
A new programming language: what for?

Xavier Leroy

INRIA Rocquencourt

1



Introduction

I wasn’t sure what this meeting is about: improving Web

programming, or just talented P.L. people looking for what to

do next?

Will look for problems and application areas where a new

programming language could be warranted.

• Web programming (imposed).

• Programming with formal methods in mind.

• Programming with testing in mind.

Will not cover: our current work plans for Caml and its future.

2



Web programming

3



Web programming

Current practice for server-side and client-side Web

programming is messy. A big gap between the problem and the

tools commonly used (general-purpose languages, scripting

languages, RDBMs).

Could a new programming language help here?

4



Possible areas for improvement

More transparent database interfaces.

Support for data persistence in general.

More “functional” user interactions.

Less reliance on session state during interactions.

Better handling of XML data.
Static typing of XML transformations.

XML navigation, queries.

Better support for two-level programming.

Server-side program generates bits of client-side scripts on the fly.

5



The Hyper-Learning proposal

Web navigation in large “conceptual networks” of literary

documents (critical editions, manuscripts, commentaries, etc.)

Original prototype (Hyper-Nietzche) using conventional tools

was a mess. Developers expressed need for functional languages.

A small C.S. part focused on:

• Stateless user interaction (Wash).

• XML transformation languages.

• Adding data persistence to functional languages.

Call “Hyper-learning and access to cultural heritage”. Failed

with honors. The use of F.P. to improve Web applications was

favorably received.

6



The Actiweb proposal

Originally centered on:

• XML transformation languages.

• Semi-structured databases.

• Distributed Web programming

(from Web services to process calculi).

Call “Global Computing”. Failed with some strong criticisms

(“not very ambitious in proposing innovative paradigms beyond

an incremental progress in the state of the art”).

7



My feelings

Web programming raises some interesting language issues,

notably at the frontier with databases.

Can we do better than “an incremental progress in the state of

the art”?

Huge amounts of grunt work (libraries, frameworks) before

potential users will just contemplate possibly using it.

The community of potential users is large but fragmented in

many independent developers. Who are the heavyweight

industrial partners with R&D departments?

Is the problem serious enough to justify heavy involvement?

8



Programming with formal methods in mind

9



The need for formal methods

The highest levels of software certification now require formal

methods. This is a huge challenge for the safety-critical industry

– one of the few areas where they absolutely need help from

academia.

Domain-specific languages such as Scade or Esterel were very

successful in this area: they are restrictive enough to enable full

verification by model checking.

More complex programs require program proof, and this is a big

challenge – but also an academic area that has made big

progresses lately.

10



Pure functional programming to the rescue

Provers such as HOL and Coq support executable specifications

written in pure functional style.

This is functional programming at its purest:

• No side-effects (mutable state, exceptions, etc).

• All programs must be strongly normalizing (no lazyness).

I am currently writing and proving correct an optimizing

compiler from C to PowerPC assembly code, written in Coq.

Uses most F.P. tricks in the books: persistent data structures,

state and error monads, etc.

11



What can P.L. people contribute?

Programming in Coq is difficult, but still a breeze compared

with proving.

Most improvements will come from the “proof” side.

We P.L. people could contribute:

• Generating efficient and provably correct code from the

functional specifications.

• Our languages should contain a well-identified pure

functional subset that can be imported directly as functional

specifications.

• Writing libraries of (proved) persistent data structures.

• Proof principles and tactics for monadic programming.

• Software-proof co-design.

12



My feelings

A narrow area, incredibly difficult, highly rewarding.

If pure functional programming has a future, this is it.

Well-identified, interesting industrial partners with strong R&D

departments: transportation, aerospace, security.

13



Programming with testing in mind

14



Testing: the dark side of programming

Even when certification at high levels is not requested, rigorous

testing is a necessity for industrial-quality software.

Development of tests usually takes more time (and costs more)

than programming.

We claim that our languages make programs safer and easier to

write. But does this translate into less testing work?

Even if a Haskell or Caml program generally has much fewer

bugs than the equivalent C program, it is not significantly

simpler to test.

One interesting attempt: Quick Check. But random testing is

no substitute for a test suite.

15



The challenge

Is it possible to design a programming language that takes
testability into account?

• Support for pre- and post-conditions and data structure
invariants.
(Eiffel, Java Modeling Language, Spec#).

• Simultaneous design of the programming language and the
specification language.

• Ability to enumerate data structures.
(Datatypes are great; datatypes with observable sharing, less so.)

• High-level description of decision trees.
(Pattern-matching is better than cascades of if. . . then. . . else. What

would be better than pattern-matching?)

• Ability to “invert” computations: what inputs, if any, lead to
a given outcome?

• And probably much more.

16



My feelings

Could have major impact if successful.

Need to understand what these testing methodologies are all

about.

Not clear yet whether the language design can make a big

difference.

17


