
HeteroGen: Automatic Synthesis of Heterogeneous
Cache Coherence Protocols

Nicolai Oswald
The University of Edinburgh

nicolai.oswald@ed.ac.uk

Vasilis Gavrielatos
The University of Edinburgh
Vasilis.Gavrielatos@ed.ac.uk

Vijay Nagarajan
The University of Edinburgh

vijay.nagarajan@ed.ac.uk

Theo Olausson
The University of Edinburgh

theoxo@mit.edu

Daniel J. Sorin
Duke University
sorin@ee.duke.edu

Reece Carr
The University of Edinburgh

mail@reececarr.com

Abstract—We solve the two challenges architects face
when designing heterogeneous processors with cache
coherent shared memory. First, we develop an auto-
mated tool, called HeteroGen, for composing clusters
of cores, each with its own coherence protocol. Second,
we show that the output of HeteroGen adheres to a
precisely defined memory consistency model that we
call a compound consistency model. For a wide variety
of protocols—including the MOESI variants, as well
as those that are targeted towards Total Store Order
and Release Consistency—we show that HeteroGen can
correctly fuse them. To validate HeteroGen, we develop
the first litmus tests for verifying that heterogeneous
protocols satisfy compound consistency models. To
understand the possible performance implications of
automatic protocol generation, we compared against
a publicly available manually-generated heterogeneous
protocol. Our results show that performance is compa-
rable.

I. Introduction
There are two trends in modern processor design that

inspire our work: processor core heterogeneity and cache
coherent shared memory. Heterogeneity, which was once
largely confined to CPU/GPU designs, has expanded to
encompass a much wider range of core designs. Because
modern processors are power constrained, there is increas-
ing motivation to design special-purpose cores (i.e., acceler-
ators) for important tasks, because these cores can be more
power-efficient and performant than general-purpose CPU
cores. Current chips from Apple, Qualcomm, and Samsung
have many different cores, including CPUs, GPUs, digital
signal processors (DSPs), and camera processing cores.

In addition to heterogeneity, our other motivating design
trend is the continued reliance on cache coherent shared
memory. In the early days of CPU/GPU designs, the CPU
cores did not share memory with the GPU cores. Even when
shared memory emerged and then became prevalent due
to its popular programming model, conventional wisdom
suggested that cache coherence was infeasible due to
scalability issues. Nevertheless, hardware cache coherence—
often with accelerator-specific protocol features —is highly
desirable for programmability, and it has become prevalent

in heterogeneous processors. Indeed, cache coherent shared
memory has become codified in several standardized design
frameworks, including HSA [19], CCIX [3], OpenCAPI [5],
Gen-Z [4], AMBA CHI [2], and CXL [1].

Architects face two challenges when designing hetero-
geneous processors with cache coherent shared memory.
First, designing heterogeneous coherence protocols is dif-
ficult. Designing a coherence protocol for a homogeneous
processor is already a notoriously challenging task [7],
[29], and introducing heterogeneity multiplies the design
complexity. This is because communication patterns within
a CPU, GPU or an accelerator are very different, often
mandating bespoke coherence protocols for each case. Con-
ventional protocols that use writer-initiated invalidations
for enforcing the Single-Writer-Multiple-Reader (SWMR)
invariant work well for CPUs. But they are ill-suited for
GPUs [37], which tend to employ self-invalidating protocols
that directly enforce relaxed consistency models instead
of SWMR [27]. To compose these very different protocols
into a unified heterogeneous whole requires designing a
bridge between them. While recent academic [11], [28]
and industrial works [2], [4], [5] have developed interfaces
or wrappers that facilitate this process, it is still quite
challenging to manually compose the protocols.

The second challenge faced by architects is reasoning
about the memory consistency model provided by the
heterogeneous processor. Recall that a memory consistency
model defines the software-visible orderings of loads and
stores across all of the threads in a shared memory
system [27]. Consider a processor that consists of several
clusters of cores, each with its own per-cluster coherence
protocol and consistency model. Now assume that we have
overcome the first challenge of composing the cluster-level
protocols together into a single protocol. What consistency
model does this heterogeneous processor provide? How
does one ensure that the composed protocol adheres to the
intended consistency model?

To overcome these two challenges—design complexity
and consistency model—we have developed HeteroGen.
HeteroGen is a tool for automatically generating heteroge-

1

neous protocols that adhere to precise consistency models.
As input, HeteroGen takes simple, atomic specifications of
the per-cluster coherence protocols, each of which satisfies
its own per-cluster consistency model. The output is a
concurrent, heterogeneous protocol that satisfies a precisely
defined consistency model that we refer to as a compound
consistency model.

The compound consistency model is a compositional
amalgamation of each of the per-cluster consistency models
where operations from each cluster continue to adhere
to that cluster’s consistency model. For example, if a
CPU cluster employs a MESI coherence protocol that
enforces the SWMR invariant and sequential consistency
(SC), that cluster will continue to provide SC even when
composed with other clusters that have other per-cluster
consistency models. One of HeteroGen’s key contributions
is its guarantee that its output protocol will provide
compound consistency. Moreover, we show that compound
consistency is a key enabler to supporting language-level
consistency models on heterogeneous processors.

How does HeteroGen fuse the protocols? The key idea is
that when a store from a processor core is made globally
visible within one of the clusters, HeteroGen leverages the
coherence protocols of the other clusters to make the store
visible in the other clusters as well. In doing so, HeteroGen
preserves the relative ordering of two stores from a core
within a cluster in the other clusters as well – thereby
ensuring the compound consistency model.

We have used HeteroGen to generate several heteroge-
neous protocols, using it to combine a range of protocols
including the MOESI variants that enforce SWMR and
self-invalidation based protocols that directly enforce the
consistency model. We have validated that all of the
protocols generated by HeteroGen satisfy their compound
consistency models, and that they are deadlock-free. For
consistency validation, we create litmus tests [38], [42]
that are specific to compound consistency models.

We experimentally evaluate HeteroGen against a
manually-designed heterogeneous protocol called HCC [40];
this is a publicly-available protocol that is similar to
Spandex [11], running on a heterogeneous multicore system
with 60 “tiny” in-order CPU cores and 4 “big” out-of-order
CPU cores, with the big cores employing MESI and the
tiny cores employing a variant of DeNovo. Our experiments
reveal that the performance of our automatically-generated
protocol is comparable to the manually-generated HCC.

Limitations. Although HeteroGen can handle a wide
variety of protocols it cannot yet handle update-based
protocols, or protocols that use leases. Furthermore, be-
cause our compound consistency formalism is limited to
non-scoped multi-copy-atomic memory models, HeteroGen
cannot offer any guarantees when fusing protocols that
enforced scoped consistency models or non-multi-copy-
atomic memory models.

Contributions. We make the following contributions:

Program

Consistency model

Core
Pipeline

Pipeline

Coherence

LLC

Main Memory

$

read-request(..)
write-request(..)

read-response(..)
write-response(..)

Core
Pipeline

Core
Pipeline

Program Program

load(..)
store(..) load-response(..)

$$

fence-request(..) fence-response(..)

Figure 1. Normally the consistency model enforced by the processor
is a function of both the processor pipeline and the coherence protocol
combined. We isolate the consistency model enforced by a coherence
protocol as the model that is enforced when an in-order pipeline
(that issues memory operations one by one) is combined with that
coherence protocol.

• We formalize compound memory consistency models,
a compositional approach to specifying consistency
models targeted towards heterogeneous systems.

• We develop and distribute HeteroGen, the first au-
tomated tool for composing heterogeneous coherence
protocols.

• We demonstrate using heterogeneous litmus testing
that HeteroGen produces protocols that satisfy the
intended compound consistency models.

• We experimentally show that the performance and
network traffic of our automatically-generated protocol
is comparable to a manually-generated heterogeneous
protocol.

II. Background
A. The Memory Consistency Model

The hardware memory consistency model is part of the
instruction set specification and specifies how memory must
appear to the (systems) programmer [27]. As such, all major
commercial (homogeneous) processors support precisely
defined consistency models that are specified as part of the
ISA specification. For example, all processors from Intel
and AMD support the x86-TSO consistency model [35],
whereas ARM [12] and RISC-V [41] processors support
more relaxed models.

An important feature of memory models concerns the
manner in which stores propagate their values to other
processors. In multi-copy atomic memory models [27], store
values propagate atomically: as soon as the value becomes
visible to another processor, no future load (in logical

2

time) can access an earlier value. It is worth noting that a
number of processor vendors and commercial architectures
(including x86, ARMv8, and RISC-V) support multi-copy
atomic models, and in this work we restrict our attention
to such memory models.

Another memory model feature, which pertains to GPUs
and existing heterogeneous memory models, is the notion
of scopes [18]. While scopes are an important feature in
today’s GPU memory models [23], whether or not future
heterogeneous consistency models should involve scopes is
still under debate [36]. In this work we limit our attention
to memory models without the notion of scopes.

B. The Coherence Interface
The processor cores interact with the coherence protocol

through an interface consisting of reads, writes, and
fences [27]. A read request takes in a memory location as
the parameter and returns a cache block. A write request
takes in a memory location and a value (to be written) as
parameters and returns an acknowledgment.

There are many coherence protocols that have appeared
in the literature and been employed in real processors.
Some of these protocols—especially the ones targeted
towards the CPUs—enforce the Single-Writer-Multiple-
Reader (SWMR) invariant by invalidating sharers on a
write. Not all protocols enforce SWMR, however. Some
protocols eschew writer-initiated invalidations, and instead
rely on writebacks and self-invalidations.

The hardware memory model enforced is a function of
both the processor pipeline and the coherence protocol, as
shown in Figure 1. In this work, however, we want to be
able to reason about composing together heterogeneous
coherence protocols. Therefore, we want to be able to isolate
the consistency effects of the coherence interface. We define
it as follows.

Consider for now a simple “in-order” pipeline that
simply makes calls to the coherence protocol interface
one by one, waiting for the previous to return before the
next request. We call the ensuing consistency model the
consistency model enforced by the coherence protocol. This
consistency model allows us to abstract coherence protocol
heterogeneity by associating consistency labels for the read-
requests and write-requests of the coherence interface.1

Thus, a conventional writer-initiated SWMR-enforcing
protocol is said to enforce sequential consistency (SC).
Consequently such a protocol is associated with SC-read-
requests and SC-write-requests. Protocols such as TSO-
CC [16] and Racer [34], that are designed to target TSO,
are said to enforce TSO, and are hence associated with
TSO-read-requests and TSO-write-requests. In a similar
vein, protocols that target variants of release consistency
(RC), such as lazy release consistency [10], are said to
enforce RC. Consequently the coherence interface involves

1Although reasoning about an in-order pipeline is easiest, we do
not require an in-order pipeline, just a pipeline that is compatible
with the consistency model [22].

two types of writes (release-write-requests and data-write
requests) and two types of reads (acquire-read-requests
and data-read-requests).

III. Related Work

A. Automatic Protocol Generation

The most related prior work is by Oswald et al. [29], [30],
who have developed schemes for automating the generation
of flat and hierarchical protocols. The hierarchical protocols
could be heterogeneous, but only insofar as the protocols
obey the single-writer, multiple-reader (SWMR) invariant;
a key feature of HeteroGen is its applicability to non-
SWMR protocols (e.g., DeNovo [14], and TSO-CC [16]).

B. Heterogeneous Coherence Protocols

One industrial approach to heterogeneous coherence
has been the development of protocol standards such
as HSA [19], CAPI [5], CCIX [3], CHI [2], Gen-Z [4],
and CXL [1]. Crossing Guard [28] proposes a similar
coherence interface between the CPU and accelerators
whereas hUVM [21] proposes a unified protocol based
on the VIPS [33] line of work. To provide coherence
between cores and accelerators that may have very different
interfaces to the memory system, Alsop et al. [11] developed
the flexible Spandex coherence interface. None of this prior
work takes existing protocols and automatically integrates
them.

C. Consistency for Heterogeneous Processors

Hower et al. [18] introduce heterogeneous race free (HRF)
memory models that accommodate synchronization opera-
tions with different scopes, but HRF does not address the
composition of different protocols with different constituent
consistency models. Extending the definition of compound
consistency models to accommodate scopes is future work.

Nagarajan et al. [27] briefly discuss heterogeneous con-
sistency models in their primer (Section 10.2.1). They
introduce the concept of a compound consistency model
and the associated litmus tests informally but they do not
formalize it; nor do they provide a general method for
fusing two protocols.

In concurrent work, Iorga et al. [20] formally specify
the memory model of heterogeneous CPU/FPGA systems
axiomatically as well as operationally, and validate their
models. In contrast, in this work we specify more generally
how different memory models can be composed together,
and how coherence protocols can be automatically fused
to match our specification.

Batty [13], in his position paper, argues for a composi-
tional approach towards relaxed memory consistency. Our
compound consistency models, and specifically the fact
that they preserve compiler mappings within each cluster,
are a step in this direction.

3

L2

Cluster1

cache1 cache1

directory1 directory2

L2

Cluster2

cache2 cache2

HeteroGen Merged Directory

Global shared L2

Cluster1

cache1 cache1

Cluster2

cache2 cache2

directory1 directory2

Figure 2. HeteroGen takes as its inputs the coherence protocols of the individual clusters (Cluster1 and Cluster2) and automatically merges
their directory controllers to produce the merged directory. The target system model of HeteroGen consists of multiple clusters of cores with
their private L1 caches and global shared L2.

D. Litmus Testing
Litmus testing is a longstanding approach to validating

whether a system correctly implements its specified mem-
ory consistency model [38], [42]. Litmus tests are small
code snippets that are crafted, perhaps with the aid of
automation [8], [25], to expose behaviors that distinguish
different consistency models [26]. Because no prior work
has explored compound consistency models, there has also
been no prior work in litmus test development for them.

E. Memory model translation
ArMOR [24] is a framework for specifying and translating

between memory consistency models. For example, ArMOR
has been used previously to automatically generate trans-
lation modules for dynamically translating code compiled
for one memory model on hardware that enforces another.
In this work, we leverage the ArMOR framework in a novel
way: to compose different coherence protocols.

IV. System Model, Assumptions, Limitations, and
Problem Statement

Throughout this work, we assume a heterogeneous shared
memory computer that consists of multiple clusters of
cores, as illustrated in Figure 2. At a high level, HeteroGen
takes as input the individual clusters (i.e., cluster1 and
cluster2) with their cluster-specific coherence protocols,
each enforcing its cluster-specific consistency model, and
automatically produces a global protocol that enforces
the compound consistency model. (We will define and
discuss compound memory models in the next section.)
The input protocols are specified using the domain specific
language used by ProtoGen [29], and the output finite state
machines are in the language of the Murphi model checker,
to facilitate using Murphi [15] to validate the protocols.

Without loss of generality, we assume each cluster
contains a set of cores with local L1 caches and a shared
L2; the L1s are kept coherent by a cluster-specific directory
coherence protocol. By directory protocol, we mean a
protocol that makes writes visible to other processors
by sending a request to the directory. We support many
different flavors of directory protocols. The protocol can be
a conventional writer-initiated invalidation based protocol
that enforces SWMR, as exemplified by the MOESI family

of protocols commonly employed in CPUs. Or it can
be a protocol that eschews SWMR and instead employs
self-invalidations and write-backs to directly enforce the
consistently model, as is commonly employed in GPUs.
(Note that we do not support update-based protocols or
protocols based on the notion of leases.)

We abstract this protocol heterogeneity by specifying
the consistency model of each cluster’s coherence interface
through labels associated with read and write requests.
(Recall that in Section II-B we defined the consistency
model enforced by the coherence interface as the one that
is enforced when the pipeline presents coherence requests
in program order.)

For this work, we restrict ourselves to coherence protocols
that enforce multi-copy atomic memory models; further-
more, we restrict ourselves to non-scoped memory models.
These two restrictions are mainly due to the limitations
of our compound consistency formalism rather than any
limitation of HeteroGen per se.

We make no assumptions regarding the on-chip network,
other than that each cluster connects to it. We focus here on
single-chip implementations, but conceptually HeteroGen
is not restricted to single chips.

With the system model fleshed out, we are now in
a position to precisely describe the problem. Given a
set of clusters, each with a distinct directory coherence
protocol enforcing a distinct consistency model, how do we
automatically merge the individual directory controllers
into one global directory controller, as shown in Figure 2?

V. Compound Consistency Models
Implicit in the above problem statement is the question

of correctness. Given that the coherence protocols of the
different clusters could be different, and given that they
could enforce distinct consistency models, what should be
the correctness criterion of their composition? How does
one program the resulting heterogeneous shared memory
computer?

A. Intuition
In this paper, we propose a solution to these questions:

a compositional approach to heterogeneous consistency
called compound memory consistency models. We define

4

St1: St x = 1

Ld1: Ld r1 = y

Initially x = 0, y = 0

St2: St y =1

Ld2: Ld r1 = x

T1 (SC) T2 (TSO)

a) b)

St1: St x = 1

Ld1: Ld r1 = y

Initially x = 0, y = 0

T1 (SC) T2 (TSO)

St2: St y =1

Ld2: Ld r1 = x

FENCE

Figure 3. a) Ld1 and Ld2 can both return 0, b) only one of Ld1, Ld2
can return 0

compound consistency as follows. Consider a heterogeneous
computer with n clusters, C1 to Cn, each with its own
per-cluster coherence protocol that enforces a per-cluster
consistency model Mi. When we combine the clusters into a
heterogeneous processor, the compound consistency model
guarantees that operations from each cluster Ci continue
to adhere to its per-cluster consistency model Mi.

To understand compound consistency better, assume
that cluster C1 supports SC and cluster C2 supports TSO.
Compound consistency mandates that operations from
threads belonging to C1 adhere to SC, while operations
from threads belonging to C2 adhere to TSO.

Consider the Dekker’s litmus test shown in Figure 3(a),
which shows thread T1 from the SC cluster and thread
T2 from the TSO cluster. For this example, note that it
is possible for both Ld1 and Ld2 to read zeroes. This is
because the TSO cluster does not enforce the St2 → Ld2
ordering, even though the SC cluster enforces the St1 →
Ld1 ordering.

However, as shown in Figure 3(b), once a FENCE
instruction is inserted between St2 and Ld2, the two loads
cannot both read zeroes anymore. Note, however, that a
FENCE instruction is not required between St1 and Ld1
from T1 because the SC cluster already guarantees this
ordering.

B. Formalism
In this section, we formalize the notion of compound

consistency models. Starting with the axiomatic framework
of Alglave et al. [9], which can capture any multi-copy
atomic model [9], we then formally define the compound
consistency model enforced when combining a set of given
multi-copy atomic models.
Preliminaries. We start by defining some basic relations.

•
po−→ the program order relation, the per-thread to-
tal order that specifies the order in which memory
operations appear in each thread.

•
po−addr−−−−−−→ the program order relation on a per-address
basis.

Consider an execution of a multi-threaded program on
a shared-memory computer. Such an execution can be
captured by the following communication relations:

•
ws−−→ the write-serialization relation that relates two

writes of the same address that are serialized in the
order specified.

•
rf−−→ the read-from relation which relates a write and
read of the same address such that the read returns
the value of the write.

•
rfe−−→ the read-from-external relation which relates a

write and read of the same address from two different
threads, such that the read returns the value of the
write.

•
fr−−→ the derived from-read relation that relates a read
r and a write w such that the read returns a value of
some write that was serialized before w (in ws−−→).

An execution is said to be legal, if SC is satisfied on a
per-address basis. That is:

acyclic(po−addr−−−−−−→ U
rf−−→ U

fr−−→ U
ws−−→) (1)

Legality of execution is the axiom that ensures, among
other things, that a read always reads the most recent write
before it in program order. In the following, we consider
only legal executions.
Multi-copy memory model. A multi-copy atomic mem-
ory model is specified in terms of the preserved-program
order relation ppo−−→, that relates pairs of operations from
any thread whose ordering is preserved in any execution.

Specifically, an execution is said to conform to a given
memory model (M ≡ ppo−−→), if there exists a global memory
order implied by the execution that is consistent with the
preserved program order promised by the memory model.
That is:

acyclic(ppo−−→ U
rfe−−→ U

fr−−→ U
ws−−→) (2)

For example:
• SC ppo−−→ ≜

po−→
• x86-TSO ppo−−→ ≜

po−→ \st(x) po−→ ld(y),∀x,y

Compound memory model. We axiomatically define the
compound consistency model enforced by a heterogeneous
computer with n clusters, C1 to Cn, where each cluster
adheres to its per-cluster multi-copy atomic memory model
Mi ≡ ppoi−−−→.

Consider a multithreaded execution on this heteroge-
neous computer consisting of a set of threads T . We
again characterize the execution using the communication
relations we defined earlier (ws−−→, rfe−−→ and fr−−→). Note
that we treat intra-cluster and inter-cluster communication
relations identically.

Let us partition the threads into n subsets: T1,T2...Tn,
such that all of the threads belonging to the set Ti are
mapped to the processor cores belonging to cluster Ci. Let
us define a new relation called ppocom−−−−−→ dubbed “preserved
program order compound” which specifies the program
order preserved for a given thread in the heterogeneous
computer. Specifically, the preserved program order of a
thread t is the same as the ppo−−→ of the memory model of
the cluster in which the thread is mapped to:

ppocom(t)−−−−−−−→| t ∈ Ti ≡ ppoi−−−→

5

Write(x = 1)

Release(y = 1)

while (Acquire(y) != 1)

Initially x =0, y = 0

Read(x)

T1 T2

Store(x = 1)

Release(y = 1)

while (Load(y) != 1)

Initially x =0, y = 0

Load(x)

T1 (RC) T2 (TSO)

a) C11 program b) Assembly translation

Figure 4. a) The producer-consumer pattern programmed in C11 for
a heterogeneous system, b) The C11 program gets compiled for an
RC/TSO system; in the RC system the C11 release gets compiled
into a release, while in the TSO system the C11 acquire gets compiled
into a load.

We now specify the compound consistency model as
the one that preserves ppocom as defined above. In other
words, an execution is said to conform to the compound
memory model if the global memory order implied by the
execution is consistent with the preserved program orders
of the threads belonging to each of the clusters.

acyclic(ppocom−−−−−→ U
rfe−−→ U

fr−−→ U
ws−−→) (3)

C. Example
Let us go back to Figure 3(b) which shows the Dekker’s

litmus test, with thread T1 from the SC cluster and T2
from the TSO cluster. The following sequence of edges:

St1 ppo−−→ Ld1 fr−−→ St2 ppo−−→ Ld2 (4)

implies that Ld2 will read the value of St1, reading a 1.
Note that the Ld1 fr−−→St2 edge above relates two operations
from different clusters; recall that the compound memory
model treats intra-cluster and inter-cluster communication
relations identically, and thus this edge is part of the global
memory order.
D. Programming with Compound Consistency

How does one program with compound consistency
models? Because the compound consistency model honors
the memory orderings of the original model of each of the
clusters, programmers/compilers need only be aware of
the cluster to which a thread is mapped; when a thread is
mapped to Ci the programmer can program that thread
assuming that the memory model is Mi, that cluster’s
memory model. Note that if each of the clusters supports a
distinct ISA, the programmer/compiler must already know
which cluster each thread is mapped to for code generation.

We do not necessarily advocate for programmers to
program against the low-level compound consistency model.
In fact, we argue that compound consistency makes it easy
to support language-level consistency models on the hetero-
geneous computer. One of the key challenges in supporting
a new hardware memory model is to discover correct
compiler mappings from language-level atomics to that
memory model. Fortunately, with compound consistency
models there is no need to discover new mappings. When
compiling language-level atomics down to the compound
consistency model, depending on where (i.e., which cluster)

a thread is mapped to, the existing compiler mappings for
that cluster’s memory model can be used.

We illustrate this with an example for a compound
consistency model consisting of two models: Release Consis-
tency (RC) and TSO. Let us consider a producer-consumer
pattern expressed in a language-level consistency model
such as C, as shown in Figure 4. Note that there are two
language-level atomics here: the release on the producer
side and an acquire on the consumer side. Further, let us
assume that the producer thread is mapped to the RC
cluster and the consumer is mapped to the TSO cluster.
The producer thread uses the compiler mapping for a C11
release on RC (which is a release store) while the consumer
thread uses the compiler mapping for a C11 acquire on
TSO (which is a normal TSO load).

VI. HeteroGen
In this section, we present HeteroGen, our scheme for

automatically synthesizing heterogeneous protocols that
satisfy compound consistency models.

A. What does HeteroGen do?
At a high level, HeteroGen performs the integration

illustrated in Figure 2. Given two distinct directory co-
herence protocols, each of which enforces a potentially
distinct consistency model, HeteroGen produces a single
heterogeneous protocol.

HeteroGen does this by merging the two directories
into one single merged directory, while leaving the cache
controllers unchanged. The merged directory presents a
directory1-like interface to the caches of type cache1 and a
directory2-like interface to the caches of type cache2. From
the point of view of cluster1 (i.e., directory1 and its caches),
cluster2 behaves as if it were a single cache1. Similarly,
cluster2 views cluster1 as if it were a single cache2.

Within the merged directory there is bridging logic, such
that a request from cache1 has the appropriate impact
on caches of type cache2 (and vice versa). There are two
logical aspects to bridging between the protocols: proxy
caches [30] and consistency model translation [24]. We
will explain in Section VI-C how these work together. But
before that we will explore what compound consistency
means operationally.

B. Operational Intuition
HeteroGen is informed by the operational intuition

behind compound consistency models.
One way to specify memory models is via abstract state

machines that exhibit the memory model’s behaviors. For
example, SC can be expressed as a bunch of in-order
processors connected via a switch to an atomic memory.
If a FIFO store buffer [35] and/or a load buffer [6] is
introduced between each processor and the memory, we
get TSO. In general, any multi-copy atomic memory model
can be expressed as processors with local buffers connected
to atomic memory, with each memory model having its
unique buffering logic [31].

6

Main Memory

P1 P2 P3 P4

Switch

bu
ff

er

bu
ff

er

Figure 5. Operational intuition of combining SC and RC. P1 and
P2 belong to the SC machine whereas P3 and P4 belong to the RC
machine.

Store (data = 1)
(written to memory)

Initially data =0, flag = 0
P1 (SC) P4 (RC)

Time

t1

Store (flag = 1)
(written to memory) t2

Load (data = 0)
(from buffer) t3

Acquire (flag = 1)
(from memory,

buffer invalidated) t4

Load (data = 1)
(from memory) t5

Figure 6. A legal execution on the compound SC/RC machine that
adheres to the SC/RC compound memory consistency model. At time
t4, an acquire from the RC machine sees flag, at t5 it correctly reads
the up-to-date value of 1 from memory.

Given the state machine representations of two memory
models as described above, the compound model can be
realized by merging the memory components into one,
leaving the buffering logic untouched. This is the high-level
insight that drives HeteroGen.
Example. Figure 5 illustrates the compound SC/RC
machine obtained by fusing SC and RC. Because P1 and
P2 are part of the original SC machine, they do not have
any local buffers. Because P3 and P4 are part of the RC
machine, they have local store buffers and load buffers.
(Stores write to the local store buffer, which is flushed on a
release. Loads are allowed to read potentially stale values
from the local load buffer, which is invalidated upon an
acquire.)

To understand how the SC/RC machine enforces com-
pound consistency, consider the execution shown in Fig-
ure 6. Assume that initially P4 has a copy of data with a
value of 0 in its local load buffer; flag and data have initial
values of 0 in memory. At times t1 and t2, P1 writes 1
to data and flag, respectively. At t3, P4 reads the locally
buffered value of 0. Note that a stale read of 0 does not
violate the compound SC/RC consistency model, because
P4 has not performed an acquire yet. At time t4, an acquire

for flag at P4 reads 1 from memory and invalidates the
local buffer, as mandated by RC. At t5, a load to data
from P4 gets the up-to-date value of 1 from memory.

C. Refining the Intuition
Now we return to the original problem of merging two

different coherence protocols (the “concrete problem”).
Compare this problem against the more abstract version
we introduced in Section VI-B (dubbed post-hoc as the
“abstract problem”).

Whereas each input in the concrete problem is still a state
machine that enforces a memory model, the state machine
is more detailed, with caches and a directory coming into
the mix. Each input of the concrete problem is thus a
refinement of an input of the abstract problem. Naturally,
we must ensure that the concrete problem’s output, too,
is a refinement of the abstract problem’s output. In other
words, we must merge the directories such that the merging
has the same operational effect as merging the memory
components into one (but leaving the buffering components
untouched).

In contrast to the abstract problem, where merging
the memory components is conceptually simple, merging
directories is not. This is because the directory is not
just an interface to memory; each directory, in conjunction
with the caches, implements a (distinct) coherence protocol.
Fundamentally, a coherence protocol allows for cache lines
to be obtained with read and/or write permissions. When
a cache line obtains read permissions, it is essentially
spawning a local replica of the global memory location.
When a cache line obtains write permissions, it is essentially
obtaining ownership of the global memory location. Thus,
for every memory location, there are potentially multiple
replicas of the location across both clusters. In fusing the
directories, we must ensure that all of the memory replicas
behave like there is just one copy. How can we ensure this
“compound consistency invariant”?

Ensuring the Single-Writer-Multiple reader invariant—
across all cached copies of a location, across both clusters—
serves the purpose but is overkill. This is because not all
cached copies of a location are globally visible. Some of
them can be held without read/write permissions. (Recall
that relaxed memory models allow for reads and writes
to be buffered locally.) Thus, the compound consistency
invariant need only apply to cache lines that are globally
visible. Given a cached copy, how can we determine whether
it is globally visible or whether it represents a buffered
copy?

HeteroGen ensures the compound consistency invariant
as follows. Whenever a write is made globally visible in one
of the clusters (say cluster1), HeteroGen makes the write
globally visible in cluster2 as well. Crucially, HeteroGen
does this with the help of cluster2’s coherence protocol,
and in doing so, offloads the problem of distinguishing
between buffered versus globally visible cache lines to
the coherence protocol itself. Because cluster2’s coherence

7

Figure 7. HeteroGen protocol flow for a write issued by the pipeline. Note the red box: directory1, proxy-cache2 and directory2 are one
merged directory.

protocol enforces its consistency model correctly, it must
intrinsically distinguish between these lines anyway.

In order to propagate writes between the two clusters,
HeteroGen must automatically synthesize the bridging
logic. Specifically, when a write is made globally visible in
cluster1, HeteroGen must automatically identify and trigger
the exact request in directory2’s specification for making
that write globally visible within cluster2. HeteroGen does
this with two mechanisms: consistency model translation
and proxy caches.

First, HeteroGen identifies the access sequence in clus-
ter2’s consistency model2 for an SC-equivalent store using
ArMOR [24]. For example, the equivalent of an SC store
in RC would be a release. Why an SC-equivalent store?
Because that is guaranteed to trigger a write request that
propagates globally before the write’s completion.

Second, HeteroGen consults cluster2’s cache specification
and identifies the sequence of coherence requests that would
be triggered for the SC-equivalent access sequence. For
example, in the lazy RC coherence protocol [10], a release
would trigger an ownership request for that cache line, and
HeteroGen introduces a proxy cache to issue that request
to the directory. Logically, the proxy cache is a clone of
a cluster2 cache controller that HeteroGen leverages for
issuing the above request transparently. (Logically, there
is one proxy cache per cluster.) In reality proxy caches are
part of the merged directory that HeteroGen generates,
and a cluster’s (say cluster1) “proxy cache” represents the
transient states that bridge the protocol flows from cluster2
to cluster1.

To summarize, as shown in Figure 7, when a write is
made globally visible in cluster1—i.e., when directory1
receives a write permissions request or a writeback request—
HeteroGen propagates that write by translating it into an
appropriate request (with the help of ArMOR) and then
issuing that request in cluster-2 via its proxy cache. Once
the request has completed, the proxy cache evicts the line,
marking the location as invalid in cluster2. Then, directory1
resumes by completing the original write request within
cluster1.

A future load to that location from cluster2 will contact
directory2 and find that the block is invalid in cluster2.
At this point, HeteroGen has cluster1’s proxy cache take

2The consistency model (Section II-B) enforced by cluster-2’s
coherence interface.

over and trigger an SC-equivalent read from directory1.
Once the value comes back, the proxy cache evicts the line
and relinquishes control to directory2, which completes the
original read request.

Example. To understand how the HeteroGen-fused direc-
tories enforce compound consistency, let us consider the
execution shown in Figure 8 on a heterogeneous machine
consisting of an RC and an SC cluster. Processors P1 and
P2 belong to the SC cluster, which runs a conventional
writer-initiated MSI protocol. Processors P3 and P4 belong
to the RC cluster. The RC cluster runs a simple RC protocol
that buffers writes in the local cache, writes back data upon
a release, and self-invalidates the local cache on an acquire.
Initially P1 and P4 have local copies of flag and data with
a value of 0.

At time t1, P4 performs a store to data and its value
is locally updated to 1. At time t2, P4 performs a release
to flag. The release initiates a writeback of dirty lines in
the cache, causing data to be written back at time t3. The
dirty write back of data is propagated to the SC cluster;
HeteroGen discovers that this is a request corresponding to
a store and translates it into its SC-equivalent in the MSI
world – which happens to be a store. By looking at the
cache controller of the MSI protocol, HeteroGen discovers
that a store will lead to a request for write permissions in
the MSI world, and has the proxy cache issue the same to
the SC-directory; the SC-directory sends invalidations to
sharers and ends up invalidating P1’s local copy of data.
We show the state transitions at the combined directory
controller in Figure 9.) At time t4, a similar sequence of
events leads to the local copy of flag being invalidated at
P1.

At time t5, P1 loads flag; because flag is not available
in the SC cluster, HeteroGen translates the load into an
SC-equivalent load in the RC world – which is an acquire.
By looking at the cache controller of the RC protocol,
HeteroGen discovers that an acquire leads to a read request
in the RC world and has the proxy cache issue the same to
the RC-directory; the RC-directory returns the up-to-date
value of 1, which is evicted to the LLC by the proxy cache;
at this point the SC-directory resumes the request and
reads 1 from the LLC to complete the load to flag. At time
t6, a similar sequence of events leads data = 1 to be read.

8

Figure 8. A legal execution on the merged MSI(SC)/RC protocol
that adheres to the SC/RC compound memory consistency model.
At time t5 a load of flag at P1 reads 1 and at time t6 it correctly
reads 1 for data.

D. Implementation details
1) Identifying globally visible writes : Recall that the

merged directory synthesized by HeteroGen ensures that,
when a cluster makes a write globally visible, the write is
propagated to the other cluster as well. But how does
HeteroGen identify when a cluster is making a write
globally visible?

One observation is that a globally visible write has to
necessarily inform the directory – either for obtaining write
permissions, or for performing a write back or a write
through.

Write back and write through requests are easy to
identify: such requests are the only ones that are sent
with values that are written to the shared cache.

So the challenge lies in identifying write permission
requests. HeteroGen identifies such requests by statically
analyzing the cache controller. Specifically, for each request
from the cache to the directory, HeteroGen inspects the
final state (s1) of the cache line after the final response. If
both of the following conditions are satisfied, the original
request to the directory is classified as a globally visible
write: (a) state s1 allows for stores to hit without external
communication (possibly transitioning to a new state s2);
and (b) either s1 or s2 accepts forwarded requests that
lead to a data value response from the cache.

The first condition is self-explanatory. The second con-
dition checks whether the value written can potentially
become globally visible. For example, consider an RC
protocol with write-back caches that buffers writes locally.
On a store, if the cache line is invalid, the protocol requests
the line from the lower level and goes to valid. Although
this is really a read request, the final state (valid) allows
for writes because RC allows for writes before a release to
be be buffered. This illustrates why the second condition
is required: the fact that there cannot be any forwarded
requests for a cache line in valid state ensures HeteroGen
does not mis-classify the original request as a write.

SVx

Write -back
req from

RC cluster

MSI Invalidations
(SC write request)

In SC cluster

Write data and
send ack to
requester

Inv Ack
from caches

in S state
IVxSIVx

Figure 9. State transitions at the combined directory controller. At
time t2, at the combined directory controller, data is in V(alid) state
in the RC cluster and in S(hared) state in the SC cluster. This is
represented as state VxS at the combined directory controller. At time
t3, when the write-back request of data reaches the directory, the proxy
cache (which is actually part of the combined directory) propagates
the write in the SC cluster, forwarding invalidations to all caches in
the SC cluster that are caching data in state S, and enters a transient
state denoted as VxSI. Once the proxy cache receives invalidation
acknowledgments, the original write-back request is handled: data
is written, and an acknowledgment is sent back to the cache that
initiated the write-back of data. In the end, data is in V state in the
RC cluster and I(nvalid) state in the SC cluster, denoted VxI.

For another example, consider the exclusive (E) state
of the classic MESI protocol. Although the exclusive state
does not allow for any forwarded request that results
in a value response, it can silently transition to the
modified state, which both permits stores to hit and accepts
forwarded requests that lead to a data response.

2) Proxy Cache Concurrency: How concurrent can the
proxy cache be? In this section, we present two options for
proxy cache design: (a) a conservative, but more general,
processor-centric design, where requests from cluster1 are
serialized at cluster2’s proxy cache; (b) an aggressive, but
limited, memory-centric design that permits requests to
different locations to be overlapped. But first we motivate
the trade-off with an example.

Consider two clusters: cluster1 enforcing RC, and cluster2
enforcing SC. Let’s say that processor P1 from cluster1
performs a release to address X that reaches directory1,
and needs to be propagated to the SC cluster. Accordingly,
cluster2’s proxy cache issues an appropriate request (say
reqA) to directory2 and is waiting for a response. Mean-
while, let’s say there is another release from P1 to address
Y that reaches directory1, and also needs to be propagated
to the SC cluster, with this second release coming after the
first in P1’s program order. Question: can the proxy cache
issue reqB (the second request) concurrently with reqA?

To answer this question, let us first ask ourselves why
the two releases were issued by P1 concurrently in the
first place. Typically, the processor pipeline orders stores
(including releases) by issuing them in order, waiting for
completion of the first before issuing the next. (Aggressive
implementations [17] allow for reordering but the onus is
on the pipeline to achieve the same effect.) Under this
pipeline ordering assumption, the only way in which the
releases could reach directory1 (and hence proxy cache)
concurrently is if the caches responded to the pipeline even
before the release became globally visible. Consider an
RC protocol that simply writes through every store to
the lower level. Supposing the interconnect were totally
ordered, the caches can simply stream releases without
waiting for acknowledgments from the directory, relying on

9

the interconnect to enforce the release → release ordering.
Conservative processor-centric design. Under this
more general assumption (that permits caches to provide
early responses as above), the proxy cache must be
serializing. This serialization is not as bad as it sounds,
though, for two reasons. First, the proxy cache can still
allow requests from different processors to overlap. Second,
we can leverage the serialization of the proxy cache, such
that we can ask ArMOR to avoid generating SC-equivalent
accesses; instead, we ask it to generate one or more accesses
in cluster2 that match the ordering guarantees of the
original access, and use this to uncover concurrency in
the proxy cache.
Aggressive memory-centric design. Assuming that
caches do not provide early completion responses (i.e., as-
suming each globally visible write needs to be acknowledged
by the directory), it is safe for the proxy cache to allow
requests to different addresses to overlap. (It needs to only
order requests to the same address.) Under this assumption,
the proxy cache functions akin to a conventional coherence
controller, allowing for inter-address concurrency.

We have implemented both of these designs. HeteroGen
analyzes the cache state machine: if it allows for early write
acknowledgments, we use the conservative design. Else, we
use the aggressive design.

3) Handling arbitrary number of clusters: Thus far, we
have assumed that HeteroGen takes two protocols as inputs,
and this is purely to simplify the discussion. HeteroGen
can naturally handle an arbitrary number of protocols. The
only change is that, upon a globally visible write to one
cluster, the write has to be propagated to all other clusters,
which entails issuing requests to each of the other clusters
via a proxy cache. On a read that cannot be served locally
within a cluster, a read request is issued to the cluster that
wrote to that location most recently.

4) Pipeline-Coherence interaction: Thus far we have
assumed that a pipeline interacts with the coherence
protocol using a simple interface, where the pipeline issues
reads and writes to the coherence subsystem in accordance
with that cluster’s memory model. In high-performance
implementations, however, the pipeline can interact with
the coherence protocol via a richer interface: e.g., in
speculative load replay [17] the pipeline might issue reads
out of order, relying on the coherence protocol to flag
memory ordering violations.

HeteroGen continues to enforce the compound con-
sistency model correctly in the presence of such non-
trivial pipeline-coherence interactions. Specifically, when
HeteroGen fuses two clusters, the second cluster (with its
pipeline and coherence protocol) will not affect the first
cluster’s pipeline-coherence interaction. This is because
HeteroGen ensures that from the perspective of one cluster,
the other cluster—including its coherence protocol and
pipeline—appears like one of its children (and vice versa).
In other words, clusters interact with one another in a

structured fashion in which each cluster’s pipeline and
coherence protocol are accessed atomically. For example,
when a write is propagated from one cluster to another, the
other cluster’s coherence protocol (and, optionally, pipeline,
in case the coherence protocol forwards invalidates to the
pipeline) is accessed. This structured interaction ensures
that each cluster’s pipeline-coherence interaction remains
unaffected.

5) Summary: We now summarize the steps involved in
combining multiple directory controllers (of each cluster)
into one heterogeneous directory controller. The combined
directory controller maintains metadata for each block
address: the owner field, which maintains the identity of
the last writer (cluster) to that address.

• Analyze input protocols. HeteroGen first analyzes
each of the input directory controllers to identify those
requests that are globally visible write requests (as
explained in Section VI-D1). Further, it also analyzes
each of the input cache controllers to identify whether
any write request to the cache is acknowledged early;
if even one of the writes in one of the input protocols
is acknowledged early, HeteroGen uses a conservative
processor-centric approach (explained in the following
under “concurrency”).

• Writes. Consider each globally-performing write re-
quest to any of the input directory controllers. Before
handling the request within that cluster, HeteroGen
first propagates that write within other clusters. This
is accomplished as follows. First, the ArMOR frame-
work [24] is employed to identify the corresponding
write request in each of the other clusters. Then, these
requests are initiated in parallel, and once all of these
are performed, the original write request is handled.
Once this is done, the cluster that performed the write
is set as the owner of the block address.

• Reads. For each read request that cannot be serviced
within a cluster, HeteroGen handles that read request
as if it was initiated by the current owner cluster of
that cache block.

• Concurrency. While handling a read or a write re-
quest, requests to that address from any processor are
blocked. Additionally, in case of conservative processor-
centric approach, requests from the processor that
initiated the original read or write are also blocked.

E. Using HeteroGen
1) HeteroGen-compatible Protocols: We have confirmed

that HeteroGen works for a wide variety of protocols,
encompassing protocols that satisfy SWMR as well as
those that are targeted to relaxed consistency models (see
Section VII-A and Table I). HeteroGen cannot fuse any
two protocols, however. Some protocols are incompatible
in important ways that make it hard to compose them
automatically and efficiently.

For example, HeteroGen cannot fuse an invalidation
based protocol with an update based protocol because the

10

notion of write permissions is not compatible with update
protocols. (A cache block with write permissions can safely
write without communicating with the directory in the
former, but an update based protocol is based on all writes
being propagated.)

For another example, HeteroGen cannot fuse Tardis [43]
(or Relativistic Coherence [32], G-TSC [39]) with a con-
ventional invalidation based protocol. This is because the
notion of read permissions is not directly compatible with
leases. Read permissions allow for a block to be held
potentially indefinitely, whereas leases expire.

Given two protocols, can we tell whether the two are
compatible? We believe this is a challenging problem that
is beyond the scope of this work. However, the fact that
HeteroGen-generated protocols are automatically validated
mitigates the risk that a HeteroGen user employs it for
incompatible protocols.

2) Consistency Models of Input Protocols: For Hetero-
Gen to select the appropriate ArMOR translations at the
merged directory, it must know the consistency models of
the input protocols. In theory, we could ask the user to
precisely specify these consistency models, but architects
do not often reason about protocols in that way; instead,
they tend to reason about consistency as a function of
both the protocol and core pipeline. To avoid relying on
the user, HeteroGen uses extensive litmus testing of each
input protocol to infer its consistency model.

VII. Case Studies and Validation
To explore HeteroGen and the protocols it creates, we

used it to generate a wide range of heterogeneous protocols,
and we validated them.

A. Case Studies
We took a set of homogeneous protocols, and we used

HeteroGen to generate heterogenous protocols from various
combinations of these constituent protocols.

In Table I, we list the seven homogeneous protocols that
we consider. These protocols include two MOESI variants
that support SC, and five protocols that are designed for
weaker consistency models.

RCC [27] is a simple protocol that enforces RC by:
buffering writes in the cache; writing back the cache
contents on a release; and self-invalidating the cache on
an acquire. RCC-O [10], [27] is a block-granular variant of
DeNovo [14] that obtains ownership on all writes. GPU is
a simple GPU protocol as specified in Spandex [11], where
stores write through to the shared cache. GPU, RCC-O, and
RCC enforce RC. PLO-CC is a variant of RCC-O without
a release, and it enforce a memory model called partial-
load-order [24] that enforces the W→W and the R→W
orderings but not the other two. TSO-CC [16] is a protocol
tailored to enforce TSO; we model the basic version of the
protocol without timestamps. These protocols represent
a wide range of protocols, highlighting the generality of
HeteroGen.

In Table II, we show the pairs of protocols that we com-
posed with HeteroGen. As we explain later, we validated
that all of these generated protocols satisfy their compound
consistency models and are deadlock-free.

Protocol
SC MSI, MESI

TSO TSO-CC [16]
RC RCC-O [10], [27] , RCC [27], GPU [11]

PLO PLO-CC

Table I
Protocols used in the case studies

B. Heterogeneous Litmus Testing

One way of validating a coherence protocol against a
consistency model is via litmus testing. Each litmus test is
designed to expose a behavior that, if observed, reveals a
violation of the consistency model. Existing litmus tests
validate that a single homogeneous protocol obeys a (non-
compound) consistency model.

To validate that HeteroGen’s generated protocols sat-
isfy their compound consistency models, we generated
heterogeneous litmus tests. Starting with the version of
the litmus test for the weaker of the two consistency
models, we use consistency model translation [24] to remove
any synchronization operations (e.g., Fences) that are not
needed for the stronger consistency model.

We used the herd7 tool [9] to generate 111 litmus tests,
including commonly used tests like MP, S, IRIW, 2+2W,
CoRR, LB, R, RWC, SB, WRC, WRW+WR, WRW+2W,
and WWC [31]. For each litmus test, we consider all possible
allocations of threads to processor cores.

To perform the validation of every heterogeneous proto-
col generated by HeteroGen, we used the Murphi model
checker [15]. In Murphi, we preload the caches with the
initial values in the litmus test, and we ensure that loads
and stores are executed based on the litmus test, while
permitting evictions at any time. Murphi then exhaustively
explores every possible ordering of the events in the
litmus test, and it reveals whether the protocol permits
an outcome prohibited by the consistency model. In all of
our litmus tests, the HeteroGen-generated protocols were
successful.

C. Validating Deadlock Freedom

We also used Murphi to validate that every protocol—
both the constituent protocols and the generated protocols—
are deadlock-free. This validation is an exhaustive search of
the reachable state space for a system with two addresses,
and systems with 1–3 caches per cluster. To avoid the state
space explosion problem for systems with more than one
cache per cluster, we use state space hashing and run the
model checker until the probability of omitting a state is
less than 0.05%.

11

Case-study States/
Transitions

1 MSI & MESI 25/171
2 MESI & TSO-CC 17/88
3 MESI & PLO-CC 17/88
4 MESI & RCC-O 27/117
5 MESI & RCC 23/109
6 MESI & GPU 23/101
7 RCC-O & RCC 12/43
8 RCC & RCC 3/16

Table II
Case Studies with their respective Heterogen Directory

States and Transitions

VIII. Protocol Performance

We have already demonstrated that HeteroGen achieves
its primary purpose of automatically generating protocols.
Although there is no fundamental reason why the generated
protocols cannot achieve comparable performance, one
might worry that the particulars of HeteroGen could hurt
performance.

The most relevant comparison is Spandex, which recall
is an interface for manually integrating multiple different
protocols. For our baseline we consider HCC [40], which
is a publicly available protocol that is similar to Span-
dex [11]; we focus on the heterogeneous protocol obtained
by manually combining the DeNovo protocol with MESI.
For comparison we use the automatically-generated RCC-
O/MESI protocol generated by HeteroGen. (Recall that
RCC-O is a block-granular variant of DeNovo.)

We simulated the protocols on gem5, and our simulation
parameters are identical to those used in HCC [40]. We
simulated a 64-core system with 2 clusters: 60 “tiny” cores
and 4 “big cores”. The big cluster employs the MESI
protocol whereas the tiny cluster employs DeNovo. The
two clusters are manually fused using HCC, whereas in
our setup MESI and RCC-O are automatically fused using
HeteroGen. The detailed simulation parameters are shown
in Table III. We used the same 13 applications with fine-
grained synchronization as in HCC.

Our results are summarized in Figure 10, and they reveal
that HCC and HeteroGen have comparable runtimes, with
HeteroGen performing similarly to the manually-generated
HCC on average. The important point of difference in
the two protocols is the use of conservative handshaking
messages in the manually-generating protocol, whereas
HeteroGen eschews these redundant handshakes. The effect
of the reduced handshaking messages translates into faster
reads: specifically, when a core reads the value written
by another core it incurs significantly reduced latencies.
The effect of faster communicating reads translates into
performance for two benchmark programs (nq and lu)
which spend a significant time on such reads.

Most writes are, as perhaps expected, slower with

cilk5-cs
cilk5-lu
cilk5-m

m
cilk5-m

t
cilk5-nq
ligra-bc
ligra-bf
ligra-bfs
ligra-bfsbv
ligra-cc
ligra-m

is
ligra-radii
ligra-tc
gm

ean

0

0.5

1

Sp
ee

du
p

Figure 10. Speedup of HeteroGen over HCC [40]: without handshaking
(blue) and with handshaking (red)

handshaking. However, in the presence of a burst of
writes and false sharing, both of which occur in these
benchmarks, handshaking slows down the transfer of a
block between cores. Indeed, with handshaking, a core
can perform multiple writes before losing the block to
another core, which turns out to be more efficient. Thus,
the absence of handshaking is a reason why some of the
benchmarks, such as bf and bfsbc, see a small performance
hit. To confirm our hypothesis we experimented with a
variant that actually performs handshaking on the writes
but not the reads. (Note that HeteroGen can generate
variants with handshaking.) This variant of HeteroGen
consistently outperforms the baseline, and by 2% on
average, vindicating our hypothesis.

We also measured the network traffic incurred by both
variants of HeteroGen in comparison with HCC, and our
results indicate that traffic incurred is within 5% of HCC
on average. Our takeaway is that the HeteroGen-generated
protocols appear to have similar performance and network
traffic to a manually-generated heterogeneous protocol.

Table III
Simulated System Parameters [40]

Big Cores
Cluster 1

RISC-V ISA (RV64GC), 4-way out-of-order, 16-entry
LSQ, 128 Physical Reg. 128-entry ROB. L1 cache: 1-
cycle, 2-way, 64KB L1I and 64KB L1D, hardware-based
coherence

Tiny Cores
Cluster 2

RISC-V ISA (RV64GC), single-issue, in-order, single-
cycle execute for non-memory inst. L1 cache: 1-cycle,
2-way, 4KB L1I and 4KB L1D, software-centric coherence

L2 Cache Shared, 8-way, 8 banks, 512KB per bank, one bank per
mesh column, support heterogeneous cache coherence

Interconnect Network-on-Chip, 8×8 mesh topology, XY routing, 16B
per flit, 1-cycle channel latency, 1-cycle router latency,
buffer size 8 flit

Main
Memory

8 DRAM controllers per chip, one per mesh column.
16GB/s total bandwidth

IX. Conclusions
HeteroGen can automatically compose multiple coher-

ence protocols, including MOESI variants and other proto-
cols that are targeted towards specific consistency models.
The resulting heterogeneous protocol satisfies the precisely

12

defined compound consistency model that can be inferred
from the consistency models enforced by the constituent
protocols. We validated HeteroGen with newly developed
litmus tests.

As the computer architecture community—both in
academia and industry—continues the trend towards het-
erogeneity, we hope that HeteroGen and clear compound
consistency models can greatly reduce design time and
increase confidence in the design. To that end, we are
publicly releasing HeteroGen.3

X. Acknowledgments
We thank Susmit Sarkar, Caroline Trippel, our shepherd,

and the anonymous reviewers for their constructive com-
ments and feedback. This work is supported by Huawei,
Google through their PhD Scholarship program, EPSRC
grant EP/V028154/1 to the University of Edinburgh, and
the National Science Foundation under grant CCF-200-
2737.

References
[1] “Compute Express Link,” https://www.computeexpresslink.org/,

accessed: 18th June 2021.
[2] “The AMBA CHI Specification,” https://developer.arm.com/

architectures/system-architectures/amba/amba-5, accessed:
15th July 2019.

[3] “The CCIX Consortium,” https://www.ccixconsortium.com/,
accessed: 21st January 2019.

[4] “The GenZ Consortium,” https://genzconsortium.org/, accessed:
21st January 2019.

[5] “The OpenCAPI Consortium,” https://opencapi.org/, accessed:
21st January 2019.

[6] P. A. Abdulla, M. F. Atig, A. Bouajjani, and T. P. Ngo,
“The benefits of duality in verifying concurrent programs
under TSO,” in 27th International Conference on Concurrency
Theory, CONCUR 2016, August 23-26, 2016, Québec City,
Canada, ser. LIPIcs, J. Desharnais and R. Jagadeesan,
Eds., vol. 59. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2016, pp. 5:1–5:15. [Online]. Available: https:
//doi.org/10.4230/LIPIcs.CONCUR.2016.5

[7] D. Abts, S. Scott, and D. Lilja, “So Many States, So Little Time:
Verifying Memory Coherence in the Cray X1,” in Proceedings of
the International Parallel and Distributed Processing Symposium,
2003.

[8] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in
Weak Memory Models,” in Proceedings of the 22nd International
Conference on Computer Aided Verification, 2010.

[9] J. Alglave, L. Maranget, and M. Tautschnig, “Herding Cats,”
ACM TOPLAS, vol. 36, no. 2, pp. 1–74, jul 2014.

[10] J. Alsop, M. S. Orr, B. M. Beckmann, and D. A. Wood, “Lazy
Release Consistency for GPUs,” in The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-49.
IEEE Press, 2016.

[11] J. Alsop, M. D. Sinclair, and S. V. Adve, “Spandex: A Flexible
Interface for Efficient Heterogeneous Coherence,” in Proceedings
of the 45th International Symposium on Computer Architecture,
2018.

[12] ARM Architecture Reference Manual ARMv8, for ARMv8-A
architecture profile, ARM Limited, 10 2018, initial v8.4 EAC
release.

[13] M. Batty, “Compositional relaxed concurrency,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 375, no. 2104, September 2017.
[Online]. Available: https://kar.kent.ac.uk/64300/

3https://doi.org/10.5281/zenodo.5789379

[14] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,
S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo:
Rethinking the Memory Hierarchy for Disciplined Parallelism,”
in Proceedings of the 20th International Conference on Parallel
Architectures and Compilation Techniques, 2011.

[15] D. L. Dill, “The Murphi Verification System,” in CAV, vol. 1102,
1996.

[16] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed
cache coherence for TSO,” in HPCA, 2014.

[17] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two techniques
to enhance the performance of memory consistency models,”
in Proceedings of the International Conference on Parallel
Processing, ICPP ’91, Austin, Texas, USA, August 1991. Volume
I: Architecture/Hardware. CRC Press, 1991, pp. 355–364.

[18] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,
M. D. Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-
race-free Memory Models,” in Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, 2014.

[19] HSA Foundation, “Heterogeneous System Architecture: A Tech-
nical Review,” 2012.

[20] D. Iorga, A. F. Donaldson, T. Sorensen, and J. Wickerson,
“The semantics of shared memory in intel CPU/FPGA systems,”
Proc. ACM Program. Lang., vol. 5, no. OOPSLA, pp. 1–28,
2021. [Online]. Available: https://doi.org/10.1145/3485497

[21] K. Koukos, A. Ros, E. Hagersten, and S. Kaxiras, “Building
heterogeneous unified virtual memories (uvms) without the
overhead,” ACM Trans. Archit. Code Optim., vol. 13, no. 1,
pp. 1:1–1:22, 2016. [Online]. Available: https://doi.org/10.1145/
2889488

[22] D. Lustig, M. Pellauer, and M. Martonosi, “PipeCheck: Spec-
ifying and Verifying Microarchitectural Enforcement of Mem-
ory Consistency Models,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture,
2014.

[23] D. Lustig, S. Sahasrabuddhe, and O. Giroux, “A formal
analysis of the NVIDIA PTX memory consistency model,” in
Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2019, Providence, RI, USA, April
13-17, 2019, I. Bahar, M. Herlihy, E. Witchel, and A. R.
Lebeck, Eds. ACM, 2019, pp. 257–270. [Online]. Available:
https://doi.org/10.1145/3297858.3304043

[24] D. Lustig, C. Trippel, M. Pellauer, and M. Martonosi, “ArMOR:
Defending Against Memory Consistency Model Mismatches in
Heterogeneous Architectures,” in Proceedings of the International
Symposium on Computer Architecture, 2015.

[25] D. Lustig, A. Wright, A. Papakonstantinou, and O. Giroux,
“Automated Synthesis of Comprehensive Memory Model Litmust
Test Suites,” in Proceedings of the 22nd International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, 2017.

[26] S. Mador-Haim, R. Alur, and M. M. K. Martin, “Generating
Litmus Tests for Contrasting Memory Consistency Models,” in
Proceedings of the 22nd International Conference on Computer
Aided Verification, 2010.

[27] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A
Primer on Memory Consistency and Cache Coherence, 2nd ed.,
ser. Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2020.

[28] L. E. Olson, M. D. Hill, and D. A. Wood, “Crossing guard: Me-
diating host-accelerator coherence interactions,” in Proceedings
of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems,
2017, pp. 163–176.

[29] N. Oswald, V. Nagarajan, and D. J. Sorin, “ProtoGen: Au-
tomatically Generating Directory Cache Coherence Protocols
from Atomic Specifications,” in Proceedings of the 45th Annual
International Symposium on Computer Architecture, 2018, pp.
247–260.

[30] N. Oswald, V. Nagarajan, and D. J. Sorin, “HieraGen: Auto-
mated Generation of Concurrent, Hierarchical Cache Coherence
Protocols,” in Procedings of the 47th Annual International
Symposium on Computer Architecture, 2020.

13

[31] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell,
“Simplifying ARM concurrency: multicopy-atomic axiomatic and
operational models for armv8,” Proc. ACM Program. Lang.,
vol. 2, no. POPL, pp. 19:1–19:29, 2018. [Online]. Available:
https://doi.org/10.1145/3158107

[32] X. Ren and M. Lis, “Efficient Sequential Consistency in GPUs via
Relativistic Cache Coherence,” in 2017 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA),
2017, pp. 625–636.

[33] A. Ros, M. Davari, and S. Kaxiras, “Hierarchical private/shared
classification: The key to simple and efficient coherence
for clustered cache hierarchies,” in 21st IEEE International
Symposium on High Performance Computer Architecture, HPCA
2015, Burlingame, CA, USA, February 7-11, 2015. IEEE
Computer Society, 2015, pp. 186–197. [Online]. Available:
https://doi.org/10.1109/HPCA.2015.7056032

[34] A. Ros and S. Kaxiras, “Racer: TSO consistency via race
detection,” in 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2016, Taipei, Taiwan, October 15-
19, 2016. IEEE Computer Society, 2016, pp. 33:1–33:13. [Online].
Available: https://doi.org/10.1109/MICRO.2016.7783736

[35] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen, “X86-tso: A rigorous and usable programmer’s
model for x86 multiprocessors,” Commun. ACM, vol. 53,
no. 7, p. 89–97, Jul. 2010. [Online]. Available: https:
//doi.org/10.1145/1785414.1785443

[36] M. D. Sinclair, J. Alsop, and S. V. Adve, “Efficient GPU
Synchronization without Scopes: Saying No to Complex
Consistency Models,” in Proceedings of the 48th International
Symposium on Microarchitecture, ser. MICRO-48. New York,

NY, USA: Association for Computing Machinery, 2015, p.
647–659. [Online]. Available: https://doi.org/10.1145/2830772.
2830821

[37] I. Singh, A. Shriraman, W. Fung, M. O’Connor, and T. Aamodt,
“Cache Coherence for GPU Architectures,” in Proceedings of the
19th International Symposium on High Performance Computer
Architecture, 2013.

[38] R. L. Sites, Alpha Architecture Reference Manual. Prentical
Hall, 1992.

[39] A. Tabbakh, X. Qian, and M. Annavaram, “G-TSC: timestamp
based coherence for gpus,” in IEEE International Symposium on
High Performance Computer Architecture, HPCA 2018, Vienna,
Austria, February 24-28, 2018. IEEE Computer Society, 2018,
pp. 403–415. [Online]. Available: https://doi.org/10.1109/HPCA.
2018.00042

[40] M. Wang, T. Ta, L. Cheng, and C. Batten, “Efficiently
supporting dynamic task parallelism on heterogeneous cache-
coherent systems,” in 47th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2020, Valencia,
Spain, May 30 - June 3, 2020. IEEE, 2020, pp. 173–186. [Online].
Available: https://doi.org/10.1109/ISCA45697.2020.00025

[41] A. Waterman, Y. Lee, D. A. Patterson, K. Asanovic, V. I. U.
level Isa, A. Waterman, Y. Lee, and D. Patterson, “The risc-v
instruction set manual,” 2014.

[42] D. L. Weaver and T. Germond, The SPARC Architecture Manual,
Version 9. Prentice Hall, 1994.

[43] X. Yu and S. Devadas, “Tardis: Time Traveling Coherence
Algorithm for Distributed Shared Memory,” in Proceedings
of the International Conference on Parallel Architecture and
Compilation, 2015.

14

A. Artifact Appendix
A.1 Abstract
Our artifact provides the code for HeteroGen in Python and the
input protocols expressed in the PCC language. It outputs the com-
plete concurrent heterogeneous protocol in Murphi. Our artifact
leverages the CMurphi infrastructure to verify the generated proto-
cols. We also provide scripts for automatically generating the pro-
tocols and validating them.

A.2 Artifact check-list (meta-information)
• Algorithm: Automatic generation of heterogeneous coherence proto-

cols

• Program: HeteroGen

• Run-time environment: Linux (Ubuntu 20.04), Python 3.8, CMurphi
5.4.9.1, Docker

• Hardware: System with at least 16GB of RAM and Intel Skylake or
AMD Ryzen

• Output: HeteroGen generates heterogeneous cache coherence proto-
cols in Murphi

• Experiments: Litmus tests provided

• Publicly available: Yes

• Code licenses: MIT

A.3 Description
A.3.1 How to access
Code available on Zenodo: https://doi.org/10.5281/zenodo.5793240

A.3.2 Hardware dependencies
Any PC with at least 16GB of RAM suffices to run most tests and
these will complete in a matter of minutes on an Intel Skylake or
comparable CPU. However, a few deadlocks tests can require up to
1TB of RAM and hours of computation time.

A.3.3 Software dependencies
• Linux distribution (e.g. Ubuntu 20.04)
• Graphviz 2.43.0
• Python 3.8 or higher

antlr3 3.5 (Source code provided in Zenodo)

colorama 0.4.3

graphviz 0.16

networkx 2.5.1

psutil 5.8.0

tabulate 0.8.9

• CMurphi 5.4.9.1 (Source code provided in Zenodo)
• Efficiently Supporting Dynamic Task-Parallelism on Heteroge-

neous Cache-Coherent Systems by Wang et al.
https://zenodo.org/record/3910803

A.3.4 Antlr3 setup
To install antlr3 first open to the antrl3 python3 directory.

cd antlr3-master/runtime/Python3

Then run the install script provided in the directory.

sudo python3 setup.py install

A.3.5 CMurphi setup
To install CMuprhi run from the parent directory:

cd src && make

A.3.6 Datasets
Stable state protocols, used as inputs by HeteroGen to generate the
heterogeneous cache coherence protocol, are provided in the Pro-
tocols/MOESI Directory/ord net directory. A set of litmus tests to
verify the correctness of the protocols is provided in the MurphiLit-
musTests directory.

A.4 Experiment workflow
In the top level directory run:

python3 HeteroGen.py

This will generate the heterogeneous coherence protocol state
machines and litmus tests of protocols presented in the paper, which
will be verified using the Murphi model checker.

When HeteroGen is running warnings are displayed. These
warnings can be ignored when using the provided protocols, but
can help to debug problems when using new atomic protocols as
inputs to HeteroGen.

The generated files can be found in the directory:
Protocols/MOESI Directory/ord net/HeteroGen

To compile the generated litmus tests update the variable ’mur-
phi compiler path’ in the file ParallelCompiler.py to your local
Murphi path. Now compile the model checker files:

python3 ParallelCompiler.py

A.5 Evaluation and expected results
A.5.1 Correctness of automatically generated protocols
To verify the correctness of the generated heterogeneous cache co-
herence protocols, the Murphi model checker is used.

To start the verification, run:

python3 ParallelChecker.py

The runtime of all litmus tests depends on the amount of
RAM and number of CPUs available. The ParallelChecker.py
will automatically run all litmus tests and generate a report file
’Test Result.txt’ in the TestScript directory.

If the ParallelChecker reports that no Murphi test files were
found, change the access permission of the executables to ’+x’.

In the report file ’Test Result.txt’ the litmus tests failing are
listed. None of the litmus tests should fail under normal operation.
The types of failure that are listed can be as follows:

• ’Not served yet’: Due to some error the litmus test was not served

• ’Out of memory’: The verification test ran out of available RAM.

• ’File not found’: No executable was found.

• ’Fail’: The litmus test failed because of an unknown error (e.g. exe-
cutable could not be run)

• ’Litmus test fail’: A litmus test has failed

• ’Deadlock’: A deadlock in the protocol was found

• ’Invariant’: An invariant specified was violated

1

A.5.2 Generated protocols performance evaluation
To evaluate the performance of the automatically generated MESI-
RCCO HeteroGen protocol it is compared against the HCC-
Denovo protocol.

To compare the performance of the protocols, please follow the
instructions provided by the authors of the Efficiently Supporting
Dynamic Task-Parallelism on Heterogeneous Cache-Coherent Sys-
tems publication to setup the reference system.

Once the reference system has been setup, copy the provided
gem5 HeteroGen protocols directory into the docker container and
run:

setup.sh

The setup script copies and modifies all the required files into
the alloy-gem5 directory.

Change directory to:

cd alloy-gem5

After running the setup script, run the benchmark execution
scripts in the alloy-gem5 directory to produce the simulation re-
sults.

HCC-DeNovo protocol:

run DeNovo.sh

HeteroGen MESI-RCCO protocol without any handshakes:

run RCCO GEN NO HS.sh

HeteroGen MESI-RCCO protocol with write handshakes:

run RCCO GEN WR HS.sh

The simulation results are provided in the sim res directory.

/alloy-gem5/sim res

Each result folder is labeled by the type of protocol (e.g.
RCCO GEN NO HS) that has been run followed by the name of
the executed benchmark (e.g. BC).

A.6 Experiment customization
The scripts included do not have any customization options. (Note,
however, that using the PCC language, new atomic cache coherence
protocols can be specified. HeteroGen can then use the newly
defined protocols to generated a new heterogeneous protocol.)

2

