
DCA: a DRAM-cache-aware DRAM controller
Cheng-Chieh Huang Vijay Nagarajan Arpit Joshi

Institute of Computing Systems Architecture
University of Edinburgh

{cheng-chieh.huang, vijay.nagarajan, arpit.joshi}@ed.ac.uk

Abstract—3D-stacking technology has enabled the option of
embedding a large DRAM cache onto the processor. Since
the DRAM cache can be orders of magnitude larger than a
conventional SRAM cache, the size of its cache tags can also
be large. Recent works have proposed storing these tags in
the stacked DRAM array itself. However, this increases the
complexity of a DRAM cache request, which now translates into
multiple DRAM cache accesses (tag/data).

In this work, we address how to schedule these DRAM cache
accesses. We start by exploring whether or not a conventional
DRAM controller will work well. We introduce two potential
baseline designs and study their limitations. We then derive a set
of design principles that a DRAM cache controller must ideally
satisfy. Our DRAM-cache-aware (DCA) DRAM controller, that
is based on these principles, consistently improves performance
over various DRAM cache organizations.

I. INTRODUCTION

DRAM caches [1], [2] are beginning to see the light of the
day. Intel has announced that its next generation Xeon Phi
processor family (code-named Knights Landing) will feature
high-bandwidth on package DRAM that can be configured as
a cache.

Compared to a conventional SRAM cache, a DRAM cache
can be much larger – on the order of hundreds of megabytes
or even gigabytes. Consequently, the size of its cache tags can
also be on the order of tens of megabytes. Recent works [3],
[4], [5], [6], [7], [8] have proposed storing these cache tags
in the stacked DRAM array itself. The above works have
also proposed a number of different cache organizations and
techniques for enhancing DRAM cache performance, either
by improving hit latency or by reducing miss penalty.

Storing these tags in the DRAM array, however, increases
the complexity of a DRAM cache request. In contrast to a
conventional request to DRAM main memory, a request to
the DRAM cache will now translate into multiple DRAM
cache accesses (tag and data). In this work, we address for the
first time the question of how to schedule these DRAM cache
accesses. We start by exploring whether or not a conventional
DRAM controller will work well in this scenario.

A conventional DRAM controller usually consists of two
queues – a read queue and a write queue. Each request to
DRAM memory requires only one access to the DRAM array;
these read (write) requests are thus stored in the read (write)
queue respectively. Switching between read and write modes
on the DRAM bus incurs a latency known as turnaround delay.
Consequently, DRAM controllers strive to avoid frequent

turnarounds, as that can be detrimental to overall performance.
Furthermore, DRAM controllers typically prioritize reads over
writes. This is because read requests tend to be in the critical
path of system performance, whereas write requests are usually
not.

Unlike requests to conventional DRAM memory, requests
to a DRAM cache will translate into multiple DRAM accesses.
For example, a read request to a set-associative DRAM cache
can translate into three accesses: 1) tag read (to determine hit
or miss); 2) data read; and 3) tag write (to update replacement
bits). Similarly, a writeback request to the DRAM cache could
translate into one tag read and two writes (tag and data). In
addition, the DRAM cache also needs to handle refill requests
from lower level memory (§II-B2). This added complexity of
handling both tag and data accesses increases the challenge of
designing a DRAM cache controller.

Study: Conventional Design. We start by exploring a design
dubbed Conventional Design (CD) – a natural extension of
a conventional DRAM controller. In this design, the DRAM
cache controller simply pushes accesses into the read or write
queue depending on the DRAM access type (read or write).
For example, if a DRAM cache read request translates into two
read accesses and one write access, the read accesses will be
placed in the read queue and write access will be placed in the
write queue. Unfortunately, CD suffers from a key limitation
— read priority inversion. This is because a read access from
a DRAM cache read request (high priority) can be blocked
by a read tag access coming from a DRAM cache writeback
request (low priority). To make it even worse, the two reads
(read access from a read request and read tag access from
a writeback requests) can potentially generate a row conflict
at the DRAM cache – we refer to this as read-read-conflict
(RRC).
Study: Request-Oriented Design. To minimize priority in-
version and RRC, we consider an alternate design in which
the controller pushes accesses into the read or write queue
depending on the cache request type (and not the access type).
Specifically, all accesses associated with a cache read (write-
back) request will be placed on the read (write) queue. We call
this the Request-Oriented Design (ROD). Unfortunately, we
observe that ROD suffers from increased turnaround delays.
We also observe that ROD suffers from a longer write queue
flushing latency compared to CD. This is because ROD will
not schedule read tag accesses for write requests, even when
the DRAM cache bus is idle; instead these read accesses willTo Appear in SC16; Salt Lake City, Utah, USA; November 2016



be scheduled only when the controller starts flushing the write
queue. The resulting increased flushing time for the write
queue could eventually hurt overall system performance.
Proposed Design. Based on the above observations, we
identify a set of principles that a DRAM cache controller
should ideally satisfy. The DRAM cache controller should:
1) minimize read priority inversion by taking into account
both the access type as well as the DRAM cache request
type in scheduling accesses; 2) minimize RRC; 3) minimize
the number of turnarounds; and 4) avoid increasing the write
queue flushing latency.

We propose DRAM-Cache-Aware (DCA) DRAM controller
based on the above principles. Similarly to CD, DCA holds
write accesses in a write queue and read accesses in a
read queue. However, we categorize read accesses into two
groups: priority reads (PRs) and low-priority reads (LRs).
Read accesses that are in the critical path – i.e., tag and data
reads from cache read requests are classified as PRs. Those
read accesses that are not in the critical path – i.e, tag reads
from DRAM cache writeback requests and cache refill requests
are classified as LRs. Thus, our DCA controller schedules
accesses with three decreasing levels of priorities: PRs, LRs
and writes. §IV describes how DCA enforces these priority
levels in a manner that is consistent with the above identified
design principles.

In comparison to CD, DCA ensures that non critical read
accesses do not block critical read accesses (coming from read
requests) thus mitigating read priority inversion, as well as
RRC. In comparison with ROD, DCA experiences reduced
flushing times; in addition, turnaround delays are explicitly
minimized.
Results and Contributions. Our experiments with a set-
associative (direct-mapped) DRAM cache organization on
multiprogrammed workloads show that DCA on average is
16.4% (20.8%) faster in comparison with CD, and 7.2%
(12.0%) faster than ROD.

We also evaluated the impact of employing a remapping
scheme [9], which is an orthogonal technique that has been
proposed for minimizing row conflicts in DRAM. We observe
that with the addition of remapping (which mitigates RRC),
the performance of CD is better than ROD (which continues
to suffer from excessive turnarounds). Importantly, even with
remapping added, DCA continues to outperform CD by 7%
(7.5%) with a set-associative (direct-mapped) DRAM cache
organization. This is because DCA is able to mitigate read
priority inversion (as well as RRC), whereas remapping is able
to mitigate only RRC.

The contributions of this paper are as follows:

• To the best of our knowledge, this is the first study on the
impact of the DRAM cache controller on the performance
of DRAM caches.

• We establish a conventional DRAM cache controller design
(CD) (§III-A) that is based on a conventional DRAM
controller. We also introduce an alternate design (ROD)
(§III-B) and study the limitations of both designs.

• We propose DRAM-Cache-Aware (DCA) DRAM con-
troller that effectively addresses the limitations of the above
designs.

II. BACKGROUND

In this section, we first briefly discuss the basics of a DRAM
controller (§II-A) and DRAM cache (§II-B) that is relevant to
this work. We then highlight the potential performance issues
(§II-C) that a DRAM cache controller can encounter.

A. Basics of DRAM Controller Design

In a DRAM system, the DRAM bus can be used to service
a read or a write request at any given time. Switching the
bus between read and write modes is known as turnaround,
which incurs a latency known as turnaround delay. Typically,
in DDR3-1600, a write to read turnaround (tWTR) will cost
7.5 ns and a read to write turnaround (tRTW ) will cost 2.5
ns. Frequent bus turnarounds will result in a performance
loss due to these extra latencies. To avoid these turnaround
overheads, conventional DRAM schedulers commonly store
read and write requests in separate queues – namely, read
queue and write queue. Read queue will be served with a
higher priority, since read requests are usually in the critical
path of system performance. On the other hand, write requests
are handled by a passive flushing scheme. The simplest scheme
is to service the write queue when the write queue is close to
full.

In our work, we consider an optimized scheme which uses
two thresholds – a high threshold and a low threshold to
determine the flushing point. On reaching the high threshold,
the DRAM controller will trigger a forced flush of the write
queue. In addition to that, if there are no pending read requests
and the occupancy of write queue is greater than the low
threshold, the DRAM controller will also flush the write queue.
By prioritizing reads over writes, the DRAM controller can
avoid turnaround overheads and enhance performance.

B. Basics of DRAM Cache

Fig. 1. Different DRAM cache organizations

1) DRAM Cache Organizations: Recent works have shown
that a DRAM cache can be organized either as a set-associative
cache [6] or as a direct-mapped cache [7]. In both designs, the
tags are embedded along with their data in the same row buffer
(tags-in-DRAM). However, the relative location of the tag and
data are different as illustrated in Fig. 1. In the set-associative
design, the tags and the data are segregated; a single cache read
requires at least two DRAM accesses – a tag access followed
by a data access. On the other hand, the direct-mapped design



tightly integrates tag and data; instead of sequential accesses to
tag and data, one could exploit a wider data width to read tag
and data in parallel. For further details on these designs, we
refer the reader to the work of Loh and Hill [6] and Qureshi
and Loh [7].

Fig. 2. Accesses in a cache read and a cache writeback.

2) Accesses in DRAM Cache: In conventional DRAM
memory, the mapping between a request and a DRAM access
is quite simple – a read request translates to a read access
and a write request translates to a write access. Compared
to conventional DRAM memory, a set-associative DRAM
cache requires a more complex mapping. One request typically
translates to multiple DRAM accesses. In this section, we
describe mappings for three main type of requests in the cache:
Read Request. A read request in a cache will translate into
multiple DRAM accesses as shown in Fig. 2: 1) a read tag
(RTr) to determine hit/miss and identify the location of the
data; 2) a read data to satisfy processor request (RDr); and 3)
a write tag to update replacement bits (WTr). Steps 2 and 3
will only happen if the request hits in the cache.
WriteBack Request. A cache write request translates into at
least three accesses as shown in Fig. 2: 1) a read tag to obtain
the current tag status (RTw); 2) a write data (WDw) and 3)
a write tag (WTw). It is worth noting that if the dirty flag of
the victim block is set, a read data is also required (RDw).
Refill Request. A cache refill means a block is brought back
from the lower level memory and it is waiting to be written
into the DRAM cache array. This translation is identical to the
write request.

C. Issues with accesses in DRAM cache

Read priority inversion. DRAM controllers have been de-
signed to prioritize processing of read requests over write
requests, because read requests are typically in the critical path
of execution. DRAM controllers enforce this prioritization
by storing accesses corresponding to read/write requests in
separate (read/write) queues and prioritizing the processing of
read queue over write queue. In a DRAM cache controller,
since all requests translate into both read and write accesses
to DRAM array, the read queue can potentially contain read
accesses corresponding to both read and write requests. In such
a scenario, prioritizing the processing of read queue over write
queue does not guarantee that read requests will be prioritized
over write requests. Indeed, a read access corresponding to
a write request can get processed ahead of read accesses

corresponding to read requests. This leads to the problem of
read priority inversion.
Read-Read-Conflicts (RRC). In the context of DRAM, when
a miss in the last level cache also triggers a replacement,
the read request because of the miss, and the writeback
request because of the replacement of a dirty cache line, can
potentially map to different rows in the same bank in DRAM
memory. This can lead to a row conflict and this phenomenon
is known as Read-Write-Conflicts (RWC) [9]. In the context
of a DRAM cache, in addition to row conflicts between read
and write accesses, there can also be Read-Read-Conflicts.
This is because every writeback request to the DRAM cache
(from the upper level cache) consists of a read tag access to
determine if the cache block is present in the cache. This read
access can conflict with read access(es) from a read request.
While write buffering [10] effectively avoids RWC, it does
not help in avoiding RRC. On the other hand, a permutation
based remapping scheme is able to mitigate RRC in addition
to RWC as evidenced by our experiments.

III. BASELINE DESIGNS AND THEIR LIMITATIONS

In this section, we propose two adaptations of a conventional
DRAM controller. These designs can be differentiated based
on how they classify DRAM accesses corresponding to DRAM
cache requests. We then illustrate the limitations of these
designs using examples.

Fig. 3. How the translated accesses map to queues in CD and ROD.

A. Conventional Design (CD)

We first introduce a design that is closely based on DRAM
memory controller, and call it Conventional Design (CD). As
described in §II-B2, a DRAM cache request requires both
read and write accesses to the DRAM array. In CD, DRAM
accesses corresponding to a request are classified based on
access type. Read accesses will go the the read queue and write
accesses will go to the write queue, irrespective of their request
type, as shown in Fig.3 (a). This design is very similar to a
conventional DRAM controller design as described in §II-A.
Using this design, the DRAM cache controller can minimize
the frequency of turnarounds.



Fig. 4. A case study in conventional design (CD).

However, this design has potential performance issues.
As mentioned in § II-C, write requests in DRAM cache
generate additional tag accesses that can potentially inter-
fere with accesses from read requests. Since the read queue
contains accesses from both read and write requests, read
accesses corresponding to read requests compete with read
accesses corresponding to write requests. This interference
can potentially delay the completion of higher priority read
requests. This read priority inversion can result in an overall
performance degradation, because read requests are usually in
the critical path of processor execution. In addition to this,
the interference between the read accesses can also result in
read-read row conflicts (RRC) as we illustrate next with an
example.

Fig. 4 shows an example of how write requests can delay
read requests in CD. Consider the sequence of cache requests
shown in Fig. 4 (b) (where R* are read requests and W* are
write requests). The DRAM cache first receives requests R1
and W1 at time t1. These requests create three read access
entries in the read queue: read tag for R1 (RTR1), read data
for R1 (RDR1) and read tag for W1 (RTW1) – and two write
access entries in write queue: write data for W1 (WDW1) and
write tag for W1 (WTW1). CD will first schedule RTR1. On
completion of RTR1 it will schedule RDR1. After request R1
is completed, RTW1 will be scheduled. As shown in Fig.4(b),
because R1 and W1 are accessing a different row in the same
bank, RTW1 will cause a row conflict and the controller will
have to close the previously opened row and re-open another
row for request W1. Requests R2 and W2 arrive while the
controller is busy handling RTW1. This results in delaying
request R2 because it needs to wait for RTW1 to complete.
After completing RTW1, CD will schedule RTR2 and cause
another row conflict.

As we can see from this example, CD will trigger three
row conflicts in four accesses (RRC). Moreover, request R2 is
delayed because it has to wait for RTW1’s completion (read
priority inversion). In the figure, we also show an ideal case in
which we avoid scheduling RTW1 between R1 and R2. Thus,
when request R2 arrives it will be scheduled immediately.
Also, the ideal case will trigger only one row conflict in this
entire request sequence.

B. Alternate design: Request-Oriented Design (ROD)

In this work, we also consider an alternate design, in which
DRAM accesses are classified based on their corresponding
request type. Accesses corresponding to read requests will go
to the read queue and accesses corresponding to write requests
will go to the write queue1 as shown in Fig. 3. We call this
design Request-Oriented Design (ROD). Thus both the read
and write queues can contain a mixture of read and write
accesses to the DRAM array. The advantage of this design
is that it will eliminate write interference from delaying read
requests.

However, this design also has its own set of limitations.
Since the write queue contains both read and write accesses,
the frequency of bus turnarounds will increase. This in turn
will increase the write queue flushing time. Moreover, the
increase in this write queue flushing time can potentially
degrade the overall system performance because it can delay
subsequent read requests.

Fig. 5 shows an example highlighting this problem. Con-
sider the sequence of cache requests shown in Fig. 5 (b)
(where R* are read requests and W* are write requests). The
DRAM cache first receives requests R1, W1 and W2 at time
t1. These requests create two read access entries in read queue:
read tag for R1 (RTR1) and read data for R1 (RDR1) –
and two read and four write access entries in write queue:
read tag for W1 (RTW1), write data for W1 (WDW1), write
tag for W1 (WTW1), read tag for W2 (RTW2), write data
for W2 (WDW2) and write tag for W2 (WTW2). ROD will
first schedule RTR1. On completion of RTR1 it will schedule
RDR1. After request R1 is completed, ROD will not schedule
RTW1 until the write queue reaches its flushing condition.
Request R2 arrives at time t2. Now, ROD will schedule RTR2

and RDR2 one after the other. Eventually, ROD starts flushing
the write queue. In addition to the writes, RTW1 and RTW2

also need to be processed. This results in a longer write queue
flushing time.

As we can see from this example, ROD fails to utilize the
idle time between processing requests R1 and R2 to schedule
RTW1 and RTW2. Whereas in the ideal case shown in the

1With one exception: the write tag for a read request (if present) would go
to write queue for performance reasons.



Fig. 5. A case study in Request-Oriented Design (ROD) — please note that bank 1 and bank 2 are in the same rank/channel.

Fig. 6. How the translated accesses map to queues in DCA design

figure, read tags for write requests are scheduled opportunisti-
cally and the overall completion time of the sequence is lower.

IV. DRAM-CACHE-AWARE DRAM CONTROLLER

In this section, we first propose a set of design principles
for designing a DRAM cache controller. We then propose
the DRAM-Cache-Aware (DCA) DRAM controller which is
designed based on those principles.

A. Design Principles

Based on our observations in §II, we propose a set of
principles for designing a DRAM cache controller as follows:
• Avoid priority inversion by taking into account both the

access type as well as request type in prioritizing accesses
(§II-A) – this can avoid the scenario where priority reads
are delayed by low-priority reads.

• Avoid Read-Read-Conflicts (§II-C) – RRC can potentially
cause row conflicts and degrade performance.

• Minimize turnarounds (§II-A) – frequent turnarounds can
result in performance degradation.

• Avoid increasing the write queue flushing latency (§III-B) –
if the time to flush the write queue is increased, subsequent
read requests can be delayed.

B. Handling Low Priority Reads

In our DRAM-Cache-Aware DRAM controller, we first
classify read accesses in two categories: priority reads (PR)
and low priority reads (LR). Read accesses corresponding to
cache read (CR) requests are classified as PR and read ac-
cesses corresponding to cache write (CW) requests (including
cache refill requests) are classified as LR.

In this work, we propose a scheduling scheme to handle
these PRs and LRs. In our DRAM-Cache-Aware scheme, the
translated accesses will map to the read/write queues in the
same way as in CD. However, the scheduler will differentiate
between PRs and LRs in the read queue (as shown in Fig. 6).
In a normal scheduling slot, the scheduler will only schedule
PRs and hold the LRs in the queue (like a write queue).
The LRs in the read queue will only be scheduled under
two conditions: either the occupancy of read queue reaches
a pre-defined threshold, or the LRs satisfy a criteria that is
specified in §IV-C. Algorithm 1 shows the detailed steps of
DCA scheduling scheme. It is worth noting that DCA is based
on a recently proposed application-aware scheduling algorithm
– BLISS [11]. However, our scheme is not limited to any
scheduling algorithm.

Algorithm 1 DRAM-Cache-Aware Scheme
1: //ScheduleAll is initialized to False
2: if (ReadQueue.occupancy ¿ 85%) then
3: ScheduleAll = True
4: else if (ReadQueue.occupancy ¡ 75%) then
5: ScheduleAll = False
6: end if
7:
8: //done = False implies that no reuqest is ready
9: if (ScheduleAll) then

10: done = BLISS ScheduleAll(readqueue)
11: else
12: done = BLISS SchedulePROnly(readqueue)
13: end if
14:
15: if (!done AND !ScheduleAll) then
16: //no PRs in the readqueue
17: OFS Flush(readqueue)
18: end if

C. Flushing Scheme for Low Priority Reads

When to Flush? When to flush the LRs is an important design
decision. If we only flush LRs when the queue is full (or
close to full), then our design might lose the opportunity to
utilize the available DRAM bandwidth. On the other hand,



if we schedule LRs too aggressively, then these LRs could
cause priority inversion and RRC issues as described in §II-C.
Therefore, in this work, we strive to strike a balance. In
principle, we would like to schedule LRs along with the
PRs, as long as there is no interference between them. Here
we observe that RRCs typically appear due to the spatial
locality present in DRAM accesses. Therefore, RRCs can
be avoided by not scheduling those LRs that are accessing
recently accessed banks.
Obtaining the access footprint for each bank. In order to
let the scheduler determine the recency of accessed banks,
we use a technique similar to the one used to implement
cache replacement policies. We use a 3-bit bank re-reference
prediction counter (RRPC) to keep track of the bank re-
reference history and use it to determine (predict) whether or
not we should schedule a particular LR request. This RRPC
design is similar to a cache replacement technique called re-
reference interval prediction (RRIP) [12]. In our proposed
design, each bank will have a 3-bit RRPC counter which
amounts to 24 bytes overhead for a DRAM organization
with 64 banks. This counter will only change when a PR is
accessed. Initially, the counter is set to 0. When there is a PR
request to the DRAM controller, the system will first decrease
the counter in all banks by 1 (0 will stay at 0) and set the most
recently accessed bank’s counter to 7. By doing this, we can
determine the recency of each bank. It is worth noting that the
RRPC will only be modified for PRs.
Opportunistic Flushing Scheme (OFS). When there are no
pending PRs and the occupancy of the read queue is below
the flushing threshold, OFS can start scheduling LRs. When
the scheduler is ready for scheduling a LR (say request LR0),
we first check if there is a row conflict in the corresponding
bank. If there is no row conflict (either row buffer hit or
a closed row), LR0 will be scheduled. On the other hand,
if there is a row conflict in that bank, we will check the
corresponding bank’s RRPC. If the RRPC is lower than a
pre-defined threshold that we call flushing factor (FF), our
controller will schedule LR0. However, if the request can
not meet any of above criteria, it will not be scheduled
and will have to wait for next available scheduling slot for
LRs. In our study, we found that the design is not very
sensitive to flushing factor when it is smaller than 5 (FF-5).
In our multiprogrammed workloads, the average performance
difference from FF-4 to FF-1 is less than 1%. Therefore, in
this work, we use FF-4 as the flushing factor.

D. Summary

In this section, we explain through an abstract example how
DCA can improve performance compared to other policies. In
this example, let us assume that the DRAM cache controller
receives 5 cache read requests (CR) at different time instances.
These CRs are classified as priority reads as discussed in
§IV-B. Moreover, since read requests are typically in the
critical path of system performance, delaying the completion
of a read request might delay the arrival of a subsequent read
request. Meanwhile, cache write requests also arrive in the

Fig. 7. A comparison among CD, ROD, and DCA.

controller and are translated into reads (for tag) and writes
(for tag+data). At the time of completion of the fourth CR,
the write buffer is nearly full and this triggers the flushing of
the write queue. At this moment, any incoming CR cannot be
served before the write queue occupancy returns below the low
threshold. As shown in Fig. 7, CD takes more time to service
the first 4 CRs due to the interference of the reads from CW
and results in a long time being taken to complete the five
CRs. In ROD, we buffer all CWs in write queue and complete
them when write queue flush is triggered. As mentioned in
§III-B, write queue flushing will take longer in ROD and this
delays servicing of the fifth CR. Compared to them, DCA
will classify reads from CW to low priority reads (LRs) and
prioritize CR over LR in the read queue as long as the read
queue occupancy is below the LR queue flushing threshold.
Meanwhile, OFS will try to schedule LR when there are no
CRs pending and RRPC is lower than the flushing factor.

1-2 soplex-mcf-gcc-libquantum astar-omnetpp-GemsFDTD-gcc
3-4 mcf-soplex-astar-leslie3d bwaves-lbm-libquantum-leslie3d
5-6 omnetpp-milc-leslie3d-astar soplex-astar-lbm-mcf
7-8 lbm-omnetpp-leslie3d-bwaves milc-leslie3d-omnetpp-gcc
9-10 bwaves-astar-gcc-leslie3d omnetpp-libquantum-mcf-gcc

11-12 gcc-libquantum-lbm-soplex gcc-leslie3d-GemsFDTD-soplex
13-14 lbm-libquantum-omnetpp-bwaves gcc-mcf-leslie3d-milc
15-16 omnetpp-mcf-leslie3d-lbm libquantum-lbm-soplex-astar
17-18 milc-libquantum-bwaves-GemsFDTD leslie3d-astar-libquantum-bwaves
19-20 lbm-gcc-mcf-libquantum soplex-astar-GemsFDTD-leslie3d
21-22 GemsFDTD-astar-leslie3d-libquantum libquantum-milc-lbm-mcf
23-24 lbm-libquantum-leslie3d-bwaves milc-leslie3d-omnetpp-bwaves
25-26 bwaves-astar-GemsFDTD-leslie3d gcc-soplex-libquantum-milc
27-28 omnetpp-lbm-leslie3d-GemsFDTD soplex-bwaves-GemsFDTD-leslie3d
29-30 GemsFDTD-leslie3d-libquantum-milc omnetpp-bwaves-leslie3d-GemsFDTD

TABLE I
WORKLOAD GROUPINGS

V. EXPERIMENTAL METHODOLOGY

We use gem5 [13], a cycle-accurate simulator for our
experimental evaluation. We model an OoO x86 core based
CMP system with private L1 and shared L2 caches. The
processor is able to issue up to 8 instructions per cycle and
has 192 ROB entries. Using memory-intensive benchmarks
from SPEC 2006 [4], [14], we generated 30 4-core workloads
for evaluating the controller designs. The details about these
workloads are shown in Table I. For our simulations, we fast-
forward 4 billion instructions and simulate timing model for
the subsequent 500 million instructions. It is worth noting that
DRAM cache is huge and takes relatively longer time to warm
up, so caches (w/o timing) are also simulated during fast-
forwarding. For all speedup results in this paper, we use the



System Parameters
Processor 4GHz, x86, 192 ROB Entries, 8-wide

L1 I/D caches each 32KB/2way, 2 cycles, private
L2 cache 8MB, 20 cycles, shared
L3 cache DRAM Cache, 256MB (240MB data capacity), 1/15 way

On-chip bus 4GHz, 256-bit width
Off-chip bus 2GHz, 64-bit width

Memory latency 50ns

Die-Stacked DRAM
Timing tRCD-tCAS-tRP-tRAS 8-8-8-30 (ns)
Params tWTR-tRTP-tRTW 5-7.5-1.67 (ns)

tWR-tBURST 15-3.33 (ns)
16 banks/rank, 1 rank/channel

Organization 4 channels, 4KB row buffer,
RoBaRaChCo, open-page

Read Queue 64 (32 for ROD) entries per channel
Flush thres.: 75%/85% (for DCA scheme.)

BLISS [11]
Write Queue 64 (96 for ROD) entries per channel

Low/high flush thres.: 50%/85%
BLISS

TABLE II
SYSTEM AND DIE-STACKED DRAM PARAMETERS

normalized weighted speedups [15] and for reporting average
speedup, we use geometric mean.

The detailed system parameters and stacked DRAM param-
eters that we use are shown in Table II. Following [6], [7],
[14] we simulate a 256MB non-inclusive DRAM cache using
a detailed DRAM timing model. Since DCA only focuses
on improving the scheduling of DRAM cache accesses, as
opposed to improving the DRAM cache hit rate, its efficacy
is not sensitive to the cache size. With die-stacked DRAM
latency not improving to the expected extent [16], we use
timing latencies similar to Sim et al. [14] which is half-way
between today’s latency [17] and the predicted latency [18].

Conceptually, die-stacked DRAM is a wide-io DRAM chip
stacked on the processor chip. According to JEDEC [17], [19],
the turnaround delay refers to the delay from start of inter-
nal write/read transaction to internal read/write command.
This latency has remained fairly unchanged across multiple
DDR generations. So, we believe it should not be affected
significantly because of die-stacking. In addition, according
to JEDEC wide-io DRAM standard [19], the minimal tWTR
in wide-io DRAM will be 2 tCK (10 ns), which is higher
than desktop’s DDR3-1600 (7.5 ns) [17]. In this work, we
conservatively assume that wide-io DRAM timings could be
improved in the future [16] and use a tWTR latency of 5 ns
which is twice as fast as that of JEDEC standard’s 10 ns. It is
worth noting that this conservative assumption will only lower
the speedup of our design over ROD.

Since a DRAM cache could be organized as either a direct-
mapped [7] or a set-associative cache [6], we evaluate DCA for
both of these designs. Recall that the major difference between
these two designs is the number of accesses per DRAM
cache request (as shown in Fig. 2). We evaluate our proposed
DCA controller and compare it with the conventional design
(CD), and the request-oriented design (ROD). In each of the
above designs, we use MAP-I [7] as the DRAM cache miss
predictor for reducing miss penalty. The underlying scheduling
algorithm for all the designs in our study is BLISS [11].

VI. RESULTS

In this section, we first analyze the overall performance im-
provement (§VI-A) of the proposed DCA design in comparison
with CD and ROD (for both set-associative and direct-mapped
organizations) using multiprogrammed workloads. We further
highlight the improvement in L2 miss latency (§VI-B) which
helps in explaining the improvement in overall performance.
We finally highlight the magnitude of turnaround overhead
(§VI-C) and the variation in row buffer hit rate (for read
accesses) across the different designs. This analysis helps in
explaining the characteristics of different designs.

Fig. 8. Average performance speedup

Fig. 9. Average performance speedup with remapping [9]

A. Performance

Fig. 8 shows the normalized weighted speedup of all the
proposed designs, for both set-associative and direct-mapped
organizations, averaged across all workloads. All speedups
are normalized to CD. Among all the designs, we can see
that CD has the worst performance. This is because CD
suffers from issues that we introduced in §II-C. ROD on the
other hand achieves an improvement of 8.6% and 9.2% for
direct-mapped and set-associative caches respectively. ROD
is able to achieve this improvement because it reduces the
impact of priority inversion and RRC by naively scheduling
DRAM accesses according to the cache request type. However,
it is important to note here that ROD suffers from a high
turnaround overhead (which we will discuss in §VI-C). The
proposed DCA design has the best speedup for both the cache
organizations and achieves 20.8% and 16.4% improvement for
direct-mapped and set-associative caches respectively. DCA is
able to achieve this improvement because it not only reduces
the impact of priority inversion and RRC, but also minimizes
the overhead of turnaround delay. Overall, we can see DCA
provides more speedup in the direct-mapped design. This is
because a single read request in a set-associative cache requires
more read queue entries (§II-B2). Since we use the same read



Fig. 10. Performance speedup of all designs (set-associative)

Fig. 11. Performance speedup of all workloads (direct-mapped)

queue size for both set-associative and direct-mapped caches,
the relatively higher pressure on the read queue in the set-
associative design will decrease the chance of buffering the
LRs, which in turn causes higher interference and results in
lower performance.
With Remapping. We also conduct a second set of experi-
ments, where we incorporate the permutation-based remapping
(XOR) scheme [9] in all the designs. This scheme was
originally proposed to reduce the number of RWI triggered
row buffer conflicts for DRAM memory. Fig. 9 shows the
speedups of all the designs with remapping, normalized to CD
without remapping. As we can see from the figure, the addition
of remapping significantly improves the performance for both
direct-mapped and set-associative organizations. This is be-
cause remapping reduces the number of read-read-conflicts by
remapping tag accesses to different banks (similar to reducing
RWC in DRAM memory). Among designs with remapping,
ROD has the worst performance. This is because ROD already
reduces the number of RRCs and hence does not benefit much
from remapping – but continues to suffer from the penalty of
turnaround overheads. The overall performance of CD on the
other hand is improved by 22.1% and 16.2% for direct-mapped
and set-associative caches respectively. Again, DCA provides
the maximum performance improvement of 29% and 23.7%
in direct-mapped and set-associative caches respectively. It is
worth noting that DCA (with remapping) improves upon CD
(with remapping) by 7.5% and 7.0% for direct-mapped and
set-associative caches respectively. This is because, in CD, the
remapping scheme only helps in reducing row conflicts from
RRC, but the problem of read priority inversion still persists.
DCA on the other hand also reduces the impact of priority
inversion by distinguishing between PRs and LRs.

Individual workloads. Figures 11 and 10 show speedups
for individual workloads for direct-mapped and set-associative
caches respectively. The speedups are normalized to CD
(without remapping). We use XOR+ prefix to represent designs
with the remapping scheme. From these figures, we can see
that the performance improvement trends seen in Fig. 8 and
Fig. 9 are consistent across all benchmarks.

Fig. 12. L2 miss latency improvement — set-associative

B. Miss Latency Improvement

Set-associative. Fig. 12 shows the L2 miss latency improve-
ment of various designs across all workloads for a set-
associative cache, where results are normalized to CD. Without
the remapping scheme [9], as the figure shows, CD has the
worst miss latency amongst all designs. DCA improves the
miss latency by 20% over the CD, while ROD improves it by
11%. With remapping, ROD becomes the worst performing
among all designs. DCA has an improvement of 31%, whereas
CD and ROD improve by 21.2% and 17.9% respectively. Thus,
DCA (with remapping) improves upon CD (with remapping)
by 9.8%.
Direct-mapped. For the direct-mapped cache, as we can
see from Fig. 13, CD is still the worst in terms of per-



Fig. 13. L2 miss latency improvement — direct-mapped setting

formance amongst all designs without remapping. Similar
to set-associative cache, in direct-mapped setting, ROD has
an average improvement of 20% and DCA has an average
improvement of 40%. With the remapping scheme, ROD
has the worst performance among all designs. DCA has an
improvement of 52%, whereas CD and ROD improve by 40%
and 31% respectively. Thus, DCA (with remapping) improves
upon CD (with remapping) by 12%.

Fig. 14. Accesses per turnaround (the higher the better) — set-associative

Fig. 15. Accesses per turnaround (the higher the better) — direct-mapped

C. Turnarounds

As we discussed in §II-A, a DRAM bus can only operate
in either read or write mode at a given point of time.
One of the design principles of DCA is to minimize the
overhead of turnarounds. In this experiment, we analyze
the number of accesses per turnaround for all designs. We
observe that the remapping scheme has no impact on the
number of turnarounds and hence we only show the results
without remapping scheme. Fig.14 (set-associative) and Fig.15
(direct-mapped) show the number of read/write accesses per
turnaround for all designs. Because CD places all the read ac-
cesses (irrespective of the request type) in the read queue, the
number of read/write accesses that it processes per turnaround
is the highest among all designs. On the other hand, ROD
is only able to process about a third of read/write accesses
per turnaround, as compared to CD. Finally, DCA is able to
process almost the same number of read/write accesses as CD
per turnaround. This explains why the performance of DCA
is better than ROD (Fig. 8).

Fig. 16. Row buffer hit rate — set-associative

Fig. 17. Row buffer hit rate — direct-mapped

D. Row Buffer Hit Rate

In this study, we show the row buffer hit rate for read
accesses. As we can see from Fig. 16, DCA has better row
buffer hit rate than CD. This is because of two reasons.
First, DCA avoids read-read-conflicts even without remapping.
Second, buffering and passive scheduling of LRs allows the
DCA scheduler to optimally schedule LRs and maximize row
buffer locality. DCA achieves a row buffer hit rate of about
70% with/without the remapping scheme in direct-mapped
and close to 60% in set-associative cache. It is worth noting
that even though ROD with the remapping scheme has a
slightly higher row buffer hit rate than DCA, it suffers from
high turnaround overhead as we discussed in the previous
section. That is why DCA outperforms ROD with/without the
remapping scheme.

Fig. 18. Tag accesses for various tag cache sizes normalized to no tag cache

Fig. 19. Performance speedup under DRAM-aware writebacks scheme [20]

VII. RELATED WORK

A number of recent works on die-stacked DRAMs have
shown that this technology is a promising step in the direction
of bridging the gap between on-chip caches and off-chip



memory. While some of them have proposed using this die-
stack DRAM as part of main memory [21], [22], [23], [24],
others have proposed to use it as a cache [1], [3], [4], [5], [6],
[7], [14], [25].

DRAM caches allow for workloads with working set sizes
on the order of hundreds of megabytes or even a few gigabytes
to be cached. However, engineering a DRAM cache is not
without its challenges. In particular, where to store DRAM
cache tags is a non-trivial question that has attracted significant
attention. Some prior studies [1], [25] have proposed to store
cache tags in the SRAM. By storing tags in SRAM, it can
reduce both access latency and miss penalty. However, these
works need to use a page-based block (about 2KB) to reduce
the space requirement in costly SRAM. Regardless, this design
does not scale to large DRAM cache sizes [5]. Therefore,
many recent works [3], [4], [5], [6], [7], [8], [14] have
proposed to store these cache tags in the die-stacked DRAM
array itself. Among them, Loh and Hill [6] were the first to
establish the tags-in-DRAM design and propose a MissMap to
skip accessing the DRAM cache on a miss. Qureshi et al. [7]
and Sim et al. [14] also propose miss predictors that avoid the
penalty of a DRAM cache miss with a smaller area overhead
compared to the MissMap. Taking an alternative approach to
using a dedicated storage for tags, recent works [26], [27] have
proposed a tagless DRAM cache, where they use a cache-map
TLB (c-TLB) to provide virtual-to-cache address mapping.
While these works provide a promising alternative, the design
is fundamentally coupled with the memory-management-unit
and therefore requires OS modifications.

In this paper, we target a different problem pertaining to
DRAM caches, one that has not been explored previously. We
address the problem of how to effectively schedule DRAM
cache’s requests. Although our work is based on the set-up
used by Loh’s [6] and Qureshi’s [7] organizations, our work
is orthogonal and can be applied to most of existing tags-in-
DRAM designs. In addition, for DRAM caches with separate
tag storage, DCA can still be used for solving the priority
inversion problem.

A number of recent works [3], [4], [28] have proposed
caching/prefetching the tags of the DRAM cache in an SRAM
buffer (with the tags backed up in the DRAM cache), in order
to reduce the latency of accessing the tags. With a tag cache,
however, the number of tag accesses to the DRAM does not
reduce. In fact, our study based on the tag cache design by
Huang et al. [4] shows that the number of tag accesses to the
DRAM cache could even increase. As shown in Fig. 18, for a
256 MB (12 MB of tags) DRAM cache, the number of DRAM
tag accesses is doubled even for a 192 KB tag cache. The
reason for this is because tag accesses in a tag cache do not
show much temporal locality, and most of the benefit comes
from prefetching nearby tags due to spatial locality [4], [8].
This is not surprising: because the tag cache’s size is smaller
than the tag size of the last-level shared cache (around 384KB
for a 8MB cache), it is unlikely to gain much from temporal
locality. Therefore, adding a tag cache will only exacerbate
the DRAM cache scheduling problem.

In BEAR [8], Chou et. al introduce techniques to reduce
the number of DRAM cache accesses including a Bandwidth
Efficient Writeback Probe which can remove read tag accesses
for writeback hits. While effective, BEAR specifically targets
an inclusive direct-mapped DRAM cache design. On the other
hand, there have been a number of proposals that have advo-
cated a set-associative design [3], [4] and also non-inclusive
DRAM caches [29]. Regardless, our work is orthogonal and
applicable for effectively scheduling the residual accesses in
BEAR.

Several prior works [9], [20], [30] target the problem of
writeback-caused row conflicts in the DRAM memory. Zhang
et al. proposed a permutation-based remapping scheme for
mitigating the RWC issue. Based on Rau’s work [31], the
permutation-based scheme generates a new addressing address
by XORing the original bank index with k-bit (first N-
bit of page index). The remapping scheme is effective in
mitigating RRC problem in DRAM cache, as evidenced from
our experiments in §VI-A (with remapping) – however, DCA
can additionally mitigate read priority inversion.

More recently, Stuecheli et al. proposed a virtual write
queue [30] which combines the memory controller’s write
queue with the last-level cache’s LRU way(s) to form a
virtual queue. This allows the scheduler algorithm to schedule
the writeback before it actually appears in the write queue.
In addition, Lee et al. propose a last-level cache writeback
policy [20] to avoid reads and writes from being issued to
DRAM at the same time. However, none of the above works
address the problems associated with tag accesses and cache
refills which are unique to a DRAM cache and hence, our
work is orthogonal to the above works. This is evidenced by
our study in which we include Lee’s RWC scheme in the upper
level cache (which is L2 in our setup). As shown in Fig. 19,
we observe that LEE+RWC can continue to outperform LEE
scheme by 7% in a direct-mapped cache.

A number of prior works have proposed application-aware
scheduling policies that are designed for reducing application
interference in a parallel environment [32], [33], [34], [11].
While our work uses BLISS as our scheduling algorithm, our
proposal is orthogonal and can take advantage of the above
scheduling algorithms. In addition, Zhao et al [35] propose
a DRAM control scheme optimized for log-based workloads
for systems with persistent memory. Zhao et al’s work and our
work share the similar theme which is specializing memory
controller for a particular requirement. Whereas we propose a
DRAM controller targeted towards DRAM caches, they tailor
the memory controller for persistent memory.

VIII. CONCLUSION

Recent studies have proposed DRAM cache designs that
maintain tags in the DRAM cache, which increases the com-
plexity of a DRAM cache access. In this paper, we have
addressed the problem of how to effectively schedule these
DRAM cache accesses. A conventional DRAM controller
classifies accesses into only two categories: reads and writes.
This simple two way classification is not suitable for a DRAM



cache because different read accesses can have different pri-
orities depending on the requests they correspond to, and
depending on whether they are data or tag reads.

In this work, we have studied potential designs based on
conventional DRAM controller and analyzed their limitations.
We have proposed a DRAM-Cache-Aware (DCA) DRAM
controller that is aware of DRAM-cache-specific tag accesses,
and prioritizes tag accesses in the read queue based on their
request type. We have also proposed an opportunistic flushing
scheme (OFS) for flushing low-priority tag reads from the read
queue.

Our experiments have showed that DCA improves upon CD
(a naive design derived from a conventional DRAM controller)
by 16.4% for a 15-way set-associative DRAM cache. For
a direct-mapped cache design, which allows tag and data
to be read in one single DRAM burst, the corresponding
improvement over CD is 20.8%.

IX. ACKNOWLEDGEMENTS

We would like to thank Boris Grot and the anonymous
reviewers for their helpful comments. This work is supported
by EPSRC grants EP/M001202/1 and EP/M027317/1 to the
University of Edinburgh.

REFERENCES

[1] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,
Y. Solihin, and R. Balasubramonian, “Chop: Adaptive filter-based dram
caching for cmp server platforms,” in International Conference on High-
Performance Computer Architecture, HPCA, 2010.

[2] L. Zhao, R. R. Iyer, R. Illikkal, and D. Newell, “Exploring dram cache
architectures for cmp server platforms,” in ICCD, 2007.

[3] N. Gulur, G. R., R. Manikantan, and M. Mehendale, “Bi-modal dram
cache: Improving hit rate, hit latency and bandwidth,” in IEEE/ACM
International Symposium on Microarchitecture, MICRO, 2014.

[4] C. Huang and V. Nagarajan, “ATCache: reducing DRAM cache latency
via a small SRAM tag cache,” in International Conference on Parallel
Architectures and Compilation, PACT, 2014.

[5] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A scal-
able and effective die-stacked dram cache,” in IEEE/ACM International
Symposium on Microarchitecture, MICRO, 2014.

[6] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes
for very large die-stacked dram caches,” in IEEE/ACM International
Symposium on Microarchitecture, MICRO, 2011.

[7] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in
architecting dram caches: Outperforming impractical sram-tags with a
simple and practical design,” in IEEE/ACM International Symposium on
Microarchitecture, MICRO, 2012.

[8] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: techniques for mit-
igating bandwidth bloat in gigascale DRAM caches,” in International
Symposium on Computer Architecture, ISCA, 2015.

[9] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality,” in
IEEE/ACM International Symposium on Microarchitecture, MICRO,
2000.

[10] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

[11] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The
blacklisting memory scheduler: Balancing performance, fairness and
complexity,” CoRR, vol. abs/1504.00390, 2015.

[12] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. S. Emer, “High performance
cache replacement using re-reference interval prediction (rrip),” in
International Symposium on Computer Architecture, ISCA, 2010.

[13] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Computer Architecture News, vol. 39, no. 2, 2011.

[14] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A
mostly-clean dram cache for effective hit speculation and self-balancing
dispatch,” in IEEE/ACM International Symposium on Microarchitecture,
MICRO, 2012.

[15] S. Eyerman and L. Eeckhout, “Restating the case for weighted-ipc
metrics to evaluate multiprogram workload performance,” Computer
Architecture Letters, vol. 13, no. 2, 2014.

[16] G. H. Loh and M. D. Hill, “Addendum of supporting very large dram
caches with compound access scheduling and missmaps,” 2012.

[17] JEDEC. (2012) Ddr3 sdram standard. [Online]. Available:
http://www.jedec.org/standards-documents/docs/jesd-79-3d

[18] G. H. Loh, “Extending the effectiveness of 3d-stacked dram caches with
an adaptive multi-queue policy,” in IEEE/ACM International Symposium
on Microarchitecture, MICRO, 2009.

[19] JEDEC. (2014) Wide i/o 2 (wideio2). [Online]. Available:
http://www.jedec.org/standards-documents/results/jesd229

[20] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt, “Dram-
aware last-level cache writeback: Reducing write-caused interference in
memory systems,” Technical Report, The University of Texas at Austin,
TR-HPS-2010-002, 2010.

[21] C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo:a two-level memory
organization with capacity of main memory and flexibility of hardware-
managed cache,” in IEEE/ACM International Symposium on Microar-
chitecture, MICRO, 2014.

[22] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the
processor-memory performance gapwith 3d IC technology,” IEEE De-
sign & Test of Computers, vol. 22, no. 6, 2005.

[23] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim,
“Transparent hardware management of stacked dram as part of memory,”
in IEEE/ACM International Symposium on Microarchitecture, MICRO,
2014.

[24] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee, “An optimized
3d-stacked memory architecture by exploiting excessive, high-density
tsv bandwidth,” in International Conference on High-Performance Com-
puter Architecture, HPCA, 2010.

[25] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for
servers: hit ratio, latency, or bandwidth? have it all with footprint
cache,” in International Symposium on Computer Architecture, ISCA,
2013. [Online]. Available: http://doi.acm.org/10.1145/2485922.2485957

[26] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A
fully associative, tagless DRAM cache,” in International Symposium on
Computer Architecture, ISCA, 2015.

[27] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee, “A
fully associative, tagless DRAM cache,” in International Conference on
High-Performance Computer Architecture, HPCA, 2016.

[28] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
efficient and scalable hybrid memories using fine-granularity DRAM
cache management,” Computer Architecture Letters, vol. 11, no. 2, 2012.

[29] C.-C. Huang, R. Kumar, M. Elver, B. Grot, and V. Nagarajan, “C3D:
mitigating the numa bottleneck via coherent dram caches,” in Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO,
2016.

[30] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. John, “Co-
ordinating DRAM and last-level-cache policies with the virtual write
queue,” IEEE Micro, vol. 31, no. 1, 2011.

[31] B. R. Rau, “Pseudo-randomly interleaved memory,” in International
Symposium on Computer Architecture, ISCA, 1991.

[32] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,”
in International Symposium on Computer Architecture, ISCA, 2008.

[33] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scalable
and high-performance scheduling algorithm for multiple memory con-
trollers,” in International Conference on High-Performance Computer
Architecture, HPCA, 2010.

[34] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao,
O. Mutlu, and Y. N. Patt, “Parallel application memory scheduling,”
in IEEE/ACM International Symposium on Microarchitecture, MICRO,
2011.

[35] J. Zhao, O. Mutlu, and Y. Xie, “FIRM: fair and high-performance mem-
ory control for persistent memory systems,” in IEEE/ACM International
Symposium on Microarchitecture, MICRO, 2014.


