
An update on XML types

Alain Frisch

INRIA Rocquencourt (Cristal project)

Links Meeting - Apr. 2005



XML types
Parametric polymorphism

XML types in ML

Plan

1 XML types

2 Parametric polymorphism

3 XML types in ML

2/24



XML types
Parametric polymorphism

XML types in ML

Plan

1 XML types

2 Parametric polymorphism

3 XML types in ML

3/24



XML types
Parametric polymorphism

XML types in ML

Claim

It is worth studying new programming language fea-
tures/abstractions to deal with XML natively.

4/24



XML types
Parametric polymorphism

XML types in ML

XDuce (Hosoya,Vouillon,Pierce)

Data model

Functional view of XML trees : no upward pointer, no node
identity.

Values = forests of XML elements.

Types

Purely structural view of XML types.

Regular expression types = regular tree languages.

Subtyping = language inclusion.

Language features

Functional flavor : recursive functions, few side effects.

Regular expression patterns = types + capture variables ; very
precise type-checking.

5/24



XML types
Parametric polymorphism

XML types in ML

XDuce lineage

XQuery.

Xtatic (Pierce,Gapeyev,Levin,Schmitt) : C# + XDuce.

CDuce (Frisch,Castagna,Benzaken) : extends XDuce into a
λ-calculus with overloaded functions.

Xtatic and CDuce also focus on efficient implementation
(runtime data representation and compilation of pattern
matching).

XHaskell (Sulzmann, Zhuo Ming Lu) : Haskell + XDuce (nice
encoding of subtyping into an extension of type-classes).

6/24



XML types
Parametric polymorphism

XML types in ML

Extensions

Type-checking XDuce is very modular. New XML operations with
custom typing rules are easily integrated.

Filters = “regular-expression based iterators” (Hosoya).

A query language CQL on type of CDuce
(Miachon,Castagna,Benzaken).

Various disambiguation semantics for pattern matching. With
an all-match semantics, patterns can encode XPath
navigation (Pierce et al.).

7/24



XML types
Parametric polymorphism

XML types in ML

Extensions

Extending the type algebra while retaining its nice properties is
more challenging (need to extend subtyping, pattern matching type
inference and compilation).

Attribute-element constraints à la Relax-NG (Hosoya,Murata).

Extensible records to handle XML attributes.

Function types (cf CDuce).

Parametric polymorphism (Hosoya,Frisch,Castagna).

8/24



XML types
Parametric polymorphism

XML types in ML

Plan

1 XML types

2 Parametric polymorphism

3 XML types in ML

9/24



XML types
Parametric polymorphism

XML types in ML

Parametric polymorphism in XDuce

Motivations

Theoretical : understand the interaction between set-theoretic
types/subtyping and parametric polymorphism.

Practical :

If XDuce-derived languages are used on their own, we need it.
Polymorphic manipulation of XML data (e.g. generic
processing of envelope formats).

 XDuce 0.5.0 release on Tuesday.

10/24



XML types
Parametric polymorphism

XML types in ML

Polymorphism in XDuce

First technical challenge

The natural set-theoretic definition for subtyping gives an
extremely complex algorithm.

Indeed, subtyping can encode constraints on (finite) cardinals.
E.g. :

∀α.(t ∩ α)× t ≤ (t ∩ α)× α ⇐⇒ Card(t) ≤ 1

Proposed solution

Use another set-theoretic interpretation for types : sets of
marked values.

 removes spurious subtyping, simplifies algorithm, gives
more parametricity.

11/24



XML types
Parametric polymorphism

XML types in ML

Polymorphism in XDuce

Second technical challenge

How to infer types for quantified variables when calling a
polymorphic function ?

Proposed solution

Pattern-match the type of the actual argument against the
input type of the function (its free variables are considered as
capture variables).

If the input type is non-ambiguous, we obtain the best
solution.

12/24



XML types
Parametric polymorphism

XML types in ML

Polymorphism in XDuce

Limitations

Type variables only stand for one element in a sequence (or
the whole content of an element). No “sub-sequence variable”.

Inference for type variables does not mix well with function
types, even when limiting to toplevel polymorphic functions.

State of the art : we know how to do it for a type system
without overloaded functions and with strong restrictions on
the types of polymorphic functions.
Explicit instantiation is easier.

13/24



XML types
Parametric polymorphism

XML types in ML

Plan

1 XML types

2 Parametric polymorphism

3 XML types in ML

14/24



XML types
Parametric polymorphism

XML types in ML

Combining ML and XDuce

A natural match

Similarities : functional data, types, patterns, recursive
functions.

Extending XDuce to the full power of ML ?

We know how to extend XDuce either with function types or
with parametric polymorphism, but not both.

We don’t know how to do ML-like type inference for XDuce.

15/24



XML types
Parametric polymorphism

XML types in ML

Design goals

Language

Conservatively extend the ML type system with XML types
and XML pattern matching (and other fancy operations to
come).

XDuce programs must be easily translated. Less type
annotations should be required.

Implementation

Extend existing ML implementations
 limits the complexity of the underlying theory.

Keep the structure of XDuce type-checker (propagation +
subtyping checks).

16/24



XML types
Parametric polymorphism

XML types in ML

Overview of the proposal

XML types as ground types

We simply add XML types to the type algebra (as ground basic
types).
We want to have implicit subsumption and to reuse existing type-
checking algorithms for XML operations.

17/24



XML types
Parametric polymorphism

XML types in ML

Overview of the proposal

A three-pass process

First ML type-checking pass : collapse all XML types into a
single type.
 detect locations in the AST whose type is of kind XML.

Second ML type-checking pass : introduce two XML variables
for each such location, plus a subtyping constraint ; also
records XML operations as symbolic constraints between
these variables.
 extract data-flow of XML values and a summary of XML
operations.

XDuce-like type-checking : forward propagation of types in
the data-flow graph.

18/24



XML types
Parametric polymorphism

XML types in ML

Overview of the proposal

For the third pass to work, we require the data-flow graph to
be acyclic.

The programmer has to provide enough type information :

explicit type annotations ;
datatype declarations ;
module signatures.

The ML type-checker propagates type-annotation in a way
which is simple enough to understand (for an ML
programmer).

Usually, type annotations must only be given for recursive
functions.

19/24



XML types
Parametric polymorphism

XML types in ML

Example

Example

let f b x1 x2 y1 y2 =
if b then (x1@x2,y1) else (x1,y2)

gives : {
f : ∀α.bool→ ι1 → ι2 → α→ α→ ι3 × α
concat(ι1, ι2) ≤ ι3 ∧ ι1 ≤ ι3

20/24



XML types
Parametric polymorphism

XML types in ML

Example

Example

let f b x1 x2 y1 y2 =
if b then (x1@x2,y1) else (x1,y2)

gives : {
f : ∀α.bool→ ι1 → ι2 → α→ α→ ι3 × α
concat(ι1, ι2) ≤ ι3 ∧ ι1 ≤ ι3

21/24



XML types
Parametric polymorphism

XML types in ML

From ML to XML and back

The extension also provides two constructions to translate an
ML value structurally into an XML value, and back.

The ML type must be fully known, monomorphic, and
transparent (i.e. it must have a natural structural
representation).

 easy XML parsing/pretty-printing of ML data.

 subsomption from structural subtypes in the ML world.

22/24



XML types
Parametric polymorphism

XML types in ML

Conclusion

Design goals are achieved.

Type-checking is less compositional (XML type-checking is
done for a whole compilation unit at once).

Implementation on top of OCaml 3.08.2 (a prototype has
been made available on Monday).

Main idea : reusing ML type checker to do slicing + data flow
analysis.

23/24



XML types
Parametric polymorphism

XML types in ML

Thank you !

24/24


	XML types
	Parametric polymorphism
	XML types in ML

