: combined loop model with abstract gradient
 - no match with experimental results but useful for discussions
Modelling progress with Bio-PEPA

- modelled gradient successfully without cycle
- added gradient into model of trafficking with a combined loop
 - gradient component made model insensitive to changes
 - very difficult to work with, too many parameters
- next: combined loop model with abstract gradient
 - no match with experimental results but useful for discussions
 - unnecessary to assume a combined loop for both behaviours
 - found out about short and long recycling loops
Modelling progress with Bio-PEPA

- modelled gradient successfully without cycle
- added gradient into model of trafficking with a combined loop
 - gradient component made model insensitive to changes
 - very difficult to work with, too many parameters
- next: combined loop model with abstract gradient
 - no match with experimental results but useful for discussions
 - unnecessary to assume a combined loop for both behaviours
 - found out about short and long recycling loops
- current: two loop model
 - one short, one long
Src trafficking: two loop model

membrane

FGF

FGFR

aSrc

FGFR

aFGFR

Src

aSrc

Src

10 seconds

20 seconds

perinuclear region

Vashti Galpin

Modelling protein trafficking: progress and challenges

Biology + Computing = ??
Two loop trafficking model – results

Vashti Galpin

Modelling protein trafficking: progress and challenges
Bio-PEPA Eclipse Plug-in

- software tool for Bio-PEPA modelling
Bio-PEPA Eclipse Plug-in

- software tool for Bio-PEPA modelling
- Eclipse front-end and separate back-end library

User Interface:
- editor for the Bio-PEPA language
- problems view
- outline view for the reaction-centric view
- graphing support via common plugin

Core:
- parser for the Bio-PEPA language
- static analysis
- ISBJava time series analysis (ODE, SSA)
- export facility (SBML; PRISM)

Available for download at www.biopepa.org
Case studies, publications, manuals
Bio-PEPA Eclipse Plug-in

- software tool for Bio-PEPA modelling
- Eclipse front-end and separate back-end library

User Interface:
- editor for the Bio-PEPA language
- problems view
- outline view for the reaction-centric view
- graphing support via common plugin

Core:
- parser for the Bio-PEPA language
- static analysis
- ISBJava time series analysis (ODE, SSA)
- export facility (SBML; PRISM)

- available for download at www.biopepa.org
- case studies, publications, manuals
Bio-PEPA Eclipse Plug-in (continued)
Simplified Bio-PEPA model

active Src at membrane

\[
asrc@mb &= (\text{bind}, 1) \leq asrc@mb + (\text{out}_sh, 150) \leq asrc@mb + (\text{in}_sh, 75) \geq asrc@mb + (\text{in}_long, 100) \geq asrc@mb;
\]
Simplified Bio-PEPA model

- active Src at membrane

\[
\text{aSrc}@mb = (\text{bind},1) \ll a\text{Src}@mb + (\text{out}_\text{sh},150) \ll a\text{Src}@mb + (\text{in}_\text{sh},75) \gg a\text{Src}@mb + (\text{in}_\text{long},100) \gg a\text{Src}@mb;
\]

- endosome in short recycling loop

\[
\text{Endo}_\text{short}@\text{cyto} = (\text{out}_\text{sh},1) \gg \text{Endo}_\text{short}@\text{cyto} + (\text{in}_\text{sh},1) \ll \text{Endo}_\text{short}@\text{cyto} + \ldots ;
\]
Simplified Bio-PEPA model

▶ active Src at membrane

\[a_{\text{Src@mb}} = (\text{bind,1}) \ll a_{\text{Src@mb}} + (\text{out_sh,150}) \ll a_{\text{Src@mb}} + (\text{in_sh,75}) \gg a_{\text{Src@mb}} + (\text{in_long,100}) \gg a_{\text{Src@mb}}; \]

▶ endosome in short recycling loop

\[\text{Endo_short@cyto} = (\text{out_sh,1}) \gg \text{Endo_short@cyto} + (\text{in_sh,1}) \ll \text{Endo_short@cyto} + \ldots ; \]

▶ model:

\[a_{\text{Src@mb}}[\text{initial_aSrc_mb}] \leftrightarrow \text{Endo_short@cyto}[\text{initial_Endo_short}] \]
Simplified Bio-PEPA model

▸ active Src at membrane

\[
aSrc_{@mb} = (\text{bind},1) \ltimes aSrc_{@mb} + (\text{out_sh},150) \ltimes aSrc_{@mb} + (\text{in_sh},75) \rhd aSrc_{@mb} + (\text{in_long},100) \rhd aSrc_{@mb};
\]

▸ endosome in short recycling loop

\[
\text{Endo_short}_{@cyto} = (\text{out_sh},1) \rhd \text{Endo_short}_{@cyto} + (\text{in_sh},1) \ltimes \text{Endo_short}_{@cyto} + \ldots;
\]

▸ model:

\[
aSrc_{@mb}[\text{initial_aSrc_mb}] \ltimes \rtimes \text{Endo_short}_{@cyto}[\text{initial_Endo_short}]
\]

▸ reactions

\[
\text{out_sh}: \quad 150 \quad \text{aSrc} \quad \rightarrow \quad \text{Endo_short}
\]
\[
\text{in_sh}: \quad \text{Endo_short} \quad \rightarrow \quad 75 \quad \text{aSrc}
\]
Stochastic HYPE
Stochastic HYPE

subcomponents

\((C_1(\mathcal{V}) \bowtie \cdots \bowtie C_n(\mathcal{V}))\)
Stochastic HYPE

subcomponents

\((C_1(V) \bowtie \cdots \bowtie C_n(V)) \bowtie \)

Vashti Galpin

Modelling protein trafficking: progress and challenges
Stochastic HYPE

\[
\text{subcomponents} \quad \left(C_1(V) \otimes \cdots \otimes C_n(V) \right) \\
\text{controllers} \quad \left(Con_1 \otimes \cdots \otimes Con_m \right)
\]
Stochastic HYPE

subcomponents
\((C_1(V) \circledast \cdots \circledast C_n(V))\)

controllers
\((Con_1 \circledast \cdots \circledast Con_m)\)

well-defined subcomponent
\[C(V) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V) \]
Stochastic HYPE

subcomponents \((C_1(V) \otimes \cdots \otimes C_n(V)) \)

controllers \((Con_1 \otimes \cdots \otimes Con_m) \)

well-defined subcomponent

\[
C(V) \overset{def}{=} \sum_{j} a_j : \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V)
\]

subcomponents are parameterised by variables
Stochastic HYPE

subcomponents

\[
(\mathcal{C}_1(\mathcal{V}) \otimes \cdots \otimes \mathcal{C}_n(\mathcal{V})) \otimes (\mathcal{Con}_1 \otimes \cdots \otimes \mathcal{Con}_m)
\]

controllers

well-defined subcomponent

\[
\mathcal{C}(\mathcal{V}) \overset{\text{def}}{=} \sum_j \alpha_j : \mathcal{C}(\mathcal{V}) + \text{init} : \alpha \cdot \mathcal{C}(\mathcal{V})
\]
Stochastic HYPE

subcomponents

\[(C_1(\mathcal{V}) \circ \cdot \circ C_n(\mathcal{V})) \circ \cdot \circ (Con_1 \circ \cdot \circ Con_m)\]

controllers

well-defined subcomponent

\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V})\]

events have event conditions: guards and resets
Stochastic HYPE

subcomponents

\[(C_1(\mathcal{V}) \bowtie \cdots \bowtie C_n(\mathcal{V})) \bowtie (Con_1 \bowtie \cdots \bowtie Con_m)\]

controllers

well-defined subcomponent

\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j . C(\mathcal{V}) + \text{init} : \alpha . C(\mathcal{V})\]

events have event conditions: guards and resets

\[ec(a_j) = (f(\mathcal{V}), \mathcal{V} = f'(\mathcal{V}))\] discrete events
Stochastic HYPE

subcomponents
\[(C_1(\mathcal{V}) \Join \cdots \Join C_n(\mathcal{V})) \Join (Con_1 \Join \cdots \Join Con_m)\]

controllers

well-defined subcomponent
\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V})\]

events have event conditions: guards and resets
\[ec(a_j) = (f(\mathcal{V}), \mathcal{V}' = f'(\mathcal{V}))\] discrete events
\[ec(\overline{a}_j) = (r, \mathcal{V}' = f'(\mathcal{V}))\] stochastic events
Stochastic HYPE

subcomponents controllers

\((C_1(V) \Join \cdots \Join C_n(V)) \Join (Con_1 \Join \cdots \Join Con_m)\)

well-defined subcomponent

\[C(V) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V) \]
Stochastic HYPE

subcomponents controllers
\((C_1(V) \circ \cdots \circ C_n(V)) \circ (Con_1 \circ \cdots \circ Con_m)\)

well-defined subcomponent
\[C(V) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(V) + \text{init} : \alpha \cdot C(V) \]

influences are defined by a triple
Stochastic HYPE

subcomponents

\((C_1(\mathcal{V}) \otimes \cdots \otimes C_n(\mathcal{V}))\) \quad \otimes \quad \text{controllers} \quad (Con_1 \otimes \cdots \otimes Con_m)

well-defined subcomponent

\(C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V})\)

influences are defined by a triple

\(\alpha_j = (\iota_j, r_j, I(\mathcal{V}))\)
Stochastic HYPE

subcomponents

\[(C_1(\mathcal{V}) \circ \ldots \circ C_n(\mathcal{V})) \circ \ldots \circ (Con_1 \circ \ldots \circ Con_m)\]

controllers

well-defined subcomponent

\[C(\mathcal{V}) \overset{\text{def}}{=} \sum_j a_j : \alpha_j \cdot C(\mathcal{V}) + \text{init} : \alpha \cdot C(\mathcal{V})\]

influences are defined by a triple

\[\alpha_j = (\iota_j, r_j, I(\mathcal{V}))\]

influence names are mapped to variables

\[iv(\iota_j) \in \mathcal{V}\]
Stochastic HYPE

subcomponents

\((C_1(V) \bowtie \cdots \bowtie C_n(V)) \bowtie (Con_1 \bowtie \cdots \bowtie Con_m)\)
Stochastic HYPE

subcomponents

\((C_1(V) \star \cdots \star C_n(V)) \star \star\)

controllers

\((Con_1 \star \cdots \star Con_m)\)
Stochastic HYPE

subcomponents

\((C_1(V) \text{ } \ast \cdots \ast \text{ } C_n(V)) \)

controllers

\((Con_1 \text{ } \ast \cdots \ast \text{ } Con_m) \)

controller grammar
Stochastic HYPE

subcomponents

\[(C_1(V) \bowtie \cdots \bowtie C_n(V)) \bowtie (Con_1 \bowtie \cdots \bowtie Con_m) \]

controller grammar

\[M ::= a.M \mid 0 \mid M + M \]
Stochastic HYPE

subcomponents

\((C_1(V) \otimes \cdots \otimes C_n(V)) \)

controllers

\((Con_1 \otimes \cdots \otimes Con_m) \)

can

ccontroller grammer

\[M ::= a.M \mid 0 \mid M + M \]
Stochastic HYPE

subcomponents

\((C_1(V) \And \cdots \And C_n(V))\) \And \(\ldots\) \And \(\ldots\) \And \(C_n(V)\)

controllers

\(\ldots\) \And \(\ldots\) \And \(\ldots\) \And \(C_n(V)\)

controller grammar

\[M ::= a.M \mid 0 \mid M + M\]

\[Con ::= M \mid Con \And Con\]
Stochastic HYPE applied to biology

- a model has n variables defined over \mathbb{R}: species quantities
Stochastic HYPE applied to biology

- a model has \(n \) variables defined over \(\mathbb{R} \): species quantities
- each subcomponent represents flows affecting a variable: production, binding, activation, degradation, removal
Stochastic HYPE applied to biology

- a model has n variables defined over \mathbb{R}: species quantities
- each subcomponent represents flows affecting a variable: production, binding, activation, degradation, removal
- each influence represents a specific flow: degradation
Stochastic HYPE applied to biology

- A model has \(n \) variables defined over \(\mathbb{R} \): species quantities
- Each subcomponent represents flows affecting a variable: production, binding, activation, degradation, removal
- Each influence represents a specific flow: degradation
- Each controller represents sequencing of events: day/night cycle
Stochastic HYPE applied to biology

- A model has n variables defined over \mathbb{R}: species quantities
- Each subcomponent represents flows affecting a variable: production, binding, activation, degradation, removal
- Each influence represents a specific flow: degradation
- Each controller represents sequencing of events: day/night cycle
- Each discrete event represents something happening instantaneously when a condition becomes true, with a possible change of values: addition of growth factor
Stochastic HYPE applied to biology

- a model has n variables defined over \mathbb{R}: species quantities
- each subcomponent represents flows affecting a variable: production, binding, activation, degradation, removal
- each influence represents a specific flow: degradation
- each controller represents sequencing of events: day/night cycle
- each discrete event represents something happening instantaneously when a condition becomes true, with a possible change of values: addition of growth factor
- each stochastic event represents something happening after time has passed, with a possible change of values: transport
Stochastic HYPE modelling

- output of model is a trajectory consisting of
 - continuous paths in \mathbb{R}^n
 - jumps/changes in values as events happen
 - piecewise deterministic Markov process
 - transition-driven stochastic hybrid automata
Stochastic HYPE modelling

- output of model is a trajectory consisting of
 - continuous paths in \mathbb{R}^n
 - jumps/changes in values as events happen
 - piecewise deterministic Markov process
 - transition-driven stochastic hybrid automata

- major differences from Bio-PEPA
 - HYPE allows coordinate model of space rather than explicit abstract locations
 - HYPE allows continuous and stochastic behaviour together
 - likely to be valuable when small quantities of some species
Stochastic HYPE modelling

- output of model is a trajectory consisting of
 - continuous paths in \mathbb{R}^n
 - jumps/changes in values as events happen
 - piecewise deterministic Markov process
 - transition-driven stochastic hybrid automata

- major differences from Bio-PEPA
 - HYPE allows coordinate model of space rather than explicit abstract locations
 - HYPE allows continuous and stochastic behaviour together
 - likely to be valuable when small quantities of some species

- application to protein trafficking
 - work in progress
 - SimHyA simulator
The Repressilator

- synthetic network
The Repressilator

- synthetic network
- three genes with three inhibitors
The Repressilator

- synthetic network
- three genes with three inhibitors
- reporter of green fluorescent protein (GFP)
The Repressilator

- synthetic network
- three genes with three inhibitors
- reporter of green fluorescent protein (GFP)
- negative feedback cycle
The Repressilator

- synthetic network
- three genes with three inhibitors
- reporter of green fluorescent protein (GFP)
- negative feedback cycle
 - each gene produces a protein
The Repressilator

- synthetic network
- three genes with three inhibitors
- reporter of green fluorescent protein (GFP)
- negative feedback cycle
 - each gene produces a protein
 - protein inhibits transcription of mRNA by another gene
The Repressilator

➤ synthetic network

➤ three genes with three inhibitors

➤ reporter of green fluorescent protein (GFP)

➤ negative feedback cycle
 ➤ each gene produces a protein
 ➤ protein inhibits transcription of mRNA by another gene
 ➤ other gene cannot produce its protein
The Repressilator

- synthetic network
- three genes with three inhibitors
- reporter of green fluorescent protein (GFP)
- negative feedback cycle
 - each gene produces a protein
 - protein inhibits transcription of mRNA by another gene
 - other gene cannot produce its protein
- quantities of proteins oscillate over time
The Repressilator

Elowitz and Leibler, Nature 403, 335-338.
The Repressilator

\[Gene_A \]
The Repressilator

\[\text{Gene}_A \xrightarrow{\text{trs}_A} \text{mRNA}_A \]
The Repressilator

\[\text{Gene}_A \xrightarrow{\text{trs}_A} \text{mRNA}_A \xrightarrow{\text{dm}_A} \text{Gene}_B \xrightarrow{\text{trs}_B} \text{mRNA}_B \xrightarrow{\text{dm}_B} \text{Gene}_C \xrightarrow{\text{trs}_C} \text{mRNA}_C \xrightarrow{\text{dm}_C} \]
The Repressilator

\[\text{Gene}_A \xrightarrow{\text{trs}_A} \text{mRNA}_A \xrightarrow{\text{trl}_A} \text{Pr}_A \]

\[\downarrow \text{dm}_A \]

Vashti Galpin

Modelling protein trafficking: progress and challenges
The Repressilator

\[\text{Gene}_A \xrightarrow{\text{trs}_A} \text{mRNA}_A \xrightarrow{\text{trl}_A} \text{Pr}_A \]

\[\downarrow \text{dm}_A \quad \downarrow \text{dp}_A \]
The Repressilator

\[Gene_A \xrightarrow{trs_A} mRNA_A \xrightarrow{trl_A} Pr_A \]
\[\downarrow dm_A \quad \downarrow dp_A \]

\[Gene_B \xrightarrow{trs_B} mRNA_B \xrightarrow{trl_B} Pr_B \]
\[\downarrow dm_B \quad \downarrow dp_B \]
The Repressilator

\[\text{Gene}_A \xrightarrow{\text{trs}_A} \text{mRNA}_A \xrightarrow{\text{trl}_A} \text{Pr}_A \]
\[\downarrow \text{dm}_A \quad \downarrow \text{dp}_A \]

\[\text{Gene}_B \xrightarrow{\text{trs}_B} \text{mRNA}_B \xrightarrow{\text{trl}_B} \text{Pr}_B \]
\[\downarrow \text{dm}_B \quad \downarrow \text{dp}_B \]

\[\text{Gene}_C \xrightarrow{\text{trs}_C} \text{mRNA}_C \xrightarrow{\text{trl}_C} \text{Pr}_C \]
\[\downarrow \text{dm}_C \quad \downarrow \text{dp}_C \]
The Repressilator

Gene_A →^{trs_A} mRNA_A →^{trl_A} Pr_A
↓^{dm_A} \hspace{1cm} \downarrow^{dp_A}

Gene_B →^{trs_B} mRNA_B →^{trl_B} Pr_B
↓^{dm_B} \hspace{1cm} \downarrow^{dp_B}

Gene_C →^{trs_C} mRNA_C →^{trl_C} Pr_C
↓^{dm_C} \hspace{1cm} \downarrow^{dp_C}
The Repressilator

Gene_A $\xrightarrow{trs_A} mRNA_A \xrightarrow{trl_A} Pr_A$
$\downarrow dm_A \downarrow dp_A$

Gene_B $\xrightarrow{trs_B} mRNA_B \xrightarrow{trl_B} Pr_B$
$\downarrow dm_B \downarrow dp_B$

Gene_C $\xrightarrow{trs_C} mRNA_C \xrightarrow{trl_C} Pr_C$
$\downarrow dm_C \downarrow dp_C$
The Repressilator

Gene_A \xrightarrow{trs_A} mRNA_A \xrightarrow{trl_A} Pr_A
\downarrow dm_A \downarrow dp_A

Gene_B \xrightarrow{trs_B} mRNA_B \xrightarrow{trl_B} Pr_B
\downarrow dm_B \downarrow dp_B

Gene_C \xrightarrow{trs_C} mRNA_C \xrightarrow{trl_C} Pr_C
\downarrow dm_C \downarrow dp_C

Vashti Galpin

Modelling protein trafficking: progress and challenges
The Repressilator

\[
\begin{align*}
\text{Gene}_A & \xrightarrow{\text{trs}_A} m\text{RNA}_A & \xrightarrow{\text{trl}_A} Pr_A \\
& \quad \downarrow \text{dm}_A & \quad \downarrow \text{dp}_A \\
\text{Gene}_B & \xrightarrow{\text{trs}_B} m\text{RNA}_B & \xrightarrow{\text{trl}_B} Pr_B \\
& \quad \downarrow \text{dm}_B & \quad \downarrow \text{dp}_B \\
\text{Gene}_C & \xrightarrow{\text{trs}_C} m\text{RNA}_C & \xrightarrow{\text{trl}_C} Pr_C \\
& \quad \downarrow \text{dm}_C & \quad \downarrow \text{dp}_C
\end{align*}
\]
The Repressilator

Gene\(_A\) \(\xrightarrow{k_p} PrA\) \(\xrightarrow{k_d}\)

Gene\(_B\) \(\xrightarrow{k_p} PrB\) \(\xrightarrow{k_d}\)

Gene\(_C\) \(\xrightarrow{k_p} PrC\) \(\xrightarrow{k_d}\)
The Repressilator in HYPE

degradation and production flows for Gene A:

\[G_A^{dg}(X) \overset{\text{def}}{=} \text{init} : (d_A, -k_d, \text{linear}(X)).G_A^{dg}(X) \]

\[G_A^{pr} \overset{\text{def}}{=} \text{inhibit}_A : (p_A, 0, \text{const}).G_A^{pr} + \text{express}_A : (p_A, k_p, \text{const}).G_A^{pr} + \text{init} : (p_A, k_p, \text{const}).G_A^{pr} \]
The Repressilator in HYPE

- degradation and production flows for Gene A:

\[
\begin{align*}
G_A^{dg}(X) & \overset{\text{def}}{=} \text{init} : (d_A, -k_d, \text{linear}(X)).G_A^{dg}(X) \\
G_A^{pr} & \overset{\text{def}}{=} \text{inhibit}_A : (p_A, 0, \text{const}).G_A^{pr} \\
+ & \quad \text{express}_A : (p_A, k_p, \text{const}).G_A^{pr} \\
+ & \quad \text{init} : (p_A, k_p, \text{const}).G_A^{pr}
\end{align*}
\]

- composed: \(\textbf{Gene}_A(A) \overset{\text{def}}{=} (G_A^{dg}(A) \boxtimes G_A^{pr}) \)
The Repressilator in HYPE

- degradation and production flows for Gene A:

\[
G_A^{dg}(X) \overset{\text{def}}{=} \text{init} : (d_A, -k_d, \text{linear}(X)) \cdot G_A^{dg}(X)
\]

\[
G_A^{pr} \overset{\text{def}}{=} \text{inhibit}_A : (p_A, 0, \text{const}).G_A^{pr}
\]

+ \text{express}_A : (p_A, k_p, \text{const}).G_A^{pr}

+ \text{init} : (p_A, k_p, \text{const}).G_A^{pr}

- composed: Gene_A(A) \overset{\text{def}}{=} (G_A^{dg}(A) \circledast G_A^{pr})

- “controller”: Con_A \overset{\text{def}}{=} \text{inhibit}_A \cdot \text{express}_A \cdot Con_A
The Repressilator in HYPE

- degradation and production flows for Gene A:
 \[G_A^{dg}(X) \overset{\text{def}}{=} \text{init} : (d_A, -k_d, \text{linear}(X)).G_A^{dg}(X) \]
 \[G_A^{pr} \overset{\text{def}}{=} \text{inhibit}_A : (p_A, 0, \text{const}).G_A^{pr} \]
 \[+ \text{express}_A : (p_A, k_p, \text{const}).G_A^{pr} \]
 \[+ \text{init} : (p_A, k_p, \text{const}).G_A^{pr} \]

- composed: \(Gene_A(A) \overset{\text{def}}{=} (G_A^{dg}(A) \bowtie G_A^{pr}) \)

- “controller”: \(Con_A \overset{\text{def}}{=} \text{inhibit}_A \cdot \text{express}_A \cdot Con_A \)

- influences mapped to variables: \(\text{iv}(d_A) = A \quad \text{iv}(p_A) = A \)
The Repressilator in HYPE

- degradation and production flows for Gene A:
 \[G^{dg}_A(X) \overset{\text{def}}{=} \text{init} : (d_A, -k_d, \text{linear}(X)).G^{dg}_A(X) \]
 \[G^{pr}_A \overset{\text{def}}{=} \text{inhibit}_A : (p_A, 0, \text{const}).G^{pr}_A \]
 \[+ \text{express}_A : (p_A, k_p, \text{const}).G^{pr}_A \]
 \[+ \text{init} : (p_A, k_p, \text{const}).G^{pr}_A \]

- composed: \[\text{Gene}_A(A) \overset{\text{def}}{=} (G^{dg}_A(A) \otimes G^{pr}_A) \]

- “controller”: \[\text{Con}_A \overset{\text{def}}{=} \text{inhibit}_A.\text{express}_A.\text{Con}_A \]

- influences mapped to variables: \[\text{iv}(d_A) = A \quad \text{iv}(p_A) = A \]

- event conditions: \[\text{ec}(\text{inhibit}_A) = (C > p, \text{true}) \]
 \[\text{ec}(\text{express}_A) = (C \leq p, \text{true}) \]
The Repressilator – protein levels over time

\[(Gene_A(A) \bowtie Gene_B(B) \bowtie Gene_C(C)) \bowtie \text{init.}(Con_A \parallel Con_B \parallel Con_C)\]
The Repressilator – protein levels over time

\((Gene_A(A) \times Gene_B(B) \times Gene_C(C)) \times \text{init.}(Con_A \mid Con_B \mid Con_C)\)

\(k_p = 1.00 \quad k_d = 0.01\)
Conclusions

Biology + Computing = ??
Conclusions

Computing + Biology = ??
Conclusions

Computing + Biology = ??

- using powerful mathematical models from computer science to model biology and in the longer term, to provide predictions
- major challenges
 - lack of data, models are often quasi-quantitative
 - getting right level of abstraction for useful models
Acknowledgements

PEPA Group
University of Edinburgh
Jane Hillston
Stephen Gilmore
Allan Clark
Maria Luisa Guerriero
Federica Ciocchetta
Adam Duguid

DMG
University of Trieste
Luca Bortolussi

Cancer Research UK
Edinburgh
Margaret Frame
Emma Sandilands
Thank you
Bio-PEPA syntax

- two-level syntax
Bio-PEPA syntax

- two-level syntax

- sequential component, species

\[S ::= (\alpha, \kappa) \quad \text{op} \quad S \mid S + S \quad \text{op} \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\} \]
Bio-PEPA syntax

- two-level syntax

- sequential component, species

\[S ::= (\alpha, \kappa) \ op \ S \ | \ S + S \quad \text{op} \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\} \]

- \(\alpha \) action, reaction name, \(\kappa \) stoichiometric coefficient
- \(\uparrow \) product, \(\downarrow \) reactant
- \(\oplus \) activator, \(\ominus \) inhibitor, \(\odot \) generic modifier
Bio-PEPA syntax

- two-level syntax

- sequential component, species

\[S ::= (\alpha, \kappa) \text{ op } S | S + S \quad \text{op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\} \]

- \(\alpha \) action, reaction name, \(\kappa \) stoichiometric coefficient
- \(\uparrow \) product, \(\downarrow \) reactant
- \(\oplus \) activator, \(\ominus \) inhibitor, \(\odot \) generic modifier
Bio-PEPA syntax

- two-level syntax

- sequential component, species

\[S ::= (\alpha, \kappa) \text{ op } S | S + S \quad \text{op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\} \]

 - \(\alpha \) action, reaction name, \(\kappa \) stoichiometric coefficient
 - \(\uparrow \) product, \(\downarrow \) reactant
 - \(\oplus \) activator, \(\ominus \) inhibitor, \(\odot \) generic modifier

- model component, system

\[P ::= S(\ell) | P \otimes \ell P \]
Bio-PEPA syntax

- two-level syntax
- sequential component, species

\[S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{op} \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\} \]

- \(\alpha \) action, reaction name, \(\kappa \) stoichiometric coefficient
- \(\uparrow \) product, \(\downarrow \) reactant
- \(\oplus \) activator, \(\ominus \) inhibitor, \(\odot \) generic modifier

- model component, system

\[P ::= S(\ell) \mid P \boxplus P \]
Bio-PEPA syntax

- **two-level syntax**

- **sequential component, species**

 \[S ::= (\alpha, \kappa) \ op \ S | S + S \quad \text{op} \in \{\uparrow, \downarrow, \oplus, \ominus, \otimes\} \]

 - \(\alpha \) action, reaction name, \(\kappa \) stoichiometric coefficient
 - \(\uparrow \) product, \(\downarrow \) reactant
 - \(\oplus \) activator, \(\ominus \) inhibitor, \(\otimes \) generic modifier

- **model component, system**

 \[P ::= S(\ell) | P \otimes L P \]
Bio-PEPA syntax

- two-level syntax

- sequential component, species

\[S ::= (\alpha, \kappa) \text{ op } S \mid S + S \quad \text{op } \in \{\uparrow, \downarrow, \oplus, \ominus, \odot\} \]

 - \(\alpha \) action, reaction name, \(\kappa \) stoichiometric coefficient
 - \(\uparrow \) product, \(\downarrow \) reactant
 - \(\oplus \) activator, \(\ominus \) inhibitor, \(\odot \) generic modifier

- model component, system

\[P ::= S(\ell) \mid P \uplus P \]

- need a more constrained form
Well-defined Bio-PEPA systems

- well-defined Bio-PEPA species

\[C \overset{\text{def}}{=} \left(\alpha_1, \kappa_1 \right) \circ \rho_1 C + \ldots + \left(\alpha_n, \kappa_n \right) \circ \rho_n C \text{ with all } \alpha_i \text{'s distinct} \]
Well-defined Bio-PEPA systems

- well-defined Bio-PEPA species

\[C \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ p_1 C + \ldots + (\alpha_n, \kappa_n) \circ p_n C \]
with all \(\alpha_i \)'s distinct

\[P \overset{\text{def}}{=} C_1(\ell_1) \triangleleft \ldots \triangleleft \triangleleft C_m(\ell_m) \]
with all \(C_i \)'s distinct

\[P = \langle V, N, K, F, \text{Comp}, P \rangle \]
well-defined Bio-PEPA model component with levels

minimum and maximum concentrations/number of molecules

fix step size, convert to minimum and maximum levels

species \(S \): 0 to \(N_S \) levels
Well-defined Bio-PEPA systems

▪ well-defined Bio-PEPA species

\[C \overset{\text{def}}{=} (\alpha_1, \kappa_1 \circ p_1 C + \ldots + (\alpha_n, \kappa_n \circ p_n C \text{ with all } \alpha_i \text{'s distinct}}\]

▪ well-defined Bio-PEPA model

\[P \overset{\text{def}}{=} C_1(\ell_1) \bigotimes_{L_1} \ldots \bigotimes_{L_{m-1}} C_m(\ell_m) \text{ with all } C_i \text{'s distinct} \]
Well-defined Bio-PEPA systems

- well-defined Bio-PEPA species

\[C \overset{\text{def}}{=} (\alpha_1, \kappa_1)_{o p_1} C + \ldots + (\alpha_n, \kappa_n)_{o p_n} C \] with all \(\alpha_i \)'s distinct

- well-defined Bio-PEPA model

\[P \overset{\text{def}}{=} C_1(\ell_1) \bigotimes \ldots \bigotimes C_m(\ell_m) \] with all \(C_i \)'s distinct
Well-defined Bio-PEPA systems

- well-defined Bio-PEPA species
 \[C \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ_p 1 C + \ldots + (\alpha_n, \kappa_n) \circ_p n C \] with all \(\alpha_i \)'s distinct

- well-defined Bio-PEPA model
 \[P \overset{\text{def}}{=} C_1(\ell_1) \otimes_1 \ldots \otimes_{m-1} C_m(\ell_m) \] with all \(C_i \)'s distinct

- well-defined Bio-PEPA system
 \[\mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \text{Comp}, P \rangle \]
Well-defined Bio-PEPA systems

- well-defined Bio-PEPA species

\[C \overset{\text{def}}{=} (\alpha_1, \kappa_1) \circ C + \ldots + (\alpha_n, \kappa_n) \circ C \] with all \(\alpha_i \)'s distinct

- well-defined Bio-PEPA model

\[P \overset{\text{def}}{=} C_1(\ell_1) \triangleleft \ldots \triangleleft C_m(\ell_m) \] with all \(C_i \)'s distinct

- well-defined Bio-PEPA system

\[\mathcal{P} = \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}, \text{Comp}, P \rangle \]

- well-defined Bio-PEPA model component with levels
 - minimum and maximum concentrations/number of molecules
 - fix step size, convert to minimum and maximum levels
 - species \(S \): 0 to \(N_S \) levels
Example: reaction with enzyme

\[S + E \xleftrightarrow{\text{enzyme}} SE \xrightarrow{\text{reaction}} P + E \]
Example: reaction with enzyme

\[S + E \xleftrightarrow{} SE \rightarrow P + E \]

\[S(\ell_S) \otimes E(\ell_E) \otimes SE(\ell_{SE}) \otimes P(\ell_P) \]

where

\[S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \]
\[E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \]
\[SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \]
\[P \overset{\text{def}}{=} (\gamma, 1) \uparrow P \]
Example: reaction with enzyme

\[S + E \xleftrightarrow{\text{SE}} \rightarrow P + E \]

\[S(\ell_S) \boxtimes E(\ell_E) \boxtimes SE(\ell_{SE}) \boxtimes P(\ell_P) \text{ where} \]

\[S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \]
\[E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \]
\[SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \]
\[P \overset{\text{def}}{=} (\gamma, 1) \uparrow P \]
Example: reaction with enzyme

\[S + E \xrightarrow{\text{reaction}} SE \xrightarrow{\text{reaction}} P + E \]

\[S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P) \text{ where} \]

\[S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \]
\[E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \]
\[SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \]
\[P \overset{\text{def}}{=} (\gamma, 1) \uparrow P \]
Example: reaction with enzyme

\[S + E \xrightarrow{\leftrightarrow} SE \rightarrow P + E \]

\[S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P) \]

where

\[S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \]
\[E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \]
\[SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \]
\[P \overset{\text{def}}{=} (\gamma, 1) \uparrow P \]
Example: reaction with enzyme

1. $S + E \xrightleftharpoons{} SE \rightarrow P + E$

2. $S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_SE) \bowtie P(\ell_P)$ where

 - $S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 - $E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 - $SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$
 - $P \overset{\text{def}}{=} (\gamma, 1) \uparrow P$

3. $S \xrightarrow{E} P$
Example: reaction with enzyme

- $S + E \xleftrightarrow{SE} P + E$
 - $S(\ell_S) \star E(\ell_E) \star SE(\ell_{SE}) \star P(\ell_P)$ where

 $S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S$
 $E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E$
 $SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE$
 $P \overset{\text{def}}{=} (\gamma, 1) \uparrow P$

- $S \xrightarrow{E} P$
 - $S'(\ell_S') \star E'(\ell_E') \star P'(\ell_P')$ where
Example: reaction with enzyme

\[S + E \xleftrightarrow{SE} P + E \]

\[S(\ell_S) \boxtimes E(\ell_E) \boxtimes SE(\ell_{SE}) \boxtimes P(\ell_P) \text{ where} \]

\[S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \]
\[E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \]
\[SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \]
\[P \overset{\text{def}}{=} (\gamma, 1) \uparrow P \]

\[S \xrightarrow{E} P \]

\[S'(\ell_{S'}) \boxtimes E'(\ell_{E'}) \boxtimes P'(\ell_{P'}) \text{ where} \]

\[S' \overset{\text{def}}{=} (\gamma, 1) \downarrow S' \quad E' \overset{\text{def}}{=} (\gamma, 1) \oplus E' \quad P' \overset{\text{def}}{=} (\gamma, 1) \uparrow P' \]
Example: reaction with enzyme

➤ $S + E \xleftrightarrow{SE} P + E$

➤ $S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P)$ where

\[
S \overset{def}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S
\]

\[
E \overset{def}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E
\]

\[
SE \overset{def}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE
\]

\[
P \overset{def}{=} (\gamma, 1) \uparrow P
\]

➤ $S \xrightarrow{E} P$

➤ $S'(\ell_{S'}) \bowtie E'(\ell_{E'}) \bowtie P'(\ell_{P'})$ where

\[
S' \overset{def}{=} (\gamma, 1) \downarrow S'
\]

\[
E' \overset{def}{=} (\gamma, 1) \oplus E'
\]

\[
P' \overset{def}{=} (\gamma, 1) \uparrow P'
\]
Example: reaction with enzyme

- \(S + E \xleftrightarrow{SE} P + E \)

- \(S(\ell_S) \bowtie E(\ell_E) \bowtie SE(\ell_{SE}) \bowtie P(\ell_P) \) where

 \(S \overset{\text{def}}{=} (\alpha, 1) \downarrow S + (\beta, 1) \uparrow S \)

 \(E \overset{\text{def}}{=} (\alpha, 1) \downarrow E + (\beta, 1) \uparrow E + (\gamma, 1) \uparrow E \)

 \(SE \overset{\text{def}}{=} (\alpha, 1) \uparrow SE + (\beta, 1) \downarrow SE + (\gamma, 1) \downarrow SE \)

 \(P \overset{\text{def}}{=} (\gamma, 1) \uparrow P \)

- \(S \xrightarrow{E} P \)

- \(S'(\ell_{S'}) \bowtie E'(\ell_{E'}) \bowtie P'(\ell_{P'}) \) where

 \(S' \overset{\text{def}}{=} (\gamma, 1) \downarrow S' \)

 \(E' \overset{\text{def}}{=} (\gamma, 1) \oplus E' \)

 \(P' \overset{\text{def}}{=} (\gamma, 1) \uparrow P' \)
Example: reaction with enzyme, max level 3

- state vector \((S, E, SE, P)\) and \(N_S = N_E = N_{SE} = N_P = 3\)
Example: reaction with enzyme, max level 3

- state vector \((S, E, SE, P)\) and \(N_S = N_E = N_{SE} = N_P = 3\)

\[
\begin{align*}
(3,3,0,0) &\xrightarrow{\alpha} (2,2,1,0) &\xrightarrow{\alpha} (1,1,2,0) &\xrightarrow{\alpha} (0,0,3,0) \\
&\downarrow{\beta} &\downarrow{\beta} &\downarrow{\beta} \\
(2,3,0,1) &\xrightarrow{\alpha} (1,2,1,1) &\xrightarrow{\alpha} (0,1,2,1) &\xrightarrow{\gamma} \\
&\downarrow{\beta} &\downarrow{\beta} \downarrow{\beta} \\
(1,3,0,2) &\xrightarrow{\alpha} (0,2,1,2) &\downarrow{\gamma} \\
&\downarrow{\beta} \\
(0,3,0,3) &\downarrow{\gamma}
\end{align*}
\]
Example: reaction with enzyme, max level 7

- state vector $S E SE P$ and $N_S = N_E = N_{SE} = N_P = 7$
Parameters

- initial parameters for species representing basal behaviour
 - no decision species, no added FGF, no active FGFR
 - long recycling loop inactive so no species from it
 - hence only 3 species present initially
Parameters

- initial parameters for species representing basal behaviour
 - no decision species, no added FGF, no active FGFR
 - long recycling loop inactive so no species from it
 - hence only 3 species present initially

- rate of entry and probability of recycling in each loop
Parameters

- initial parameters for species representing basal behaviour
 - no decision species, no added FGF, no active FGFR
 - long recycling loop inactive so no species from it
 - hence only 3 species present initially

- rate of entry and probability of recycling in each loop

- input and output stoichiometry for each loop
 - short loop: input and output the same
 - long loop: output much larger than input
Parameters

- initial parameters for species representing basal behaviour
 - no decision species, no added FGF, no active FGFR
 - long recycling loop inactive so no species from it
 - hence only 3 species present initially

- rate of entry and probability of recycling in each loop

- input and output stoichiometry for each loop
 - short loop: input and output the same
 - long loop: output much larger than input

- creation rate of active Src during basal behaviour

- binding rate for active Src and active FGFR

- time to pick up inactive Src in perinuclear region

- assume time taken in each loop fixed using calculations
Parameters (continued)

- at least 13 unknown parameters – not so simple
Parameters (continued)

- at least 13 unknown parameters – not so simple
- enable short recycling loop only
- find parameters to balance short loop
 - 50% of active Src at membrane
 - 50% of active Src in the short recycling loop
- 6 parameters not yet specified
Parameters (continued)

- at least 13 unknown parameters – not so simple
- enable short recycling loop only
- find parameters to balance short loop
 - 50% of active Src at membrane
 - 50% of active Src in the short recycling loop
- 6 parameters not yet specified
- enable the long recycling loop
- guess some parameters
- enable the doser and see what happens