
A Practical Theory of
Language Integrated Query

Philip Wadler, University of Edinburgh
(joint work with James Cheney and Sam Lindley)

Data Science CDT
20 October 2016

Databases vs. Programming Languages

“The problem with having two languages is ‘impedance mismatch’. One
mismatch is conceptual—the data language and the program-
ming language might support different paradigms. . . . The other mismatch is
structural—the languages don’t support the same datatypes . . . ”

—George Copeland and David Maier,
Making Smalltalk a Database System,

SIGMOD, 1984

“Databases and programming languages have developed almost independently of
one another for the past 20 years.”

—Malcolm Atkinson and Peter Buneman,
Types and Persistence in Database Programming Languages,

Computing Surveys, 1987.

r

Database programming languages

Kleisli
Buneman, Libkin, Suciu, Tannen, Wong (Penn)

Ferry
Grust, Mayr, Rittinger, Schreiber (Tübingen)

Links
Cooper, Lindley, Wadler, Yallop (Edinburgh)

SML#
Ohori, Ueno (Tohoku)

Ur/Web
Chlipala (Harvard/MIT)

LINQ for C#, VB, F#
Hejlsberg, Meijer, Syme (Microsoft Redmond & Cambridge)

Flat data

departments

dpt

“Product”

“Quality”

“Research”

“Sales”

employees

dpt emp

“Product” “Alex”

“Product” “Bert”

“Research” “Cora”

“Research” “Drew”

“Research” “Edna”

“Sales” “Fred”

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “design”

“Drew” “abstract”

“Drew” “design”

“Edna” “abstract”

“Edna” “call”

“Edna” “design”

“Fred” “call”

Departments where every employee can abstract

select d.dpt as dpt

from departments as d

where not(exists(

select *
from employees as e

where d.dpt = e.dpt and not(exists(

select *
from tasks as t

where e.emp = t.emp and t.tsk = “abstract”))))

dpt

“Quality”

“Research”

Importing the database

type Org = {departments : {dpt : string} list;

employees : {dpt : string; emp : string} list;

tasks : {emp : string; tsk : string} list }
let org : Expr<Org> = <@ database(“Org”) @>

Departments where every employee can do a given task

let expertise′ : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%org).departments do

if not(exists(

for e in (%org).employees do

if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do

if e.emp = t.emp && t.tsk = u then yield { })
)) then yield { })

)) then yield {dpt = d.dpt} @>

run(<@ (%expertise′)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Nested data

[{dpt = “Product”; employees =

[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =

[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =

[{emp = “Fred”; tasks = [“call”]}]}]

Nested data from flat data

type NestedOrg = [{dpt : string; employees :

[{emp : string; tasks : [string]}]}]
let nestedOrg : Expr<NestedOrg> =

<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =

for e in (%org).employees do

if d.dpt = e.dpt then

yield {emp = e.emp; tasks =

for t in (%org).tasks do

if e.emp = t.emp then

yield t.tsk}}} @>

Higher-order queries

let any : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
exists(for x in xs do

if p(x) then

yield { }) @>
let all : Expr< (A list, A→ bool)→ bool> =

<@ fun(xs, p)→
not((%any)(xs, fun(x)→ not(p(x)))) @>

let contains : Expr< (A list, A)→ bool> =

<@ fun(xs, u)→
(%any)(xs, fun(x)→ x = u) @>

Departments where every employee can do a given task

let expertise : Expr<string→ {dpt : string} list> =

<@ fun(u)→ for d in (%nestedOrg)

if (%all)(d.employees,

fun(e)→ (%contains)(e.tasks, u) then

yield {dpt = d.dpt} @>

run(<@ (%expertise)(“abstract”) @>)

[{dpt = “Quality”}; {dpt = “Research”}]

Normalisation: symbolic evaluation

(fun(x)→ N) M N [x := M]

{` = M}.`i Mi

for x in (yield M) do N N [x := M]

for y in (for x in L do M) do N for x in L do (for y in M do N)

for x in (if L then M) do N if L then (for x in M do N)

for x in [] do N []

for x in (L @M) do N (for x in L do N) @ (for x in M do N)

if true then M M

if false then M []

Normalisation: ad hoc rewriting

for x in L do (M @N) ↪→ (for x in L do M) @ (for x in L do N)

for x in L do [] ↪→ []

if L then (M @N) ↪→ (if L then M) @ (if L then N)

if L then[] ↪→ []

if L then (for x in M do N) ↪→ for x in M do (if L then N)

if L then (if M then N) ↪→ if (L && M) then N

yield x ↪→ yield {` = x.`}
database(db).` ↪→ for x in database(db).` do yield x

SQL LINQ results (F#)

Example F# 2.0 F# 3.0 us (norm)

differences 17.6 20.6 18.1 0.5

range × 5.6 2.9 0.3

satisfies 2.6 × 2.9 0.3

P(t0) 2.8 × 3.3 0.3

P(t1) 2.7 × 3.0 0.3

expertise′ 7.2 9.2 8.0 0.6

expertise × 66.7av 8.3 0.9

xp0 × 8.3 7.9 1.9

xp1 × 14.7 13.4 1.1

xp2 × 17.9 20.7 2.2

xp3 × 3744.9 3768.6 4.4
Times in milliseconds; av marks query avalanche.

The script-writers dream, Cooper, DBPL, 2009.

A practical theory of language integrated query,
Cheney, Lindley, Wadler, ICFP, 2013.

Everything old is new again: Quoted Domain Specific Languages,
Najd, Lindley, Svenningsson, Wadler, PEPM, 2016.

Propositions as types, Wadler, CACM, Dec 2015.

http://fsprojects.github.io/FSharp.Linq.Experimental.ComposableQuery/

Ezra Cooper∗†, James Cheney∗, Sam Lindley∗,
Shayan Najd∗‡, Josef Svenningsson§, Philip Wadler∗

∗University of Edinburgh, †Qumulo, ‡Google, §Chalmers & HiQ

