
Wishlist for Web Programming

Peter Thiemann

Universität Freiburg

Links Meeting, Edinburgh, Scotland, 6 April 2005

1



The Structure of Modern Web Sites

kinds of content static generated

passive

images

downloads

stylesheets

contents of

files

data bases

executable
traditional

scripts

generated

scripts

• Usually a mix

• About 50% of all sites have executable content

2



Thesis

• More than 90% generated content for some sites

(search engines, news services, blogs, . . . )

• Much of it programmed in an ad-hoc way

(CGI, Perl, PHP, . . . )

• Appropriate programming technology sorely needed

3



From the Structure . . .

static/passive ⇒ web server

generated/passive • access to input

• database and file access

• computation

• output generation: templates, transformations

static/executable ⇒ web server

• does it fit with the static parts?

generated/executable computation ⇒ meta programming

4



Wishlist

• programming model

– session concept

– callback concept

– composition of functional components (parameterization)

– quality assurance (type safety)

– support for programming in the large (abstraction, parameterization)

• features

– XML generation

– database access

– support for transactions

– XML processing (mostly for Web services)

– email, instant messaging

– other APIs (Java based?)

5



Subjective Reflection

• some systems, e.g., BigWig, JWig, WASH, PLT-Scheme, . . .

– deliver on the programming model

– do not score highly on features

⇒ consequently, they are not widely used

• PHP (Perl, Python)

– score badly on the programming model/maintenance/. . .

∗ unchecked string references (href and action attributes) between

pages

∗ retrieval of input fields through unchecked strings

∗ input delivered in terms of strings

– feature-laden; easy access to Java APIs

– leading deliverator of dynamic content on the web today

• JSP scores better in all respects, but is much less frequently used

6



What Seems to Make a Web Programming
Technology Successful . . .

Features, Features, Features plus

• Familiar concepts (kills WASH)

• Low learning curve (kills WASH, *Wig, JSP)

• Seamless integration (kills BigWig)

• Ease of development and deployment (kills JSP)

7



How to sell technology like WASH?

• keep the features but change the host language to JavaScript

– fix up quirks of the language

– add static typing; nominal types (classes); constrained

polymorphism

• integrate server-side scripting with client-side scripting

– less diversity in application development

– interaction between client and server part of application

checkable by compiler

• migration path: untyped ⇒ typed islands ⇒ fully typed

8



On JavaScript

• industry standard (EcmaScript)

• right visibility and apparent familiarity (it has objects)

• low learning curve

• rich feature set

• libraries available

• client-side applications abundant

• server-side: existing application servers as backend

(whitebeam.org, helma.org, cocoon.apache.org)

• but a weak dynamic type system

9



Example Web Script

• Display a time-dependent greeting

• Read in a name and echo a personalized greeting

• Two styles

1. Presentation and application logic muddled up

2. Clean separation between presentation (skin) and application

⇒ Observe that skins are pure HTML

⇒ Designers need not know about programming technology

10



function main () {

var today = getDate ();

ask <html><head><title>Greeting</title></head>

<body><p>Today is {today}

<input type="submit" name="{daytime (today)}" /></p>

<p>Enter your name <input type="text" name="{who}" />

<input type="submit" name="{greet (who)}" /></p>

</body>

</html>

}

function daytime (date) {

var currentTime = getTime ();

var what = phrase (currentTime);

ask <html><head><title>Daytime</title></head>

<body>It’s {what} of {date}!

</body>

</html>

}

function greet (who) {

ask <html><head><title>Greeting</title></head>

<body>Hello, {who}!

</body>

</html>

}

11



function main () {

var today = getDate ();

ask (mainSkin (today))

}

function daytime (date) {

var curTime = getTime ();

var what = phrase (curTime);

ask (daySkin (what, date))

}

function greet (who) {

ask (greetSkin (who))

}

function mainSkin (today) {

<html><head><title>Greeting</title></head><body>

<p>Today is {today}

<input type="submit" name="{daytime (today)}" /></p>

<p>Enter your name <input type="text" name="{who}" />

<input type="submit" name="{greet (who)}" /></p>

</body>

</html>

}

function daySkin (what, date) {

<html><head><title>Daytime</title></head>

<body>It’s {what} of {date}!

</body>

</html>

}

function greetSkin (who) {

<html><head><title>Greeting</title></head>

<body>Hello, {who}!

</body>

</html>

}

12



From JavaScript to WASH/JS

• JavaScript is untyped

⇒ create type system and/or static analysis

⇒ leads to “better JavaScript”

⇒ helps discover errors in existing programs

⇒ see paper @ ESOP’05

• JavaScript is interpreted

⇒ create compiler for suitable subset

⇒ can exploit analysis results

• JavaScript is weird

⇒ No, the browsers’ object hierarchy differs between vendors

⇒ Well, see the ESOP paper

13


